
Evolutionary Instance Resampling for Difficult Data Sets

by

William Dale Richardson

(Under the Direction of Khaled Rasheed)

Abstract

In the field of machine learning, data set features such as across-class imbalance and class

overlap often pose difficulties for classifier algorithms. A number of methods alleviate these

difficulties by adjusting the distribution of the data set before classifier construction. Re-

sampling is typically effected by re-weighting, removing, or duplicating instances. Finding a

good distribution for the data set, however, is a nontrivial problem. Evolutionary algorithms

are frequently used to search for solutions in large, difficult search spaces. In this thesis, four

evolutionary approaches are applied to the problem of instance resampling across a vari-

ety of data sets and classifier paradigms. In many cases, the evolutionary pre-processing

methods are able to produce better classifiers. In particular, an integer-based, one-to-one

representation and a cluster-based, real-valued weighting scheme are shown to be beneficial

for improving classifier performance on difficult data sets.

Index words: genetic algorithms, machine learning, imbalance, undersampling,
oversampling, instance selection

Evolutionary Instance Resampling for Difficult Data Sets

by

William Dale Richardson

B.S., Washington and Lee University, 2011

A Dissertation Submitted to the Graduate Faculty

of The University of Georgia in Partial Fulfillment

of the

Requirements for the Degree

Master of Science

Athens, Georgia

2013

c©2013

William Dale Richardson

all rights reserved

Evolutionary Instance Resampling for Difficult Data Sets

by

William Dale Richardson

Major Professor: Khaled Rasheed

Committee: Walter D. Potter
Prashant Doshi

Electronic Version Approved:

Maureen Grasso
Dean of the Graduate School
The University of Georgia
December 2013

Evolutionary Instance Resampling for

Difficult Data Sets

William Dale Richardson

November 13, 2013

Acknowledgments

My mother, Sherry Richardson, and my father, Daniel Richardson, have been a source of

unwavering support throughout my life. This thesis would not have been possible without

them. I would also like to express my gratitude toward my instructors at Washington and

Lee University who helped prepare me for this endeavor including Dr. Kenneth Lambert, Dr.

Simon Levy, Dr. Rance Necaise, Dr. Sara Sprenkle, Dr. Joshua Stough, and Dr. Nathaniel

Goldberg. At the University of Georgia, I would like to thank Dr. Walter Potter, Dr. Khaled

Rasheed, and Dr. Prashant Doshi. Their guidance throughout my time at the Institute

for Artificial Intelligence has been invaluable. Additionally, the resources prepared by Dr.

Michael Covington have been an enormous help in formatting this work. Finally, I would

like to thank my friends who have helped me along this proverbial journey, especially Peter

Geiger, Greg Lennon, and E.W. Malachosky.

iv

Contents

Acknowledgements iv

1 Introduction 1

2 Problem Background 5

2.1 Boosting . 16

2.2 Evolutionary Methods for Improving Classification 21

2.3 Outlier Detection . 27

3 Proposed Methods 31

3.1 Measure of Merit . 32

3.2 Genetic Representations . 34

3.3 Population Initialization . 36

3.4 Genetic Algorithm Configuration and Operators 38

4 Experimental Setup 42

4.1 Artificial Data Sets . 42

4.2 Real-World Data Sets . 44

4.3 Machine Learning Components . 45

5 Results and Analysis 47

v

5.1 3-NN Classifier Performance . 48

5.2 J48 Classifier Performance . 51

5.3 Multilayer Perceptron Classifier Performance 54

5.4 Support Vector Machines Classifier Performance 55

5.5 Effects of Imbalance and Overlap . 58

5.6 UCI Data Set Performance . 59

6 Conclusions and Future Directions 62

Bibliography 66

Appendices 73

A Data Resampling Techniques 74

B Data Set Performance Charts 75

vi

List of Tables

3.1 Genetic algorithm parameter configuration 38

3.2 Real-valued mutation operator . 40

3.3 Across-class cluster weighting mutation operator 41

4.1 Artificial data set controlled parameters . 43

4.2 UCI data sets . 45

4.3 Modified UCI data set class composition . 45

5.1 3-NN classifier performance on the artificial data sets 50

5.2 Wilcoxon signed-rank test for the 3-NN classifier’s performance on the artifi-

cial data set . 51

5.3 J48 classifier performance on the artificial data sets 53

5.4 Wilcoxon signed-rank test for the J48 classifier’s performance on the artificial

data sets . 54

5.5 Wilcoxon signed-rank test for the MLP classifier’s performance on the artificial

data sets . 55

5.6 SVM classifier performance on the artificial data sets 57

5.7 Wilcoxon signed-rank test for the SVM classifier’s performance on the artificial

data sets . 58

5.8 3-NN classifier performance on the UCI data sets 59

vii

5.9 J48 classifier performance on the UCI data sets 59

5.10 MLP classifier performance on the UCI data sets 60

5.11 SVM classifier performance on the UCI data sets 60

5.12 Wilcoxon signed-rank test for the 3-NN classifier’s performance on the UCI

data sets . 61

5.13 Wilcoxon signed-rank test for the J48 classifier’s performance on the UCI data

sets . 61

viii

Chapter 1

Introduction

In the field of machine learning, a number of features that can make data sets more difficult

to model have been identified. One such feature that has received a great deal of attention

is between-class imbalance, or simply imbalance. A data set is said to be imbalanced when

the number of instances belonging to a class of interest is relatively small. If data suffers

from imbalance, it can be substantially more difficult to construct an effective classifier,

particularly one able to recognize members of the small class. Additionally, it can cause

some conventional methods of measuring classifier performance, such as accuracy, to fail to

effectively measure the degree to which a classifier has “learned” a concept. Recent research,

however, indicates that relative imbalance between classes is typically not a problem per se,

but that it can combine with other factors such as overlap, small disjuncts, high concept

complexity, and sampling differences between the training and testing sets to decrease clas-

sifier performance for many machine learning paradigms. A data set suffers from overlap if

many instances of differing classes share the same region of the instance space. Overlap is

most obviously apparent in the case of noisy or erroneous data, but points in overlapping

space may merely represent the complexity of a target concept. Overlap may often be more

disruptive for a machine learning algorithm than imbalance. As both imbalance and overlap

1

increase, they produce a synergistic effect, degrading classifier performance and increasing

model complexity drastically. High concept complexity is present when a class is composed

of a relatively large number of separate clusters. For classes that are under-represented, the

points are spread across a larger area, forming small disjuncts or rare cases. A disjunct is an

area of the instance space defined by a collection of instances corresponding to a sub-concept,

and a disjunct is small if the number of instances composing it (i.e. its coverage) is also small

in the context of the data set. These regions are problematic for many inductive algorithms

to learn, because they are difficult to distinguish from noise or other statistically insignificant

data, especially for methods that are biased toward maximum generality. Finally, should

the distributions of the training data and the testing data be different. This phenomenon is

known as data fracture. Nonetheless, the data sets available in a given problem may suffer

from any combination of these features in varying degrees. They may arise from shortcom-

ings or difficulties in data acquisition, or they may represent intricacies of the underlying

distribution. In either case, it is important to develop techniques for improving classifier

learning on difficult data sets, and, having done so, it is important to evaluate under what

circumstances these techniques are most beneficial.

