

IMMGNOSIS: KNOWLEDGE ENGINEERING FOR A STATELESS WEB-BASED EXPERT

SYSTEM FOR IMMIGRATION LAW

by

DANIEL M. DE JUAN

(Under the Direction of Walter D. Potter)

ABSTRACT

In this thesis, I document practical and theoretical issues concerning the development of

IMMGNOSIS, a stateless Web-based expert system that reasons over matters involving U.S.

immigration law. I focus on the knowledge engineering aspects of the IMMGNOSIS project,

detailing knowledge acquisition, knowledge representation, and inference. Additionally, I

present a modified expert-system shell that efficiently handles multiple consultations in a

stateless, Web-based environment while relying on only a single instance of the inference

application. I evaluate the accuracy of the system’s diagnoses, the performance of its stateless

architecture, and the potential benefit of putting it into practical use. Finally, I present future

plans for knowledge-base expansion and intelligent handling of conflict resolution.

INDEX WORDS: LEGAL EXPERT SYSTEM, STATELESS ARCHITECTURE,

STATELESS INFERENCE, IMMIGRATION LAW, EXPERT SYSTEM
SHELL, RULE-BASED REASONING, DEFEASIBLE REASONING

IMMGNOSIS: KNOWLEDGE ENGINEERING FOR A STATELESS WEB-BASED EXPERT

SYSTEM FOR IMMIGRATION LAW

by

DANIEL M. DE JUAN

AB, University of Georgia, 2005

A Thesis Submitted to the Graduate Faculty of the University of Georgia in Partial Fulfillment of

the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2005

© 2005

Daniel M. de Juan

All Rights Reserved

IMMGNOSIS: KNOWLEDGE ENGINEERING FOR A STATELESS WEB-BASED EXPERT

SYSTEM FOR IMMIGRATION LAW

by

DANIEL M. DE JUAN

Major Professor: Walter D. Potter

Committee: Donald Nute
Khaled Rasheed

Electronic Version Approved:

Maureen Grasso
Dean of the Graduate School
The University of Georgia
August 2005

iv

ACKNOWLEDGEMENTS

I would first and foremost like to acknowledge Dr. Donald Nute for taking a relentlessly active

role in advising this project despite his recent graduation into retirement. Thanks also to Walter

Potter and Khaled Rasheed for sitting on my committee. In addition to my academic advisors, I

would also like to acknowledge Blair Dorminey for funding the research documented herein and

for providing domain experts from his staff at Dorminey and Cox, LLC. Many thanks also to

those experts, David Tooley, Aschalew Nigussie, and Jongnam Park, for the many hours they

spent trudging through and interpreting INA statutes. Finally, I would like to thank my research

partner and close friend, Vineet Khosla, who has worked tirelessly with me through every step of

this endeavor.

v

PREFACE

This thesis documents a team research project conducted through a partnership between the

Artificial Intelligence Center at the University of Georgia and Dorminey and Cox, LLC. I have

worked with Vineet Khosla, a fellow MSAI student, whose expertise in JSP has been an

invaluable asset. Khosla and I are writing our theses in tandem and striving to each cover only

those aspects of the development process in which we have had direct influence. In doing so, we

aim to produce distinct discussions, but there is some unavoidable overlap due to the fact that we

have advised and inspired one another throughout the undertaking of this endeavor. I make a

concerted effort to cover work that is uniquely his only to the extent that it is necessary for an

understanding of the machinery of the complete system, and I reference his thesis in all such

cases. Khosla’s thesis focuses primarily on issues pertaining to the delivery of the IMMGNOSIS

expert system over the Web in a stateless environment. He discusses issues concerning user

interface, handling of multiple user sessions on a single server, and bridging the gap between

Prolog and JSP. I focus on the expert system application itself, covering issues involving

knowledge representation and engineering, stateless inference, and conflict resolution. However,

in order to provide a self-contained discussion of inference in a stateless architecture, I am forced

to provide some discussion of that architecture. As I have mentioned, I will keep my coverage of

architectural issues to a minimum and will refer the reader to Vineet’s thesis at any point where

such discussion arises.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS... iv

PREFACE..v

LIST OF FIGURES ... viii

CHAPTER

1 INTRODUCTION ...1

1.1 EXPERT SYSTEMS AND LAW ...1

1.2 PROBLEM SPECIFICATION: IMMIGRATION LAW AS AN EXPERT

SYSTEM DOMAIN..2

1.3 INTRODUCTION TO IMMGNOSIS: A STATELESS WEB-BASED

EXPERT SYSTEM FOR IMMIGRATION LAW ...4

2 KNOWLEDGE ACQUISITION ...8

3 KNOWLEDGE REPRESENTATION ..12

3.1 KNOWLEDGE STRUCTURES...12

3.2 DEFENSE OF THEORETICAL COMMITMENT TO RULE-BASED

REPRESENTATION ..14

4 INFERENCE IN A STATELESS ENVIRONMENT ...18

4.1 STATE-DEPENDENT INFERENCE IN THE ORIGINAL SHELL...........18

4.2 OVERVIEW OF STATELESS ARCHITECTURE AS AN

INTRODUCTION TO STATELESS INFERENCE...19

4.3 STATELESS INFERENCE ..21

5 CONCLUSION..28

vii

5.1 EVALUATION ...28

5.2 FUTURE DEVELOPMENT...29

REFERENCES ..34

viii

LIST OF FIGURES

Page

Figure 2.1: BASIC CITIZENSHIP RULE AS PROVIDED BY A DOMAIN EXPERT11

Figure 2.2: RULES CORRESPONDING TO FIGURE 2.1 AS THEY APPEAR IN THE

KNOWLEDGE BASE ..11

Figure 3.1: FABRICATED RULES DEMONSTRATING THE USE OF A COMPLEX

CONDITION...15

Figure 3.2: THE RULES FROM FIGURE 3.1 AS THEY WOULD APPEAR IN A DECISION-

TREE REPRESENTATION ...15

Figure 4.1: DATA FLOW FOR A SINGLE QUERY...22

Figure 4.3: A BLACKBOARD STRING AND THE RESULTING BLACKBOARD................25

 1

CHAPTER 1

INTRODUCTION

1.1 EXPERT SYSTEMS AND LAW

Expert systems are the subset of knowledge-based systems1 that reason over information

pertaining to domains of human expertise in order to solve problems within those domains [1].