There are a number of techniques for improving classifier performance on difficult (par-

ticularly imbalanced) data sets. They are typically divided into two classes: those which

modify the behavior of an inductive learning method and those which modify the training

data so that a learning method’s behavior is more effective. Comparisons of the two classes

have indicated that, in general, neither has any discernible performance advantage and that

both can produce improvements. One advantage of modifying the data set’s distribution,

however, is that it does not require one to select a particular machine learning paradigm

in advance. Having altered the data set, one can then experiment with different learners

to determine which one is best suited for the problem at hand. Modifying the distribution,

or resampling, can be accomplished in many ways. Removing instances (undersampling)

2

and duplicating instances (oversampling) have been shown to improve performance in im-

balanced domains. Additionally, some methods employ synthetic data points to modify the

distribution. In all of these cases, the data sets are manipulated in order to increase or

decrease emphasis on certain instances or regions of the sample space, more directing the

inductive behavior of the classifier than changing it. The effectiveness of data pre-processing

is, of course, limited by the initial distribution of the data set. It is impossible to extract

information that is not present in the data, and given a high level of noise, it may be im-

possible to discern an underlying concept at all. Even so, existing pre-processing methods

are capable of data refinement and adjustment in ways that produce substantial classifier

improvement, and they do so without the use of a priori or task-specific information.

The difficulty of challenging data sets often lies in distinguishing between noise and

exceptional, valid cases that are important for constructing an effective classifier. For a

pre-processing method applied to such a data set, the inclusion, exclusion, duplication, or

weighting of instances becomes more difficult accordingly. Many pre-processing algorithms

use simple heuristics to select which points in the data set should be discarded, duplicated,

or used to create artificial instances. Other methods make these selections entirely randomly.

In either case, the search among possible instance subsets is (with few exceptions) unguided

by feedback from machine learning methods. Searching this space is problematic because

even in the simplest cases (including/excluding each instance or duplicating select instances

a single time), the size of the search space grows exponentially with the number of instances

in the data set. For variable-quantity instance duplication or real-valued instance weighting

for a data set of the same size, the solution space is even larger. As the search space grows,

and brute force becomes increasingly impractical, it becomes more important that the search

method be efficient in navigating that search space.

Genetic algorithms (GA) have proven to be a robust, reliable method for finding good

solutions in large search spaces with many local optima. This suggests that the GA is well-

3

suited to the problem of adjusting the sample space distribution. This adjustment can be ef-

fected in many different ways, and this is reflected in the wide variety of approaches that have

been proposed. One strength of the GA is that it can accommodate many different represen-

tations within a powerful and robust heuristic search framework. This potential, however, is

not without drawbacks. Genetic algorithms, while well-suited to a wide variety of problems,

often offer poorer performance than domain-specific algorithms for a specific problem. They

have no guarantee of finding a global optimum, and they may require substantially more

computation time. While domain-specific operators can ameliorate this inefficiency, ideal

applications for the genetic algorithm are relatively difficult instances in domains where no

adequate domain-specific method exists and simpler methods such as hill-climbing are not

sufficient. In the context of this research, that means that ideal data sets for modification by

a genetic algorithm exhibit high degrees of imbalance, overlap, concept complexity, or data

fracture, as existing methods (random oversampling/undersampling, cost-sensitive learning,

SMOTE and its variations) already offer substantial classification improvements for moder-

ately difficult data sets at a far lower computational cost. In this thesis, genetic algorithms

are applied to the task of modifying the distribution of a data set to improve the quality of

classifiers constructed from the set. Five different representations are developed, and their

performances are evaluated on both real and artificial data sets. The objective is to develop

a data pre-processing method for adjusting the distributions of difficult data sets so that

classifiers produced from the data set are more effective than classifiers built from the raw

data set. Finally, analysis is undertaken to determine under what conditions each method

produces the greatest improvements.

4

Chapter 2

Problem Background

Class imbalance in data sets has been identified as a hindrance for classifier performance in a

number of real world domains including intrusion detection, oil-spill detection from satellite

imagery, and medical data [Kubat et al., 1997, Autio et al., 2007]. Although the negative

effects of imbalanced data were once widely believed to be caused by large relative differ-

ences in the number of instances in each class, recent work indicates that the situation is

more complicated. In one of the most influential papers on the effect of imbalance, Japkow-

icz and Stephen perform a comprehensive experiment to measure the effect of imbalance.

They study imbalance independently and in conjunction with other features of data sets:

set size and target concept complexity (i.e. the number of sub-clusters that compose each

class). They also compare three general pre-processing methods for correcting imbalance:

random oversampling, random undersampling, and cost-adjusting the minority examples by

the imbalance ratio. Their experiments indicate that, of C5.0 decision trees, multi-layer

perceptrons, and support vector machines (SVMs), decision trees were the most negatively

affected by imbalance, multi-layer perceptrons are affected proportionately to the degree

of imbalance, and SVMs were virtually unaffected. Among remedial methods, oversampling

and cost-modifying are shown to work very well for the classifiers that suffer from imbalance,

5

though they hindered the performance of SVMs. Most importantly, the authors conclude

that imbalance itself does not actually effect classification negatively; rather, when classes

are very imbalanced, the sub-clusters comprising each class are not large enough to be gener-

alized upon effectively. Hence, the authors argue, imbalance together with small data set size

and/or high target concept complexity produce the negative effect traditionally attributed

to imbalance alone [Japkowicz and Stephen, 2002]. Other work supports these conclusions:

Batista et al. conduct an experiment to determine the effect of imbalance across a variety of

UCI data sets and gauge the benefit of a number of pre-processing techniques. The authors

find that, in general, oversampling is more effective than undersampling. They also find that

imbalance is most problematic in conjunction with other aggravating features. Finally, the

authors find that in many cases, using approaches based on Chawla et al.’s Synthetic Minor-

ity oversampling Technique (SMOTE) produced better results than randomly oversampling,

though the latter was more computationally efficient for some domains [Batista et al., 2004].

The success of SMOTE and its variants indicates that greater increases in performance are

possible through more sophisticated pre-processing methods, i.e. that random resampling is

not the upper bound on data pre-processing performance.

SMOTE is a popular method of data pre-processing that works by generating artificial

examples to change the local distribution of instances. It was developed specifically to oper-

ate on imbalanced data sets as an oversampling method that would improve recall without

causing overfitting in the classifier. The algorithm operates by randomly selecting minority-

class instances and interpolating at a random interval between those instances and their

nearest neighbors. It has a single parameter: intuitively, the number of artificial samples

to generate. The authors are able to demonstrate the benefit of SMOTE both accompa-

nying random majority undersampling and in isolation. Toward this end, they employ an

analysis of the receiver-operating characteristic curve (ROC) and compare the areas under

these curves (AUC) [Chawla et al., 2002]. SMOTE is relevant to this thesis because it is

6

a powerful pre-processing method and because it forms the basis of numerous resampling

methods for difficult data sets [Chawla et al., 2003, Batista et al., 2004, Prati et al., 2004,

Batista et al., 2005, Han et al., 2005]. It has been widely adapted likely because introduc-

ing synthetic data points was a noteworthy innovation in data pre-processing, SMOTE has

produced excellent results in a number of studies, and because it is a simple algorithm that

is easy to alter or extend.