The traditional architecture of an expert system includes: a knowledge base where all domain

knowledge is stored, an inference engine that reasons over the information in the knowledge

base, an explanatory facility that displays the reasoning used to derive conclusions, a working

memory that holds data and intermediate results, and a user interface through which a user

communicates with the expert system [2]. These features provide the necessary means for

modeling the reasoning process that guides a human expert from a given set of conditions to a

recommendation.

Two quintessential domains of human expertise are medicine and law. Not surprisingly,

these have been popular domains for expert system applications. MYCIN, one of the oldest and

arguably the most famous of all expert systems, was designed at Stanford University in the 1970s

to diagnose infectious blood diseases [3]. PUFF, another notable medical expert system

developed at Stanford, interprets data related to various pulmonary diseases [4]. These systems,

as well as most other medical expert systems, are intended to analyze raw data and provide a

diagnosis without involving a human expert. When doctors have a set of symptoms and test

results available to them, it is their familiarity with domain knowledge that enables them to

1 Knowledge-based systems are functionally and architecturally equivalent to expert systems, but lack the
requirement that knowledge bases must pertain to expert domains.

 2

immediately derive a conclusion, and this expertise is what medical expert systems emulate. In

the domain of law, however, expertise is of a different sort. It does not require familiarity with

all existing legislation that applies to a particular legal domain. Rather, the essence of legal

expertise is knowing how to interpret those statutes and use them to support an argument in a

court of law. When presented with a case, even a capable expert must engage in a tedious

process of researching legislation to find applicable statutes. Hence, legal expert systems have a

somewhat different goal from medical expert systems. They are not intended to replace human

experts, but rather to assist them by reducing the time they spend researching cases. Since this

task involves objective analysis of the properties that comprise a client’s case, it is well-suited to

the application of an expert system. While a legal expert cannot typically memorize all of the

legislation that pertains to his domain of practice, an expert system can. Thus, legal expert

systems are practically valuable in that they provide a way of automating the research required

for preliminary analysis of a case. However, once a system picks out appropriate statutes and

infers a diagnosis, it is up to the attorney to exercise his or her expertise by arguing that

diagnosis in court.

1.2 PROBLEM SPECIFICATION: IMMIGRATION LAW AS AN EXPERT SYSTEM

DOMAIN

IMMGNOSIS is an expert system that reasons over U.S. immigration law, the body of

knowledge specified in the Immigration and Nationality Act (INA). It can currently provide an

initial determination of a subject’s U.S. citizenship status, eligibility for naturalization, and

admissibility status, and a visa recommendation module is currently under development [6]. The

citizenship module determines whether a subject is a U.S. citizen at the time of the consultation.

 3

Citizenship is desirable because of the rights that it affords, namely, the right to vote, the right to

hold a U.S. passport (which is more widely accepted than most others), and the right to benefit

from Medicare and social security. In most cases, a person attains U.S. citizenship either by

being born in the United States or by being born to a U.S. citizen in a foreign country. These

cases, however, are of little interest from a legal expert system standpoint because they do not

typically require litigation, and they certainly do not justify the programming overhead

associated with implementing an expert system. However, the more elusive rules—for example,

those involving children born to unmarried parents, children born in outlying U.S. territories, and

children born of unknown parentage—make the application of an expert system appropriate. For

each of the above cases, the INA specifies a multiplicity of relevant statutes. Each statute further

specifies a set of conditions which, if satisfied, legitimate a subject’s claim to citizenship. Each

statute typically corresponds to a range of birth dates. Since immigration legislation changes

over time in the direction of increasing restrictiveness, the conditions in a particular statute tend

to be more difficult to satisfy when the subject’s date of birth is relatively recent.

 The naturalization module is related to the citizenship module, with the difference being

that instead of telling whether a subject is already a citizen, it determines whether he or she is in

a position to become one, or naturalize. In the typical case, a person qualifies for naturalization

by satisfying each of the following criteria: having had legal-permanent-resident status for some

specified duration (described below), being physically present in the United States for some

specified duration, and not being disqualified on the grounds of immoral character, threatening

political ties, or any of a host of other disqualifying properties. As with the citizenship module,

however, there is a vast set of rules that apply to special cases of naturalization, including

marriage to a U.S. citizen, service in the armed forces, involvement with promoting U.S.

 4

interests abroad, and so forth. Again, these less common cases complicate the problem and

justify the implementation of an expert system.

 The admissibility and visa recommendation modules are closely related to one another in

that admissibility is a prerequisite for any visa application. Admissibility means, quite simply,

that a person is allowed to enter the U.S. supposing that he or she has a visa or other means of

entering legally. Admissibility is typically assumed, so the admissibility module actually tries to

prove that a subject is inadmissible. Admissibility can be lost by the subject's committing a

crime of moral turpitude, being deemed a threat to national security, presenting fraudulent

immigration documents, etcetera. Once a person has secured his or her admissibility, he or she

can apply for an immigrant or non-immigrant visa, documents that allow a person to remain in

the United States for an unlimited or limited period of time, respectively. Temporary, non-

immigrant visas are typically issued for work, family visitation, or tourism, and the like.

Immigrant visas result in legal-permanent-resident status, which grants a subject the right to

remain in the United States indefinitely and constitutes the first step toward becoming a

naturalized citizen. Citizenship, naturalization, admissibility, and visa attainment are closely

related issues, and in some cases are prerequisites for one another. Chapter 3.2 describes the

way in which IMMGNOSIS handles this interdependency of subdomains.

1.3 INTRODUCTION TO IMMGNOSIS: A STATELESS WEB-BASED EXPERT SYSTEM

 FOR IMMIGRATION LAW

IMMGNOSIS has two potential practical applications, either as an in-house research tool for

immigration law firms or as a publicly-accessible tool for potential clients. From a business

perspective, both applications have a potential for generating revenue for the proprietor, the first

 5

through subscriptions and the second by providing referrals to firms that register with the

service. In either case, the system requires a centralized, Web-based architecture. That design

gives the proprietor control over system access and enables him or her to provide immediate

system updates while containing the proprietary knowledge in a single location [6].