Another idea important to the methods examined in this paper is that data pre-processing

can be applied in a wrapper framework so that the resampling is guided. Chawla et al.

conduct an investigation to gauge the effectiveness of a SMOTE-based wrapper method

to pre-process the data. The intuition behind this is that the resamplings produced by

SMOTE with different parameter settings are not necessarily equal in quality, but if an

algorithm can receive feedback from the classifier, it can search for a good configuration.

The wrapper extension of SMOTE operates this way, using the classification results on a

validation set to tune two parameters: the number of synthetic examples generated and the

percentage of the majority class to undersample randomly. The authors note that using

a wrapper approach imposes some requirements that non-wrapper methods do not have.

The data set will require a subset of the training data to guide the wrapper algorithm;

for data sets undergoing cross-fold validation, this may be implemented by a second level

of cross-validation within the training set. Second, wrapper adaptations of any method

naturally require more computational time than the method itself. As a counter to this

increased time, the authors suggest that parallelization can be used to reduce execution

time, if not the total compuational burden, as the problem lends itself well to division (e.g.

each fold could be assigned to a different processing unit). The authors also compare the

effectiveness of various guiding criteria for the wrapper technique: a cost-sensitive metric

(with the imbalance ratio used to control the relative cost), AUC, F1-measure, and a variant

of the F-measure in which the parameter β varies with the relative cost/imbalance. They

7

find that the non-cost-sensitive measures produce good performance, which is valuable since

these methods are available in domains where the cost matrix is not know a priori or the

misclassification costs changes over time. Among these two measures, the AUC performs at

least as well as the F-measure, and Chawla et al. recommend it for guiding wrapper-based

pre-processing approaches [Chawla et al., 2008]. To gauge the effectiveness of their method,

they also compare all of the SMOTE versions against cost-sensitive techniques MetaCost

and CostSensitiveClassifier (CSC), varying the cost disparity between two classes. They

observe that at lower disparities (2:1), the two cost-sensitive methods are able to produce

classifications with lower overall cost, but at higher ratios (10:1 and 20:1), the wrapper

methods are more effective [Chawla et al., 2008]. This study is particularly valuable to this

research because it is an excellent example of corrective data pre-processing applied in a

wrapper framework.

The relationship between imbalance and overlap has also been the subject of substantial

research. Prati et al. conduct an experiment in which they vary overlap and imbalance

independently on artificial data sets. These data sets consist of five-dimensional data points

(not including the label) in two classes drawn from a Gaussian distribution with a standard

deviation of 1.0. Across these sets, the imbalance ratio varied from ninety-nine to one, and

the distance between the means varied from nine standard deviations to zero (i.e. the class

distributions had the same mean) to increase overlap. The authors evaluate the AUC of C4.5

classifiers trained on these data sets. They find that overlap causes severe degradation in

classifier performance and that this degradation was more acute in the presence of imbalance

[Prati et al., 2004]. Imbalance alone also hindered effective tree construction, but its effect

in isolation was less pronounced than that of overlap. As this thesis attempts to mitigate the

difficulty of data sets, studies like this one that seek to identify the source of this difficulty

are very valuable.

Garcíıa et al. perform an empirical comparison of various classifier paradigms’ perfor-

8

mance on imbalanced data sets with varying degrees of overlap. Their experiment also

investigates the effects of having an globally imbalanced minority class be dominant within

the overlapping region. Using a 1-NN classifier, a radial basis function (RBF) network, a

näıve Bayes classifier, a multi-layer perceptron, a C4.5 classifier, and a support vector ma-

chine (SVM) classifier, they examine the effect of increasing amounts of overlap, holding the

degree of imbalance and training set size constant for artificial data sets with a uniform distri-

bution. Their findings indicate that classifier recall for the minority class typically decreases

as overlap increases, but the degree to which this occurs varies across paradigms. While

1-NN and SVM are very sensitive to overlap, näıve Bayes classifiers are relatively robust in

the face of overlap [Garćıa et al., 2007]. Additionally, when the distribution of data in the

overlapping region was skewed heavily toward the minority class, the recall is substantially

higher, even demonstrating more reliable classification of the minority class than the ma-

jority class. This second conclusion suggests that examining data set features and altering

distributions on a global scale may not be optimal. To produce greater improvements, it

may be beneficial to develop methods which are sensitive to local imbalance and overlap and

are capable of resampling at a local scale.

Focusing exclusively on the behavior of SVM classifiers, Denil and Trappenberg investi-

gate the effects of varying data set size, class imbalance, and degree of overlap. They hypoth-

esize that imbalance and overlap operate independently to inhibit SVM learning. From their

experiments, they find that imbalance and overlap together drastically increased the com-

plexity of the model and decreased the F1-measure of the SVM classifier [Denil and Trappenberg, 2010].

Their research suggests that while SVMs are largely unaffected by imbalance (provided that

there is sufficient training data), imbalance and overlap work non-linearly to inhibit learn-

ing when both are present. Although this research is limited to one classifier paradigm, it

demonstrates that the effects of complicating factors in a data set can be amplified when

they are found in combination, i.e. they produce synergistic degradation.

9

Another factor affecting data sets and their ease of classification is the problem of rare

cases. This is also known as the problem of small disjuncts or within-class imbalance. As

early as 1989, the problem of small disjuncts and their inhibitive effects on machine learning

have been a subject of research [Holte et al., 1989]. Most inductive concept learners operate

by identifying groups of instances in the attribute space referred to as disjuncts. Since these

methods are often biased towards maximum generalization, disjuncts with a high degree of

coverage (those which contain a large number of instances) tend to be more easily recognized.

Small disjuncts, or rare cases, occur when sub-concepts (particularly of the minority class)

are represented by few instances in the data set and thus may be difficult to distinguish

from noise. Holte et al.’s work focuses primarily on undersampling: each disjunct identified

in a model is subject to possible removal from the concept representation. Its inclusion

or exclusion is based on criteria such as error rate and statistical significance. They also

investigate the effect of applying different inductive biases to the disjuncts depending on

their sizes; while this study does not definitively answer the problem of how to treat small

disjuncts, it is certainly a great step forward in understanding and responding to them.