When employed as an in-house research tool, the system replaces the traditional

preliminary consultation, thereby removing the need for costly man-hours spent during the initial

evaluation phase of each new case. Applied this way, the system decreases research time not

only by automatically analyzing the worth of pursuing a case, but also by providing specific

justifications from statutes in the Immigration and Nationality Act which could be used to

support the case in court. In the publicly-accessible implementation, IMMGNOSIS allows a far

greater number of users to access the system than if it were used strictly in-house. The system

could analyze a potential client’s case regardless of physical locality and without requiring

interpersonal communication. If IMMGNOSIS concludes that a user’s case is worth pursuing,

the program can refer him or her to registered firms within a specified proximity and can store

his or her consultation in a database for future reference by those firms. In either application,

IMMGNOSIS allows potential clients to make an initial determination of the worth of pursuing

their cases while circumventing, or at least minimizing, the financial and temporal costs

associated with initiating a traditional consultation with a human attorney. It also benefits legal

practitioners by automatically sorting potential cases and retrieving relevant statutes without

requiring in-house research.

This thesis documents the development of the IMMGNOSIS knowledge base as well as

the stateless Web-based environment in which it runs. I have worked with Vineet Khosla, a

fellow student in the MSAI program at UGA, to modify XSHELL [7], a state-dependent expert

 6

system shell for Prolog. The modification, STATELESS XSHELL, enables the running of a

single Prolog session capable of processing multiple consultations simultaneously over the Web.

Rather than treating each consultation as a continuing session and storing up client information

from beginning to end, STATELESS XSHELL limits each transaction to the acquisition of a

single piece of knowledge about a user. It relies on a portable blackboard architecture wherein a

user’s blackboard is written to, and erased from, working memory with each query. This

structure allows expert systems that run STATELESS XSHELL to process queries from multiple

users in parallel without having to remember previous states. With each query, the shell unpacks

the current blackboard, reasons over it, and repackages it along with a new question for the user

in a Java Server Pages (JSP) file, JSP being the part of the Java technology family responsible

for dynamic Web page design. The shell does not have to keep track of separate blackboards nor

remember the information it has gleaned from each user.

In revamping the XSHELL expert system shell, we also focused on increasing usability

by including an intuitive user interface and by allowing users to edit their responses in the middle

of a consultation. These capabilities are crucial to any practical implementation because the

application is intended for use by laymen lacking expertise in the fields of artificial intelligence

and, in the second application discussed above, immigration law. Anyone lacking experience

with expert systems will benefit from a simple user interface, and anyone lacking expertise in

immigration law will appreciate the ability to edit answers to troublesome questions on the fly.

Details relating to the user interface and the role that JSP plays in the modified shell are

documented in Khosla’s thesis [6].

The present thesis focuses primarily on the knowledge engineering and knowledge

processing aspects of the IMMGNOSIS project. Chapter 2 describes the knowledge acquisition

 7

process, specifying each of the major phases involved in gleaning knowledge from domain

experts and preparing it for an appropriate representation in the knowledge base. Chapter 3

presents a detailed explanation of the structure of the knowledge base that we have used to

represent domain knowledge, beginning with a defense of our theoretical commitment to a rule-

based approach and moving into a discussion of the specific structures we have used to represent

rules and the conditions that comprise them. Chapter 4 offers a discussion of the inference

engine and the means by which it operates in a stateless environment. This discussion is divided

into a presentation of XSHELL, the original state-dependent shell [7], an overview of the

stateless architecture of the new system, and a detailed explanation of the changes in the

modified shell that enable it to perform inference in a stateless environment. Finally, Chapter 5

concludes with an evaluation of the system and a discussion of plans for future development.

 8

CHAPTER 2

KNOWLEDGE ACQUISITION

All domain knowledge has been provided by Blair Dorminey and his staff at Dorminey and Cox,

LLC. in Athens, GA, a firm that handles cases concerning various issues in immigration law.

Dorminey has supported this project from its beginning by providing both funding and expertise.

Vineet Khosla and I met with members of Dorminey’s staff, specifically David Tooley,

Aschalew Nigussie, and Yongnam Park, on a weekly basis throughout development. While each

member of the staff has collaborated to some extent on the entire knowledge base, each domain

expert has focused on one particular area within the domain. Tooley worked with me to develop

a knowledge base for the citizenship module. Nigussie and I collaborated in developing rules for

both the naturalization and admissibility modules. Park has recently begun working with Khosla

to develop a knowledge base pertaining to immigrant and non-immigrant visa recommendations,

a module that is currently under development [6]. As I mentioned, I have encoded most of the

knowledge for the first three subdomains, and Khosla is currently working with Park on the visa

module.

We focus on one subdomain at a time, beginning by specifying the major divisions within

that subdomain and the properties that separate them. In citizenship, for example, a major

criterion for division is the subject’s place of birth. Three possibilities exist—the subject can be

born within the United States, within one of its outlying territories, or outside of the United

States and its territories—each of which will take the subject into separate subsets of the

citizenship rule base, and we organize the progression of the knowledge acquisition process

based on these subsets. Once the major divisions within a subdomain have been established, the

 9

expert responsible for that subdomain reads and interprets relevant statutes in the Immigration

and Nationality Act, the federal document that contains the legislation pertaining to all

immigration law. Once the expert settles on an interpretation, he translates the statutes into

English rules in the form of an outline. This process of knowledge interpretation and extraction

constitutes the most significant bottleneck in the knowledge engineering process.

Once the rules are established by domain experts, Khosla and I interpret them from a

knowledge engineer’s perspective, determining the necessary objects, properties, and relations

that are required for representing them in a knowledge base. We also mark any conditions or

consequents that are unclear to us or that require further interpretation. The process of

converting rules from English outlines to Prolog clauses involves a continual interaction between

knowledge engineers and domain experts that is driven by questioning and explication. Rules in

the final knowledge base often differ significantly in their representation from the original rules.

Since we represent disjunctive conditions over sets of Prolog clauses, a single statute might have

several corresponding rules in the knowledge base. The following figures illustrate this

discrepancy. Figure 2.1 shows a sample rule as we receive it from the domain experts. Figure

2.2 shows the corresponding rule in the IMMGNOSIS rule base. (To avoid divulging sensitive,

proprietary content, both figures present the base-case—the most basic, run-of-the-mill example

of a citizenship rule.)

The first rule in Figure 2.2 is the rule that determines the ultimate diagnosis for the

citizenship base case. The following four rules define a complex condition, a term I discuss in

Chapter 3. For now, a complex condition is just a way of specifying multiple disjunctive

conditions that lead to the same conclusion using only a single condition name. That complex

condition happens to be referenced by all subsequent diagnosis rules that result in a positive

 10

identification, so it provides a means of significantly limiting the size of the rules in the

knowledge base and preserving a structural correlation between the coded rules and the original

statutes. Refer to Chapter 3 for a detailed discussion of the implementation of complex

conditions.

In order to validate the final rules, we familiarize domain experts with the representations

used in the knowledge base with the hope that reading the coded rules will enable them to detect

any logical errors that might have occurred during the conversion. Experts also conduct

consultations throughout development, intentionally answering questions in a manner that leads

them to each of the intended diagnoses for the rules they have provided.

 11

Figure 2.1: A BASIC CITIZENSHIP RULE AS PROVIDED BY A DOMAIN EXPERT

Figure 2.2: RULES CORRESPONDING TO FIGURE 2.1 AS THEY APPEAR IN THE
KNOWLEDGE BASE2

2 If Figure 2.2 is confusing to the reader, please refer to Chapters 3 and 4 for the syntax for IMMGNOSIS rules.

I. Citizenship at Birth

 A. If you are born in the United States, you are a citizen (US Const.
 14th Amend).

 i. Exceptions

1. Renunciation

a. you are not a citizen if you have renounced
your citizenship

2. Jurisdiction

a. You are not a citizen if you are an
American Indian belonging to a tribal nation

b. You are not a citizen if you were born

on US soil to a member of an occupying force

c. You are not a citizen if you are born

to a diplomat in the US and have no citizen
parent. (US Const. 14th Amend).

xkb_identify(1,’ref withheld’,citz,[neg_citizen]) :-
 disqualified.

xkb_identify(1,’U.S. Const 14th Ammendment’,citz,[citizen]) :-

 \+ disqualified,
 parm(birthplace,m,1). % born in one of 50 US

disqualified :-

 prop(renounced_citizenship).

disqualified :-
prop(american_indian_belonging_to_tribal_nation).

disqualified :-

 prop(born_to_occupying_force).

disqualified :-
 no_parent_citizen_at_time_of_applicants_birth,
 prop(child_of_foreign_diplomat).

 12

CHAPTER 3

KNOWLEDGE REPRESENTATION

3.1 KNOWLEDGE STRUCTURES

IMMGNOSIS currently relies on 152 primary rules, where primary rules are those that terminate

in a diagnosis, and 142 rules that define the complex conditions used throughout the knowledge

base. Each primary rule is comprised of a diagnosis as a consequent and a set of conjunctive

attribute/value pairs as conditions. The inference engine searches the rule base in lexical order,

checking the conditions for each rule from top to bottom in a depth-first backward-chaining

approach. Hence, by ordering conditions from most general to most specific within the body of a

rule, we guarantee that the system will never request a piece of knowledge that is superfluous to

the shortest possible inference path. Since questioning occurs on a strictly need-to-know basis,

the system is capable of exploring the search space efficiently and providing concise

consultations.

Rule conditions are divisible into two general categories. The term terminal condition

refers to any condition whose value can be determined from a single piece of information that the

user provides. These correspond to the condition predicates that exist in the original XSHELL,

detailed in Chapter 4.1. Terminal conditions include Boolean properties, discrete-valued

parameters, and any mathematical or set theoretical properties that can be inferred from those

terminal conditions. Thus, a condition requiring a particular year of birth and a condition

requiring a year of birth within some specified range would each constitute a terminal condition.

We represent terminal conditions using the same predicate names that are used in the original

 13

XSHELL in order to accommodate existing XSHELL knowledge bases with STATELESS

XSHELL. The predicates differ significantly from the original shell, however, in that they no

longer have explicit definitions and no longer initiate procedures. These changes are discussed

in Chapter 4.3.

A complex condition, on the other hand, refers to a property that is defined by a

disjunctive set of rules that are in turn defined by conjunctions of terminal and/or complex

conditions. The rule in Figure 2.3 contains a complex condition, \+ disqualified, which

has both terminal and complex conditions in its definitions. Each disjunctive definition of a

complex condition must ultimately terminate in a set of terminal conditions; hence the

nomenclature. With each cycle of question and response, a new piece of information about a

user enters the system and determines the success or failure for any terminal condition that refers

to that piece of information. Thus, the inference engine can draw conclusions regarding the

success or failure of complex conditions by attempting to satisfy their terminal conditions one

question at a time. Complex conditions can be regarded as Boolean properties about which we

expect the user to be ignorant, but whose values can be determined through further questioning.

They are particularly useful for limiting the number and length of rules in the knowledge base.

If, for example, several rules require the same set of closely related disjunctive conditions, we

can represent this disjunction as a single condition and define it only once in the knowledge base.

Without complex conditions, we would instead have to represent each rule that requires the

satisfaction of the disjunction as three separate clauses, and with three original rules, we would

effectively end up with two redundant definitions of the disjunction. In fact, for every n rules

that require the same disjunction with m disjuncts, we would have n – 1 redundant definitions of

the disjunction and nm rules if not for complex condition representation.

 14

In addition to simplifying the knowledge base, complex conditions also make possible

the implementation of a “module-within-module” architecture. Admissibility, for example, is a

prerequisite for any visa recommendation. By requiring admissibility as a complex condition in

each visa rule, we initiate a process that queries the admissibility module, treating the disjunctive

rules for admissibility diagnoses as complex condition definitions, and seamlessly making an

intermediate diagnosis in order to derive the final one.

3.2 DEFENSE OF THEORETICAL COMMITMENT TO RULE-BASED REPRESENTATION

Since immigration law is a largely rule-based domain, it translates naturally into a rule-based

expert system application. Consequently, we use a traditional rule-based representation for

domain knowledge. This approach differs significantly from case-based reasoning, an approach

that has been well-documented in J. Popple’s presentation of SHYSTER [5]. SHYSTER is a

legal expert system that applies case-based reasoning to various domains of Australian law.

Instead of rules and first-order logic, case-based reasoning systems use numerical similarity

measures between input cases and cases in the knowledge base in order to derive diagnoses.