Nathalie Japkowicz and her associates also examine the effect of small disjuncts. They

refer to this issue as within-class imbalance, framing the problem as one of classes’ compo-

nent sub-concepts being too small. In one article, Japkowicz demonstrates that within-class

imbalance can have detrimental effects on classifier performance, and that relatively simple

methods can substantially reduce the number of misclassifications [Japkowicz, 2001]. She

performs an empirical experiment using artificial data sets to analyze the effect of within-

class imbalance and its interaction with between-class imbalance. She also proposes a cor-

rective data pre-processing method using cluster-based oversampling which balances both

within-class imbalance and between-class imbalance. Nickerson et al. extend this method

by extending it with an unsupervised clustering technique called Principle Direction Divi-

sive Partitioning (PDDP). The previous version required that one have a priori knowledge

10

about the underlying distribution and its clusters, but the addition of PDDP eases this con-

straint. The authors resample a small number of data sets with their cluster-based “guided

oversampling” approach as well as “blind oversampling,” and classifiers constructed using

these techniques are compared with a classifier constructed from the original data. Nickerson

et al. do not report results that are especially promising, but they do note some improve-

ment over both blind oversampling and the control, suggesting that correcting within-class

imbalance may still be important [Nickerson et al., 2001]. In 2004, Jo and Japkowicz ex-

amine further the degree to which the within-class imbalance problem is responsible for

the performance degradation previously ascribed to between-class imbalance. They per-

form a number of experiments using C4.5 and backpropogation artificial neural networks to

classify both artificial and UCI data sets. They compare the use of traditional imbalance

pre-processing methods with the cluster-based method (without PDDP) proposed in the

aforementioned paper [Japkowicz, 2001]. They conclude that the small disjuncts problem is

more responsible for the degradation of classifier accuracy than between-class imbalance and

that addressing both forms of imbalance is more effective than remedying only between-class

imbalance[Jo and Japkowicz, 2004]. They argue that remedying the small disjuncts prob-

lem should hence be the focus of research on improving difficult data sets. These works are

important to this thesis because they elucidate the relationship between imbalance and rare

cases and because using clustering to identify sub-concepts during resampling is essential to

two of the metods evaluated here.

In 2004, Weiss also investigates the interaction of rare cases and imbalance. He presents

the empirical data regarding their interaction with methods for correcting data sets in a liter-

ature survey. Weiss’s study identifies improper evaluation metrics (e.g. accuracy), absolute

and relative rarity (in terms of both classes and concepts), data fragmentation (an artifact

of some classifier methods), inappropriate inductive biases, and noise as factors which can

contribute to the difficulty of classifying rare disjuncts. The author also goes on to examine

11

a variety of methods designed to improve data mining performance on difficult data sets,

and provides a summary of which methods are applicable for correcting which complicating

features. He concludes that rare classes and rare cases (i.e. between-class and within-class

imbalance) are very similar in nature and can be described and remedied using a single

abstract framework [Weiss, 2004]. This is not necessarily a contradiction of Jo and Japkow-

icz’s conclusion, but Weiss advocates addressing two related problems in a unified approach,

while Jo and Japkowicz suggest that there is only one problem (i.e. within-class imbalance)

and that the traditional imbalance problem is not worthwhile by itself. In any case, this

study provides an excellent summary and discussion of the work done on the small disjuncts

problem.

Moreno-Torres and Herrera examine imbalance and overlap in addition to a factor called

data fracture, which occurs when the data comprising the training set has a substantially

different distribution than that of the testing set. While data fracture is not a feature of any

data set itself, the authors argue that its effect can be especially pronounced in imbalanced

domains. They propose a feature extraction method for imbalanced data sets described below

[Moreno-Torres and Herrera, 2010]. Data fracture, also referred to as data-shift, receives

relatively little attention compared to imbalance, overlap, and rare cases.

A number of studies have also been conducted to compare the effectiveness of various

pre-processing methods in countering various complicating data features like imbalance and

overlap. Batista et al. generate artificial data sets with Gaussian distributions, using a

method developed previously by Prati et al.[Prati et al., 2004]. In this paper, they also apply

five pre-processing methods to the data: random undersampling, random oversampling,

Laurikkala’s NCL, Chawla et al.’s SMOTE, and SMOTE together with Wilson’s Edited

Nearest Neighbor Rule (SMOTE+ENN). Measuring the AUC of a C4.5 classifier, the authors

find that the undersampling techniques (NCL and random undersampling) generally do not

perform as well as the oversampling techniques [Batista et al., 2005]. Of the latter, the

12

SMOTE and SMOTE+ENN offered the best performance; in particular, SMOTE+ENN

produced great improvement in overlapping domains. The authors suggest that it excels in

overlapping domain because the application of ENN allows it to “clean” noisy border areas.

As a counterpoint, Van Hulse et al. conduct a study using thirty-five real world data sets,

comparing the benefits of applying random oversampling, random undersampling, Kubat

and Matwin’s One-Sided-Selection, SMOTE, Japkowicz et al.’s cluster-based oversampling,

Wilson’s editing rule, and Han et al.’s borderline-SMOTE. They evaluate the G-mean, F-

measure, AUC, true positive rate, and accuracy for two configurations of C4.5, multilayer

perceptrons, radial basis function netweork, RIPPER, a random forest classifier, a logistic

regression learner, and a naive Bayes classifier. Each classifier is used in conjunction with

each pre-processing method on every data set. The authors find that different resampling

methods produce better results depending on both the classifier used and that different

measures of merit rank their performances differently. In summary, though, they conclude

that random undersampling performs the best overall, followed by random oversampling

[Van Hulse et al., 2007]. The two SMOTE-based approaches perform moderately well, while

OSS and the cluster-based method for correcting within-class imbalance perform the worst

by far. Cluster-based oversampling offered the worst-ranked performance more often than

using no resampling at all (i.e. the control for pre-processing). This is remarkable as the

non-random methods were typically developed to address shortcomings in random oversam-

pling and undersampling. Which pre-processing technique yields the greatest improvements

for a given data set depends on the data set itself. This study covers a substantial group

of data sets, but it does not give a thorough account of those sets’ features: it only groups

them roughly by degree of imbalance. Although Van Hulse et al., argue that random under-

sampling produced excellent results for imbalanced data, imbalance itself (as noted above)

is considered by many researchers to be a secondary factor in the difficulty of data sets. Un-

fortunately, it is not possible to build strong conclusions from this study about which data

13

sets benefited most from which methods. If nothing else, however, this study shows that

random resampling ought not be discounted as a remedial technique. Despite its simplicity,

it can produce excellent results for many different data sets.

López et al. perform a comprehensive analysis comparing the effect of data pre-processing

methods, cost-sensitive learners, and a combination of the two as a means for improving

classification in imbalanced domains [López et al., 2012]. They examine genetic fuzzy clas-

sifiers, SVMs, k-NN classifiers, C4.5 classifiers, as they are normally implemented and as

cost-sensitive variants. The authors train these classifiers on a large battery of imbalanced

data sets, with and without two variants/augmentations of SMOTE. They analyze the per-

formance of hybrids where the pre-processing techniques are applied to the data sets before

they are given to the cost-sensitive methods. López et al. find that both cost-sensitive clas-

sifiers and normal classifiers trained on pre-processed data work well, but the combination

of the two does not appear to offer a statistically significant advantage. Additionally, they

provide an extremely thorough review of the prior research performed on the relationship

between imbalance and other aspects of data sets such as overlap and data-shift (previously

referred to as data fracture here). Finally, they conclude that there is still a need for clas-

sifiers which are able to deal with difficult data sets characterized by imbalance, overlap,

and data-shift. This can be difficult since remedies for one deficiency of the data set may

exacerbate another, e.g. as the authors observed, synthetic oversampling can also increase

the degree of overlap.

In one of the most recent and comprehensive studies on the subject of difficult data

sets, Jerzy Stefanowski conducts a thorough experiment varying data set size, levels of im-

balance, degree of overlap, and concept complexity [Stefanowski, 2013]. While most prior

studies examine only two of these factors at once, Stefanowski’s work varies a set of arti-

ficial data sets across these four variables in addition to two more: boundary shape (lin-

ear and nonlinear) and, more importantly, rare cases located within the majority-class

14

region. Rare examples within majority regions are included in the scope of the experi-

ment because of their observed occurrence in UCI data sets, and the author argues that

such phenomena might be present in other imbalanced, non-artificial data sets. Examin-

ing the varying performance of a number of classifiers including an inductive tree builder

(J48), a K-nearest neighbors classifier, and a rule-based learner (Jrip), the author is able

to draw a number of conclusions. First, echoing the conclusions of Japkowicz, Garćıa,

and others cited above, relative imbalance itself causes little, if any, additional difficulty

by itself, but with other features, particularly concept decomposition (i.e. higher concept

complexity), it can cause issues for learning. Additionally, the experiment supports the

finding that overlapping (as measured by the number of instances in a borderline region)

and rare examples (individuals or small groups of minority-class examples within majority-

class dominated space) can cause even greater difficulty than concept complexity. Unsur-

prisingly, the intersection of these features provides the greatest difficulty for classifiers.

With respect to class boundaries in the instance space, the authors found that non-linear

boundaries typically posed greater difficulty for classifiers, which is important to note as

many artificial data sets used in previous experiments had linear class/concept borders

[Japkowicz and Stephen, 2002, Garćıa et al., 2007, Denil and Trappenberg, 2010].

In the study’s second section, Stefanowski also evaluates the performance of various pre-

processing methods for improving classifier performance and compares them to a proposed

method [Stefanowski, 2013]. The experiment compared the following methods: random

minority oversampling, Japkowicz’s cluster-based oversampling, Laurikkala’s Neighborhood

Cleaning Rule (NCL/NCR), and Stefanowski et al.’s SPIDER. These techniques are evalu-

ated by the degree to which they are able to preserve sensitivity in the presence of overlap

and (separately) varying proportions of rare examples. SMOTE is notably absent from the

list above, but this is deliberate. SMOTE is the subject of substantial discussion as the

author addresses some of its disadvantages: it may increase overlap in borderline areas, and

15

it tends to increase generalization globally across the instance space, irrespective of local dis-

tributions. Since the objective of the experiment is to evaluate the relative ability of methods

to improve performance in borderline regions and on rare cases (precisely the areas in which

SMOTE is allegedly prone to failure), it is omitted. The experiments indicate that all of the

methods examined were capable of producing improvements. While random oversampling

and cluster oversampling are able to provide stronger performance on relatively simple data

sets, NCR and SPIDER perform better on the more difficult data sets containing rare exam-

ples or overlap. In particular, SPIDER provided the best performance on difficult data sets;

while both SPIDER and NCR provided substantial gains in sensitivity, SPIDER had a less

adverse effect on specificity. This suggests that pre-processing techniques that are able to

take into account local features of the instance space offer greater potential gains for difficult

data sets.

2.1 Boosting

Although the term “boosting” can be used to refer to any method which strengthens a clas-

sifier, it is often used to refer specifically to the practice of assigning weights to instances in

order to improve classifier performance. In this paper, “boosting,” takes the latter mean-

ing. Furthermore, most references to “boosting” refer to extensions and adaptations of

one particular method of assigning weights to instances: AdaBoost. Fruend and Schapire’s

AdaBoost has demonstrated strong performance on a variety of domains, and it has been

shown to substantially extend the capability of weak learners [Freund et al., 1996]. In the

domain of character recognition, AdaBoost is used for prototype selection for a k-NN clas-

sifier. AdaBoost constructs an ensemble of hypotheses one by one; these hypotheses are

typically generated by weak learners. A weighted combination of votes is used to determine

the ensemble’s classification of a given instance. With the addition of each new classifier,

16

the ensemble’s performance is evaluated and instances that are classified correctly have their

relative weights reduced so that consistently misclassified instances are given higher prior-

ity. Weights affect the classifier either by using a classifier sensitive to weights applied to

instances or by generating the training distribution by using the weight as a probability of

selection, i.e. oversampling difficult instances and undersampling easy ones probabilistically.

The relevance of boosting to this thesis is easily apparent, as improving classification on

difficult concepts and the instances which comprise them is the purpose of this research.

In imbalanced domains, it has been shown that cost-sensitive classifiers, i.e. those which

can take into account different misclassification costs, can perform better than naive coun-

terparts [Japkowicz and Stephen, 2002, Chawla et al., 2008, López et al., 2012]. Fan et al.

propose AdaCost, an adaptation of AdaBoost designed to provide improved classification in

domains where misclassifications of some data are considered more costly (i.e. less desirable)

than others; their application domain is the detection of credit card fraud [Fan et al., 1999].

AdaCost proves effective, as it is consistently able to lower classification costs over the data

without using more computational power. Since the objective was framed specifically in

terms of lowering costs as given by a cost matrix, any improvements of traditional classifier

performance measures scuh as the AUC, F-measure, or G-mean, are not noted, but it is

certainly possible to devise cost weights to maximize any of those measures. The success

of other approaches which have used cost-sensitivity to adjust for imbalance suggest that

cost-sensitive boosting could be a fruitful avenue of research.

Adapting AdaBoost for imbalanced domains, Sun et al. propose and evaluate three pos-

sible ways to incorporate a misclassification cost into AdaBoost’s weight update function:

inside the exponential term, outside the exponential term (as a factor), and in both places.

These methods are called simply AdaC1, AdaC2, and AdaC3, respectively. The cost factor is

used to encourage learning false negatives more than false positives, resulting in better recall

for the minority class, with the ultimate goal maximization of the F-measure. The authors’

17

methods are compared to AdaBoost, AdaCost, and another boosting technique called CSB2;

these methods are tested using C4.5 trees and a high-order pattern and weight-of-evidence

rule (HPWR) based classifier. F-measure is used as the primary measure of classifier per-

formance across four data sets from medical domains. Sun et al. observed that AdaC2

generally performed better than the other methods evaluated, and that it was more sensitive

to the costs applied, making it more suitable for imbalanced domains [Sun et al., 2007]. This

method is important for this thesis because it is an application of boosting specifically for

data sets suffering from imbalance.

Furthering the idea that boosting can improve performance on imbalanced data, Chawla

et al. augment AdaBoost with SMOTE to form SMOTEBoost [Chawla et al., 2003]. SMOTE,

as described above, is a stochastic technique for synthetic data generation in order to alle-

viate the effects of imbalance. Using the AdaBoost.M2 algorithm as a framework, SMOTE

is called repeatedly to generate data points in the minority class before each new weak hy-

pothesis was generated. Thus, the authors claim that they are able to direct boosting to

focus not merely on the “difficult” instances, but specifically the difficult instances in the

minority class. In Chawla et al.’s results, SMOTEBoost is able to perform better in the im-

balanced intrusion detection domain than the weak classifier (RIPPER), the weak classifier

augmented with AdaBoost, and the weak classifier augmented with SMOTE as measured by

the classifiers’ F-score and recall. This demonstrates the effectiveness of boosting combined

with other methods for correcting data set imbalance.