Though the SHYSTER project has proven successful, several factors commit us to a rule-based

approach. First, there is considerable difficulty in obtaining a sufficiently large database of case

knowledge. Moreover, case-based reasoning requires a more elusive inference scheme. There

are no predetermined criteria for deciding which features of a case are most important for

deciding when a source case should or should not be taken to be analogous to an input case. This

can potentially result in diagnoses that are based on arbitrary similarities among uninformative

attributes. Finally, the most influential factor in determining our commitment to a rule-based

system is that case knowledge is further removed from the actual INA statutes, which already

 15

take the form of rules in a loose sense. Consequently, rules offer a better suited representation

for the knowledge that constitutes the domain of immigration law.

Another contending approach to representing the logic of immigration, perhaps a more

intuitive approach to a person lacking familiarity with expert system design, is the

implementation of a procedural decision-tree instead of rule-based inference. A rule-based

approach is preferable for several reasons. First, domain knowledge is more transparent in a

knowledge base than in a decision tree, especially if we assume a Web environment wherein the

tree would be represented over numerous files in a hypertext document. Second, knowledge

base maintenance requires less programming overhead in a rule-based representation than in a

decision tree. If a condition set needs to be changed at some point in the development process,

this change can be effected by simply changing the rule that contains it for the rule-based

approach. In a decision tree, such a change would have to be accounted for throughout a

potentially large subtree. This would involve changing pointers in each file that falls below the

added, deleted, or modified node in the tree. Finally, and most importantly, a decision tree

grows in complexity more quickly than a rule base when we consider complex conditions. In a

decision tree, a single rule would have to have a branch for every possible definition of the

complex condition that it contains, effectively resulting in more rules. In a rule-based

representation, we simply define the complex condition over a set of clauses and include that

condition in a single rule. The efficiency of a rule-based representation becomes even more

apparent when considering the possibility of using the same complex condition in multiple rules.

For the decision tree, each of the original rules must have a branch that corresponds to the shared

complex condition that it contains, resulting in redundant manifestations of the definition of that

complex condition. In the rule base, the complex condition needs to be defined only once and

 16

can then be referred to by any rule that requires it. Figures 3.1 and 3.2 illustrate this property of

complex conditions through a fabricated example. In Figure 3.2, the two vertical clusters

represent the two rules in Figure 3.1, where any failure of the first rule leads to the second rule,

and any failure of the second rule leads to the rest of the knowledge tree. If inference proceeds

to the second rule and determines that condition5 is satisfied, then it ends up in a subtree that

is an exact replica of the subtree that follows condition2 in the first rule. This is, in effect, a

redundant definition of the complex condition, which had to be specified only once in the rule-

based representation.

One might argue that this redundancy could be avoided by constructing the tree such that

the shared complex condition is checked before the terminal conditions that are unique to each

rule. In this case, we would have only one representation of the complex condition and two rules

that branch off of it. However, if we consider that two rules might have multiple complex

conditions, some of which are shared between them and some of which are not, but which are

shared with other rules in the knowledge base, then redundancy is unavoidable. Furthermore,

manipulating the placement of complex conditions in order to avoid redundancy could disrupt

the logical ordering of conditions from general to specific, invalidating the guarantee that the

application will never ask for an unnecessary piece of information.

 17

Figure 3.1: FABRICATED RULES DEMONSTRATING THE USE OF A COMPLEX
CONDITION

Figure 3.2: THE RULES FROM FIGURE 3.1 AS THEY WOULD APPEAR IN A DECISION-

TREE REPRESENTATION

xkb_identify(1,’1st_fake_rule’,citz,[citizen]) :-
 condition1,

condition2,
fake_complex_condition.

xkb_identify(2,’2nd_fake_rule’,citz,[citizen]) :-
 condition3,

condition4,
fake_complex_condition.

fake_complex_condition :-

 condition5.

fake_complex_condition :-
condition6.

fake_complex_condition :-
condition7.

 18

CHAPTER 4

INFERENCE IN A STATELESS ENVIRONMENT

4.1 STATE-DEPENDENT INFERENCE IN THE ORIGINAL SHELL

This section presents an overview of the inference procedure utilized by XSHELL [7], the

unmodified, state-dependent shell, as a point of comparison for the stateless inference process

that I describe in Section 3. The most important distinction between the two shells is that in

XSHELL, the scope of a single query spans an entire consultation from start to finish. A query

to the shell initiates a call to xkb_identify/2, which constitutes the head of each primary

rule in the knowledge base. Prolog’s built-in inference engine tries to satisfy each clause for

xkb_identify/2 in lexical order, initiating various procedures along the way as the

inference engine attempts to satisfy the predicates that constitute rule conditions. These

condition predicates correspond to the various kinds of terminal conditions described in Chapter

3. The condition predicates in XSHELL are prop/2, parm/3, parmset/3, and

parmrange/3. prop/2 handles Boolean-valued properties. parm/3 deals with parameters

that can take values from various sets including atoms, numbers, and menu choices.

parmset/3 and parmrange/3 are set-theoretical predicates that determine whether a

parameter is contained in a particular set or falls within a certain range, respectively. When any

one of these predicates is called in XSHELL, its first clause tells Prolog to check whether the

piece of knowledge is in the working knowledge base, or blackboard. If so, the predicate then

checks whether the value on the blackboard matches the value in the condition. If so, the call

succeeds. If not, it fails. If, on the other hand, there is no known value on the blackboard for

 19

that property, the predicate prompts Prolog to display an appropriate question in the console.

Question text comes from one of two predicates, xkb_question/4 or xkb_menu/4,

depending on how the answer is delivered in the user interface [7]. In both predicates, the first

argument is the name of the attribute. The subsequent arguments are text strings used to

assemble the question and to display the attribute’s value in the explanatory facility. (The

explanatory facility is described in Section 3.) The user’s answer to the question changes the

blackboard and determines the success or failure of the condition predicate, and inference

continues on either to the next condition (if the call ultimately succeeds) or to the next rule (if the

call ultimately fails). All predicates for terminal conditions work in a similar manner in that they

check the knowledge base, initiate a question if necessary, and effect any appropriate changes to

the blackboard.

 It should be evident from the discussion above that the current state of the system at any

given time is crucial for determining whether a condition succeeds or fails and whether a

question needs to be displayed to the user. The blackboard is built continually in working

memory throughout the course of the consultation by the procedures specified in the definitions

of terminal condition predicates, and its present state determines the course of the inference

process. As Section 3 will demonstrate, the procedures contained in the definitions of terminal

condition predicates in XSHELL will be of no use in a stateless inference environment.