In order to compare the efficacy of bagging and boosting in the presence of noise and

imbalance, Khoshgoftaar et al. conduct an empirical study comparing four metalearner

methods across seven different performance measures. Specifically, the authors evaluate

SMOTEBoost, RUSBoost, Exactly Balanced Bagging (EBBag), and Roughly Balanced Bag-

ging (RBBag). The bagging techniques are employed both with and without replacement.

For each boosting method two post-correction levels of imbalance were used, so that after

18

application, the data set was composed of either 35% or 50% minority examples. Thus,

in effect, eight different methods were used. By artificially altering the levels of noise, the

imbalance level, and the class distribution of the noise in four UCI data sets, the authors

compare their comparative performance across those factors. Their findings show that bag-

ging consistently outperforms boosting, especially as the amount of noise present in the data

set increases [Khoshgoftaar et al., 2011]. Confirming earlier work, they find that more noise

in the minority class (i.e. false negatives in the data set) is more detrimental to performance

than noise in the majority class (i.e. false positives) in all cases, though boosting suffers

the more than bagging. Between EBBag and RBBag, performance was virtually identical,

though the versions without replacement offered better classification results than the ver-

sions with replacement. Between the two boosting methods, RUSBoost generally yielded

better results than SMOTEBoost. The authors explain the effect of noise on boosting by

pointing out that noisy points will typically remain difficult to classify, and so as boosting

progresses, they will be given increasing amounts of weight. To demonstrate this effect, they

provide tables which show the progression of weights over time for noisy examples. Thus,

they are able to effectively argue that in the presence of noise, traditional boosting methods’

performance suffers substantially, especially compared to bagging.

One issue in the boosting literature relevant to the methods in this thesis refers to whether

it is better to effect weights on instances through direct weighting or resampling. An em-

pirical study of this question is presented by Seiffert et al. to compare a variety of boosting

methods using both resampling and direct reweighting. The boosting algorithms examined

were AdaBoost, AdaCost, AdaC1, AdaC2, AdaC3, CSB0, CSB1, CSB2, RareBoost, and

SMOTEBoost. Since SMOTEBoost, as originally defined, does not have a method for ap-

plying weights directly, the authors devise an adaptation. The area under receiver-operating

characteristic curve and area under precision recall curve were examined across fifteen data

sets, and four classifiers were used (two configurations of C4.5, RIPPER, and a naive Bayes

19

classifier). From this experiment, the authors find that across the boosting methods eval-

uated, resampling the data generally performed as well as (and often better than) directly

weighting instances [Seiffert et al., 2008]. This is notable because the latter is typically the

default implementation. As an interesting side note, (and an exception to the result above)

the authors’ resampling adaptation of SMOTEBoost performed better than the original.

The general trend, however, seems to indicate that resampling data may be more useful in

directing the emphasis of machine learning methods onto problematic instances.

Finally, Galar et al. propose a combination of boosting with an evolutionary undersam-

pling technique to simultaneously maintain classifier diversity within the ensemble and im-

prove classification on imbalanced data sets. Adapting AdaBoost.M2, they use a steady-state

genetic algorithm (CHC) to evolve inclusion/exclusion of majority class instances for each

boosting iteration. The fitness criterion in the genetic algorithm is a function of the G-Mean

of a 1-NN classifier trained with the included majority examples as well as the imbalance ra-

tio, a term composed of the number of examples and the iteration number, and (optionally)

a measure of how different the individual is from the rest of the population. Two different

measures of diversity are evaluated: the Q-statistic and the Hamming distance. Both mea-

sure the distance between two individuals, so the diversity of an individual is measured by

examining it with each data set used in previous iterations of boosting and taking the max-

imum distance among these. The method is also used without any diversity maintenance

mechanism included at all. These three configurations of EUSBoost are compared against

one another, and the authors find that the EUSBoost that incorporated the Q-statistic to es-

tablish and maintain classifier diversity performed significantly better than the other two on

the thirty-three most imbalanced binary data sets from the KEEL repository. These meth-

ods are also compared against RUSBoost, SMOTEBoost, SMOTEBagging, EasyEnsemble,

and Underbagging, which are state-of-the-art metalearners for imbalanced domains. All of

these methods, with the exception of RUSBoost, perform significantly worse than EUSBoost

20

with Q-statistic; although RUSBoost’s performance was worse than EUSBoost, the differ-

ence was not statistically conclusive as determined by a Holm test [Galar et al., 2013]. The

experiments show that EUSBoost is a very competitive method for improving boosting in

imbalanced domains. The authors also use this paper to demonstrate the usefulness of kappa-

error diagrams for comparing the performance of different learning ensemble techniques, and

they propose an adaptation that is better suited for imbalanced domains (since the original

makes use of the accuracy). This technique allows them to determine that while EUSBoost

tends to produce better classification results, it did so at the expense of classifier diversity, at

least when compared to RUSBoost [Galar et al., 2013]. This paper is relevant because it is

a recent, successful application of evolutionary techniques to conventional machine learning

(i.e. boosting) to modify instance weights and direct classifier learning emphasis.

2.2 Evolutionary Methods for Improving Classification

A wide variety of machine learning approaches have been developed which implement evolu-

tionary techniques to enhance the performance of conventional machine learning algorithms.

Addressing all such methods is beyond the scope of this thesis; however, a number of par-

ticularly relevant techniques are described below. Many of these methods were devised to

counter imbalance, noise, or other complicating factors in data. Their relevance to the thesis

is self-apparent. Other methods are included because the tasks performed by their evolution-

ary components are similar to those performed by the methods evaluated in this research.

Genetic classifier systems are not thoroughly addressed here as they comprise more an in-

dependent machine learning technique than an application of evolutionary methodology to

improve other methods.

A number of algorithms use genetic methods to select a representative sample of the train-

ing set. Kuncheva uses a GA to select a reference set for a k-NN classifier from a set of training

21

data, removing redundant examples and reducing the computational burden of classification

[Kuncheva, 1995]. Byeon et al. use an evolutionary approach, using genetic algorithms to

help identify and remove noisy instances in their GAPS approach, allowing a C4.5 classifier

to achieve better accuracy, especially at higher levels of noise [Byeon et al., 2008]. Later,

this technique is extended into the comprehensive NDFS approach which also performs fea-

ture selection using a GA, improving classification performance substantially [Byeon, 2009].

Developing a similar method, Kim evolves the set of training instances and the connection

weights of an artificial neural network simultaneously [Kim, 2006]. This method is employed

specifically to reduce the effect of noisy data in the domain of financial data mining. Garćıa

et al. also use a binary genetic algorithm for prototype selection in imbalanced domains. In

their work, they present a method called Evolutionary Undersampling (EUS) which evolves

the inclusion/exclusion of each instance as a binary allele. They compare the use of two

fitness functions: one which is based upon the percentage of reduction and classifier accu-

racy of a 1-NN learner and another which is a factor of the relative balance of the prototype

and the G-mean of a 1-NN learner. They use two different kinds of evolutionary algorithm,

CHC and a technique called PBIL specifically for binary representations, and they compare

the four genetic methods (each combination of EA and fitness function) with a variety of

canonical undersampling methods in the imbalance literature as well as classic prototype

selection algorithms DROP3 and IB3. They then compare the relative data set reduction

and G-mean of classifiers constructed from the prototypes and find that the CHC method

based on the G-mean and relative balance offers the best trade-off between classifier accu-

racy and reduction: while it is unmatched in classification performance, it is only worse

than one other method at reducing the size of the data set [Garćıa et al., 2006]. The single

method that provides better performance is, incidentally, the CHC technique whose fitness

function selects for greater reduction. This work demonstrates that evolutionary techniques

can provide very strong performance in general, and that additionally, they are flexible in

22

the ways in which they can alter the data (and consequently, the classifiers constructed from

that data). The efforts of Byeon et al., Kim, and Garcíıa et al. provide the foundation for

the methods presented in this thesis.