4.2 OVREVIEW OF STATELESS ARCHITECTURE AS AN INTRODUCTION TO

STATELESS INFERENCE

System architecture is discussed in greater detail in Khosla’s thesis [6], and influence for the

stateless system design comes from an earlier thesis by David Jennings [8]. I include this section

 20

primarily to provide relevance to the subsequent discussion of stateless inference. IMMGNOSIS

is divisible into two distinct components: the expert system itself and the Web interface that

delivers it. The IMMGNOSIS knowledge base and expert system shell are both implemented in

LPA Prolog [9], and we use LPA’s Intelligence Server (IS) to communicate with JSP, which is

responsible for the front-end interface. IS provides mappings between data structures of JSP and

Prolog and allows for JSP to initiate queries to the Prolog application.

At the start of a consultation, a user fills out a JSP form requesting general information

from the user that is required by all modules in the knowledge base. This form writes the first

blackboard for the consultation and queries the Prolog application by calling

stateless_xshell/3, where the first argument is the blackboard string and the second is

the unique session ID.3 stateless_xshell/3 then carries out the inference process

described in the next section and generates a new JSP file to be displayed to the user.

Information moves from JSP to Prolog in the form of a query, and it moves from Prolog back to

JSP through a Prolog predicate, generate_file/7, which uses the information gleaned from

the inference procedure to create a JSP file. The key to the statelessness of the system lies in the

fact that a user’s blackboard, the body of information pertaining to his particular consultation, is

passed to and from the expert system with each interaction between JSP and Prolog.

Consequently, a query in the stateless shell spans only one addition to the blackboard rather than

an entire consultation. This feature eliminates the requirement that the expert system maintain

information about each user in working memory throughout the course of each consultation. The

following figure illustrates the flow of data throughout the system over the course of a single

query.

3 The third argument is a flag that tells the shell whether to conduct a consultation in the manner described in this
thesis or to view/edit a saved one. The save/edit functions are documented in Khosla [6].

 21

Figure 4.1: DATA FLOW FOR A SINGLE QUERY

4.3 STATELESS INFERENCE

In STATELESS XSHELL, inference proceeds in a manner that is quite different from the

original version of XSHELL. In the original system, a single query to the inference engine is, in

effect, a search through the entire knowledge base that sequentially builds a blackboard and

terminates in a diagnosis. This implementation is not desirable for a Web-based expert system

 22

that handles requests from multiple users for several reasons. First, it does not make efficient use

of system resources. The Web server would have to run separate simultaneous instances of the

application for each user in order to keep track of their separate blackboards. Alternatively, the

system could keep track of separate users’ blackboards by distinguishing them in working

memory with tags, but this would require significant programming overhead and does not

effectively reduce the demand on system resources since the system must still remember

multiple blackboards simultaneously. We have overcome these obstacles by redesigning the

original expert system shell to run in a stateless environment.

A stateless expert system environment does not require the system to maintain

information about previous actions or states in order to process a query. The benefit of using a

stateless architecture is that a single instance of Prolog is sufficient for supporting multiple users

while using minimal machine resources [8]. With each query in the stateless version, a string

comes into the program containing all the facts that have been gleaned from the user so far.

Prolog then unpacks the string, writes it to the blackboard, reasons as far as it can with the

information it contains, erases the blackboard while repackaging its contents into a string, and

builds a JSP page with a new question or a diagnosis and the hidden blackboard string. The

query is thus satisfied and Prolog returns to its original state, awaiting a new query with a new

blackboard string.

Since we do not want a query to span an entire consultation in the stateless version, we

cannot rely on the built-in inference engine to process the clauses for xkb_identify/2, and

we cannot rely on the procedures specified in the original definitions of terminal condition

predicates to carry out the consultation. The remainder of this section demonstrates our

alternative approach by explicitly describing each of the predicates that constitute the body of

 23

stateless_xshell/3, the predicate that JSP calls when it interacts with the expert system.

The first predicate in the body of stateless_xshell/3 is

write_blackboard/1, which takes the blackboard string as input, unpacks it, and places its

contents on a temporary blackboard in working memory. It reads the current rule number and

environment from the string and asserts them as facts using the predicate known/2, where the

first argument is an attribute and the second is a value. After writing the current rule number and

environment, it asserts known/2 clauses for all attribute/value pairs contained in the string.

These will later be used to determine the success or failure of the terminal conditions that refer to

them. The format of the blackboard string is a comma-separated list where the first two elements

are the environment and rule number and the rest are pairs of attributes and values, where

attributes are distinguished from their corresponding values by a colon. In the string that

write_blackboard/1 receives, each attribute name has been translated into a corresponding

three-letter code in order to keep the string within the 4k spatial limitation imposed by HTTP’s

get_string method. Figure 4.3.1 shows a sample blackboard string and the set of

known/2 clauses that result in working memory.

Figure 4.3: BLACKBOARD STRING AND THE RESULTING BLACKBOARD

Blackboard String:

`citz,1,aad:27,aae:3,aaf:1972,aai:y`

Blackboard in Working Memory:

known(env,citz).
known(current_rule_number,1).

known(day_of_birth,27).
known(month_of_birth,3).
known(year_of_birth,1972).
known(mother_citizen,y).

 24

 The next predicate in stateless_xshell/3 is clause/2, a built-in predicate that

takes a rule head as input and returns that rule’s conditions. We use this predicate to generate the

list of conditions for the current rule by calling it with the first argument instantiated to

xkb_identify(Rule_Number,Reference,Environment,Diagnosis), where

Environment and Rule_Number are instantiated according to the current blackboard.

Much like xkb_identify/2 in the original shell, xkb_identify/4 constitutes the head of

each primary rule in the knowledge base and contains the diagnosis and rule number as

arguments. However, xkb_identify/4 is never called in the new shell. Rather, we treat it

as a tag for each rule and use it as a way of accessing that rule’s conditions. We add an argument

for environment in order to make it possible to load the knowledge bases for separate modules

into working memory at the same time without unintentional interaction, and we also include an

argument that refers to the INA statute that corresponds to the rule.

The next predicate, process/5, is responsible for carrying out inference in the new

shell. Since we want a query to span only a single addition to the blackboard, process/5

terminates each time it comes to a condition that either has no value or determines a diagnosis.

When process/5 is called, it is given the list of conditions for the current rule as input.

process/5 then checks each condition in the list against the contents of the blackboard and

returns the necessary information that is required for generating the next JSP page that will be

presented to the user. If all conditions succeed with the available information, process/5

returns a diagnosis. If a condition in the list is encountered that has no value on the blackboard,

process/5 returns the appropriate question along with a list of possible answers. If a

condition fails, process/5 increments the current rule number, generates the list of

conditions for the next rule, and repeats the aforementioned process. The conditions themselves,

 25

much like the clauses for xkb_identify/4, are never called in the traditional sense. In fact,

they are not even independently defined in the new shell. Rather, process/5 has an auxiliary

predicate that determines whether these conditions succeed, fail, or require a question.

Conditions predicates are not defined by procedures that manipulate the blackboard or prompt

the user for information. These procedures are handled instead by JSP based on the information

that process/5 extracts. The first three arguments are the condition list, a flag for success,

failure, or question, and the text for a question or diagnosis. The last two apply to cases that

result in the generation of a new question, one being the set of possible answers and the other

being the three-letter code that represents the property or parameter to which that question

corresponds.

When process/5 encounters a complex condition, it calls an auxiliary predicate that

behaves in a manner similar to its own in that it generates a list of conditions for the complex

condition and processes them, the only differences being that successfully processing the entire

list results in the success of the complex condition rather than in a diagnosis and that failure

requires backtracking to a new list of conditions without incrementing the current

xkb_identify/4 rule number that is stored in the blackboard. Recursion takes care of

processing complex conditions that are defined in terms of further complex conditions.

The next predicate, wipe_blackboard/2, undoes the work of

write_blackboard/1. That is to say, it erases all known/2 clauses from the blackboard

while assembling them into a list of attribute/value pairs which will later be assembled into a

blackboard string.

Finally, the list of known attribute/value pairs, the return type flag, the text for the

question or diagnosis, the list of possible answers, and three arguments that have to with user

 26

interface issues [6] are all sent to generate_file/7, which uses the information gleaned

from the inference procedure to create a new JSP page with a hidden blackboard string and a

new question or diagnosis [6]. It is in the body of generate_file/7 that the list of

attribute/value pairs is translated back into three-letter codes and assembled into a string. Prolog,

after storing the blackboard in the user’s new JSP file and having cleared its working memory, is

thus rendered in the same state it was in before the query to stateless_xshell/3.

From this point, JSP handles the presentation of the appropriate question or diagnosis by

displaying the page that results from the procedures defined in generate_file/7. If the

page contains a question, then generate_file/7 will have created the appropriate forms for

displaying the question and its possible answers. Once the user responds, JSP routines make

appropriate additions to the blackboard string and send a new query to

stateless_xshell/3, starting the process over again. In the case of a diagnosis, the

resulting JSP file will display the appropriate diagnosis text and prompt the user to continue

searching for alternative diagnoses. If the user chooses to continue the consultation, then JSP

increments the rule number in the blackboard string and queries stateless_xshell/3,

forcing inference to proceed to the next rule.

 The explanatory facility in STATELESS XSHELL is closely tied to the user interface, so

for a detailed explanation, refer to Khosla’a thesis [6]. However, it is worth mentioning the way

in which we generate relevant conditions in a stateless inference environment. When a diagnosis

is reached, a flag generated by process/5 directs Prolog to a special clause for

generate_file/7 that handles the generation of JSP files for diagnoses. Since

STATELESS_XSHELL still has access to the current rule number and environment when

generate_file/7 is called, it calls clause/2 with the appropriate instantiations for the

 27

rule number and environment arguments. clause/2 returns a list of conditions for the rule that

fired, and generate_file/7 uses that list to access the appropriate clauses for

xkb_question/4 or xkb_menu/4, where those predicates contain strings that state the

values for their corresponding attributes.

 28

CHAPTER 5

CONCLUSION

5.1 EVALUATION

At present, IMMGNOSIS has not undergone intensive evaluation regarding the accuracy of its

diagnoses. The system has not been released to the public, and it has never diagnosed cases that

have actually been tried in a court of law. However, the experts involved in the knowledge

acquisition process have validated the rule base throughout its development in the manner I

described in Chapter 2. Diagnoses follow exactly as we would expect from examination of the

rules in the knowledge base, and we are confident that these diagnoses represent the domain

accurately to the extent that we are confident in our domain experts’ interpretations of the INA.

Blair Dorminey has applied IMMGNOSIS to a handful of actual cases that his firm was handling

and testified that the system reduced his research time by an average of ninety percent,

suggesting that we have accomplished our goal of reducing the number of man-hours required

for analyzing immigration cases. In reality, an objective critique of IMMGNOSIS’s practical

performance will not be possible until the system has been evaluated in beta testing by a wider

base of practicing legal experts.

 We are much more confident, however, in our evaluation of the performance of the

modified expert system shell and its stateless architecture. We have been testing the integrated

system since November 2004, and it has proven itself capable of effectively reasoning over the

knowledge base using the portable blackboard architecture.

 29

Aspects of the system that Khosla covers in his thesis [6] have also been a success. In

testing, subjects reported that the user interface is clear and intuitive, and we anticipate that

anyone with minimal Web-browsing experience will have no difficulty interacting with the

system. All of the user-interface features, from account creation to consultation storage and

editing, work exactly as intended.

5.2 FUTURE DEVELOPMENT

The future development of IMMGNOSIS is three-tiered. Since immigration law is an ever-

changing domain of expertise, the most obvious task for future development is that of modifying

and adding to the content of the knowledge base. We are confident that the knowledge base is

currently complete with respect to the subdomains that it covers, but immigration legislation

changes on a regular basis. Consequently, knowledge base maintenance will be a continuous

endeavor. Additionally, as we introduce the application to the public for beta testing, we hope to

attain practical feedback and analysis from a larger body of domain experts than that which we

have had available to us throughout the initial development process. This information will guide

the process of validating and updating the existing rules in the knowledge base.

In addition to updating and validating the existing rules, we also hope to expand the

coverage of the knowledge base by including several new subdomains. We are currently

working on a module that makes recommendations regarding immigrant and non-immigrant

visas. It suggests appropriate visa categories for potential applicants and assists those who

already have a visa with extensions or changes of status. We would also like to include modules

that address criminal offenses, good moral character, and any other concepts that we find to be

important to the domain of immigration law.