In other research, experimenters use a real-valued GA to perform attribute weighting

for a k-NN classifier, effectively warping the instance space. Kelly and Davis attempted to

use a straightforward real-value GA approach, and reports small improvements in classifier

performance [Kelly Jr and Davis, 1991]. Later, Punch et al. implements a similar approach,

although theirs incorporates a simultaneous feature extraction method by which three feature

pairs were multiplied to produce new attributes [Punch III et al., 1993]. Which pairs of

attributes were chosen, as well as weighting factors for those products, were evolved by

the GA simultaneously. Using this method, they were able to classify a real-world data

in a difficult, real-world domain (soil sample classification) with better accuracy than either

naive k-NN classification or k-NN classification with binary GA feature selection. The second

point in particular is of note, as the object of this experiment is also to determine whether

diminishing the influence of an instance continuously might provide better performance than

disregarding it entirely.

Evolutionary methods are also used for feature extraction. Moreno-Torres and Herrera

use genetic programming (GP) to evolve a more descriptive feature from the set of attributes.

Their method evolves expressions from the set of attributes (terminals) with a set of basic

arithmetic operations to create new features. Their objective was to produce a new fea-

ture space so that the data would suffer less from overlap and data fracture, allowing for

better performance from a classifier. Additionally, the new feature space was composed

of two dimensions in order to provide easier visualization of the transformed instance space

[Moreno-Torres and Herrera, 2010]. In contrast to the general method of Moreno-Torres and

Herrera, Orlic and Loncaric use a genetic algorithm to evolve features specifically for the

classification of difficult seismogram data [Orlic and Loncaric, 2010]. Feature extraction, the

23

authors explain, is a good approach because not only are the classes difficult to distinguish,

but the instances have a waveform representation that poses challenges to conventional ma-

chine learning without some degree of processing. Although their method uses a fixed-length

binary GA, in effect, they produce a similar effect to genetic programming by recombining

relations, operations, and features of the data, evolving based on the performance of a very

simple classifier. Additionally, each sample is assigned a weight (initially uniform weights of

1), and these are modified as the GA runs, emphasizing difficult examples.

Incorporating boosting in a genetic fuzzy rule base approach, Frank Hoffmann pro-

duces a successful classification method using evolution strategies (ES) [Hoffmann, 2001,

Hoffmann, 2004]. Encoding the parameters of fuzzy rules as a vector of real numbers, Hoff-

mann constructs a rule base by iteratively evolving rules. Initially, all instances are weighted

equally and the set of fuzzy classification rules is empty. An evolutionary approach is then

used to evolve a new rule, this rule is entered into the rule set, and the performance of the

rule-based classifier is tested. The training examples which are not classified correctly are

given additional weight, and ES is used again to produce another rule. Due to the weighting,

rules which perform better on the “difficult” examples are given evolutionary preference. In

short, it is an evolutionary method that is very similar to conventional boosting in many

ways. Eventually, a fuzzy rule base is assembled that was able to classify new examples.

Özyer et al. use boosting in conjunction with a genetic fuzzy rule base scheme to construct

a classifier for intrusion detection. Their method differs from that of Hoffmann primarily in

that they use a genetic algorithm and their rule encoding is different. There are a few other

minor differences, but the two techniques are fundamentally very similar. Testing their clas-

sifier against the contest-winning results on their data set, they report that it is competitive

[Özyer et al., 2007]. Both of these methods are relevant to the proposed methods in this

thesis because they use evolutionary methods to adjust weights on training instances. To a

large degree, however, they resemble AdaBoost and its related approaches as they assemble

24

a rule base which behaves similarly to the ensemble of weak hypotheses. In contrast, the

methods proposed in this thesis do not assemble a group of weak methods, and the weights

evolved by the GA reflect relative overall emphasis rather than emphasis at a particular

iteration in the algorithm.

Since cost-sensitive machine learning methods have proven effective in improving min-

ority-class performance in imbalanced domains, ICET merits inclusion in this paper. De-

veloped by Peter Turney, ICET is an extension of C4.5 that is sensitive both to test costs

and varying misclassification costs for members of different classes [Turney, 1995]. As with

AdaCost, the primary objective is not necessarily to reduce classification error but to reduce

total cost; depending on the disparity of misclassification costs and the class distribution of

the data, these objectives may come into conflict. In order to produce classifier that mini-

mizes this total cost, Turney uses a genetic algorithm to evolve biases on each test so that

the bias determines how likely the inductive tree-builder is to use it for classification. This

is analogous to the work of Kelly and Davis or W.F. Punch et al. in that the attributes

which compose instances are assigned relative weights, but ICET is much more advanced, is

designed to account for the costs of finding different attribute values (i.e. conducting medi-

cal tests), and constructs a tree structure which more closely resembles an optimal plan for

diagnosis than a vector of attribute weights. ICET is accordingly fairly sophisticated, and

a full discussion of its operation is beyond the scope of this thesis. It did, however, perform

very well at minimizing classification cost across a variety of medical data sets.

One recent approach to classifying imbalanced data sets consists of an evolutionary adap-

tation of the Nested Generalized Exemplar (NGE) classifier archetype. Although this is not

a data pre-processing or weighting method, it deserves mention here as the underlying task is

very similar to that of Kuncheva or others as it falls within the frameworklike instance selec-

tionof data reduction [Garćıa et al., 2012]. NGE methods work by creating exemplars which

model the data as a whole. Exemplars are composed of either single instances or hyper-

25

rectangles in the instance space (a hyper-rectangle is composed of a maximum value and a

minimum value for each dimension). Unknown examples are classified either by the smallest

hyper-rectangle which covers them or, if they are not covered by any hyper-rectangle, the

nearest exemplar’s label. The proposed method in this paper, EGIS-CHC, works by con-

structing a set of hyper-rectangles covering the data according to a simple heuristic. Then,

the inclusion of each hyper-rectangle is determined by a binary-encoding evolutionary algo-

rithm using the HUX recombination operator, which helps prevent premature convergence.