 30

Finally, plans for future development include expanding the functionality of the inference

engine in terms of conflict resolution. The current system handles conflict by simply offering all

diagnoses that the system can deduce from its knowledge base. It does not recognize conflicting

diagnoses and does not provide any means of ranking multiple diagnoses when they are not in

conflict with one another. We would like to improve the system’s handling of multiple

diagnoses by implementing certainty factors and defeasible reasoning. Certainty factors will be

especially useful for the visa recommendation module, which is intended to offer multiple

diagnoses, while defeasible reasoning will both eliminate the presentation of conflicting

diagnoses and simplify knowledge base maintenance. The remainder of this section details the

way in which certainty factors and defeasible reasoning provide the necessary means for

achieving these goals.

In the visa recommendation module, it is possible for a user to qualify for multiple visas

at the same time. That is, the domain allows the user to end up with multiple diagnoses that are

not necessarily in conflict with one another. The system in its current state provides all

diagnoses but provides no way of ranking them. We would like to provide a meaningful ranking

of diagnoses in order to guide the user in whatever legal pursuits may follow from his or her

consultation with IMMGNOSIS, and we plan to accomplish this goal by implementing a

modified version of certainty factors. Certainty factors are a way of ranking diagnoses by

combining the certainty that the expert associates with the correlation between a rule’s

conditions and consequent and the certainty that the user associates with his or her answers to

individual questions [1]. We are considering a deviation from the traditional use of certainty

factors by emphasizing desirability as well as certainty. The INA clearly defines the conditions

that a person must satisfy before qualifying for a particular visa, so it would not be meaningful to

 31

associate certainty factors with the correlation between conditions and consequents. We would

instead use a measure of desirability for that particular visa based on the length of stay, waiting

period, financial costs, and so forth. Naturally, these desirability measures will come from our

domain experts. Once these measures have been specified, we could combine them with the

user’s certainty regarding his or her answers to the questions that comprise each rule’s

conditions, resulting in a ranking that considers both certainty and desirability simultaneously.

While certainty factors will greatly increase the usefulness of the system, we currently

face a much more pressing problem regarding conflict resolution. In modules other than visa

recommendation, diagnoses are ultimately Boolean values. A user does or does not have a claim

to U.S. citizenship, is or is not eligible for naturalization, etcetera. In the current system it is

possible that the user might end up with conflicting diagnoses. In citizenship, for example, the

first rule pertains to conditions that disqualify a user from any possible claim to citizenship and

therefore results in negative diagnoses. However, if the user falls into one of these disqualifying

categories and decides to continue searching for diagnoses, he or she will end up with a positive

diagnosis for each positive identification rule that he or she satisfies. One way of overcoming

this problem is to require the failure of each disqualifying condition in every rule that

corresponds to a positive identification, which we have done in the citizenship module. Thanks

to complex-condition representation, we have had to add to each positive identification rule in

the knowledge base only one complex condition, \+ disqualified, rather than the negation

of each of the properties that result in disqualification. However, this universal repetition of

even one complex condition is a grossly inefficient way of resolving potential conflicts. Every

citizenship rule currently requires a condition that serves only to redundantly reference the

 32

properties that are expressed in the first negative identification rule. We propose a defeasible

inference engine as an efficient means of overcoming the problem of conflicting diagnoses.

In a defeasible inference application we divide the knowledge base into strict rules and

defeasible rules. This is somewhat of an oversimplification, but it provides enough of an

understanding to demonstrate the benefits of defeasible reasoning for conflict resolution. When

a strict rule’s conditions are satisfied, the defeasible inference engine can derive the consequent

of the rule. Defeasible rules, however, require a further condition, namely, that the rule not be

defeated. A rule is defeated when another rule can be satisfied without being defeated and has a

consequent that conflicts with the consequent of the original rule. In the case of the \+

disqualified condition that permeates the citizenship module, we could handle conflict

resolution by making every positive identification rule a defeasible one. This captures the logic

of the original INA statutes better than the strict rule representation. The statutes are meant to

convey that you are a citizen in the general case as long you satisfy such and such conditions.

Once we incorporate this vulnerability into the positive identification rules, we simply specify

the rules for disqualified as we have done in the current knowledge base, representing

them as strict rules, but we add the knowledge that disqualified conflicts with any positive

identification. The inference engine will recognize this potential for defeat when processing

positive identification rules, and if it has determined that the conditions for such a rule are

satisfied, it will then try to satisfy the rules that have disqualified as a consequent. If all

rules for disqualified fail or are defeated by other rules, then the system will return the

positive diagnosis. If, on the other hand, the inference engine is capable of satisfying a

disqualified rule, then the system will return only the negative diagnosis. Under no

circumstances will the system ever return conflicting diagnoses, and we will only have to refer to

 33

the set of disqualified rules in the one xkb_identify/4 clause that results in a negative

diagnosis based on disqualification. We will be able to represent all positive identification rules

with conditions that more closely mirror the INA statutes, doing away with repeated reference to

disqualification. Disqualification will still be checked each time a positive rule’s conditions are

satisfied, but the check will occur implicitly in the defeasible inference process rather than

explicitly in each rule’s conditions.

 34

REFERENCES

[1] Jackson, P. (1999). Introduction to expert systems (3rd ed.). Harlow, England: Addison

Wesley Longman Limited.

[2] Awad, E. M. (1996). Building expert systems: Principles procedures, and applications. St.

Paul: West Publishing Company.

[3] Shortliffe, E. H. (1974), MYCIN: a rule-based computer program for advising physicians

regarding antimicrobial therapy selection. Proceedings of the ACM National Congress
(SIGBIO SESSION), 739.

[4] Aikens, J. S. (1983). PUFF: an expert system for interpretation of pulmonary function data.

Computers and Biomedical Research. 15, 199-208.

[5] Popple, J. (1993). Shyster: a pragmatic legal expert system. The Australian National

University, Canberra.

[6] Khosla, V. (2005). IMMGNOSIS: architecture for a stateless, Web-based expert system for

immigration law. A master's thesis submitted to the graduate faculty at the University of
Georgia

[7] Covington, M. A., Nute, D., & Vellino, A. (1997). Prolog programming in depth. New

Jersey: Prentice-Hall Inc.

[8] Jennings, D. JXSHELL: a Web-based expert system platform. A master's thesis submitted to

the graduate faculty at the University of Georgia

[9] Logic Programming Associates Ltd., available at http://www.lpa.co.uk