No mutation operator is used, but upon convergence, the evolutionary algorithm restarts,

using the best-seen solution to seed the new initial population (35% of the loci comprising the

best chromosome are changed), so that diversity is restored without losing progress. Fitness

of individuals is calculated as a function of the area under the receiver-operating character-

istic curve (AUC) and the number of generalized examples included such that models which

produce a high AUC and use few exemplars are considered most desirable. EGIS-CHC is

compared against three other (non-evolutionary) NGE methods: BNGE, RISE, and INNER

as well as two rule-induction methods: RIPPER and PART. Each technique is employed on

the original data and separately with SMOTE pre-processing. The authors’ evaluation takes

into account thirty-six data sets in the KEEL repository and results are tested for statistical

significance using the Wilcoxon signed-rank test. From this experiment, the authors find

that EGIS-CHC is able to achieve a better AUC measure than the other methods evaluated,

regardless of whether SMOTE was used. Furthermore, EGIS-CHC was also generally able

to create models that were less complex (in terms of the number of rules or generalized ex-

amples required) than its competitors’. Finally, it is of note that, unlike the other techniques

examined in the article, the performance of EGIS-CHC was hampered by the application

of SMOTE. The proposed method in this paper provides strong evidence that evolution-

ary algorithm-based approaches can effectively partition instance space and locate concepts

present in a data set.

26

2.3 Outlier Detection

The field of outlier detection is also relevant to the task of instance selection and weighting.

Sensibly, outliers represent either noise (which would ideally be removed or diminished) or

rare cases (which would be duplicated or emphasized). Hence identifying outliers effectively is

important to the task of altering the distribution of data in a beneficial way, but doing so is a

nontrivial problem, especially in domains with high dimensionality [Aggarwal and Yu, 2005].

Accordingly, the task has received substantial attention, and it is worthwhile to examine some

of the methods developed in the course of this thesis; of especial interest are techniques that

incorporate evolutionary components to guide the search for outliers.

One approach for detecting outliers or mislabeled data is proposed by Brodley and Friedl.

They frame their research specifically in the context of machine learning, using machine

learning techniques to filter the data and then using the performance of classifiers (mea-

sured by classification accuracy) built on the filtered data to gauge the effectiveness of their

method. The authors compare three machine learning techniques: 1-NN, C4.5 decision trees,

and linear machines. These algorithms are used to filter the data in three ways. First, a

single technique can be used to filter the data and then develop a model from the filtered

data. The other methods are ensemble methods in which all of the classifiers are construct

a model and then remove instances according to either a majority vote or a unanimous

misclassification. As might be expected, the majority vote scheme is more likely to remove

misclassified instances (as well as non-noisy ones), and the consensus scheme is less likely

to remove any instance from consideration. As a control, the classifier methods were used

to learn from the data with no filtering. Additionally, an ensemble classifier consisting of

the three methods was used as the classification method, with filtering performed by con-

sensus, majority vote, and not at all to determine whether an ensemble for classification

could replace a filter method. Using a number of real-world data sets with varying amounts

27

of artificially-introduced noise, the authors reach a number of valuable conclusions. First,

filtering can be very beneficial for improving classifier performance in the presence of noise.

While filtering did not produce improvements from data sets without artificial noise, it

did produce improvements for noisy data sets, particularly as the amount of noise increased

[Brodley and Friedl, 1999]. Furthermore, filtered data sets produced decision trees with sub-

stantially fewer nodes; for the data sets employed, the number was often reduced by at least

a factor of two. With regards to which filter method was the most effective, majority-vote

filters generally offered the best performance from the classifiers built on their data; the au-

thors suggest that this is because it is, in general, more important to exclude bad examples

than it is to include valid ones. The authors also find that the use of an ensemble classifier

was not sufficient to replace filtering: not only did filtered ensemble learners perform better

than unfiltered learners, but filtered single method learners were able to outperform unfil-

tered ensemble learners in many cases. As a side note, the authors did note some effects of

class imbalance in the behavior of their techniques though they did not take any measures

to correct it; this is especially worth noting since the authors use accuracy as their classifier

performance measure. This experiment is relevant as it provides an application of outlier de-

tection to (and by) machine learning and demonstrates that there are great potential gains,

particularly for noisy data sets.

Crawford and Wainwright investigate using a genetic algorithm to search for a set of

outliers. Citing the combinatorial explosion of possible noisy subsets, the authors argue

that a GA could offer efficient and effective search. They experiment using different fitness

functions to guide the genetic algorithm: three different pre-existing measures of the degree

to which a set of points are outliers are used to search for (known) outliers in five data

sets. They find that Cook’s Squared Distance formula for multiple-case diagnostics generally

produced the better performance than Least-squares or Andrews and Pregibon’s diagnostic,

but it had the notable drawback of being unable to adequately address cases in which there

28

were no outliers [Crawford and Wainwright, 1995]. Based on a small number of relatively

small data sets, the authors make the claim that genetic algorithms are a promising method

for outlier detection.

In similar research, Tolvi proposes using a genetic algorithm guided by an informational-

based heuristic called the BIC. Unlike Crawford and Wainwright, this representation is a

binary encoding in which each locus corresponds to a point in the data set, and its value

indicates whether it is an outlier. This experiment consists of a general test for performance

on two data sets as well as an investigation into the scalability of the algorithm in terms

of the number of variables in the data as well as the size of the data set. The former tests

indicate that the GA was able to locate the global optimum every time, though only two

data sets were used [Tolvi, 2004]. The latter experiment indicates that the algorithm’s time

requirements grow more with increasing data set size than increasing numbers of variables.

This is unsurprising, as the data set size dictates the dimensionality of the genetic represen-

tation. In spite of this drawback, Tolvi’s experiment lends more support to the idea that

genetic algorithms offer great potential gains for the task of detecting outliers.

Still another evolutionary approach to outlier detection is presented by Aggarwal and

Yu, the focus of which is solving the curse of dimensionality. As the dimensionality of a

space increases, so does the sparseness. Since most outlier detection schemes are based upon

concepts of locality and distance, this is extremely problematic. Unfortunately, many of

the most interesting or valuable domains have a high dimensionality relative to the number

of data points in the space. Examining prior literature, the authors note that it is often

the case that one can use lower-dimensionality projections to find outliers, circumventing

the distance problem but introducing the problem of finding which projections to use. The

goal is to find lower-dimensionality projections that are exceptionally sparse compared to

the others, since they are more likely to contain outliers. The projection space is formed by

constructing a discrete grid over the instance space such that the each dimension’s intervals

29

contain an equal number of instances. Sparseness is measured by a value called the sparsity

coefficient, which is based on the assumption of a uniform distribution. The authors note that

while the assumption of a uniform distribution is unfounded, that this measure still provides

an effective way of searching for outliers in practice. Unfortunately, as the dimensionality

increases, the number of possible projections undergoes a combinatorial explosion, making

a brute-force approach impractical. To make matters worse, such projections are relatively

rare, making the problem, “Akin to finding a needle in a haystack” [Aggarwal and Yu, 2005].

Fortunately, genetic algorithms have proved effective in similarly difficult domains, and so

the authors select the GA as their search method for finding projections which are likely

to contain outliers. Each individual represents one possible region of the grid, each allele

of which specifies either a grid restriction in that dimension or a “don’t care” value. A

list of the best (i.e. most sparse) areas found during the search is updated at the end of

each generation, and the best areas overall are returned as the GA terminates. Noting that

black-box GA applications often yield relatively poor results, the authors devise domain-

specific recombination and mutation operators. The results from this experiment indicate

that not only was the algorithm effective in finding regions which actually contained outliers,

but its required time also scales approximately linearly in the number of dimensions, which

is very good considering how the number of combinations grows [Aggarwal and Yu, 2005].

Aggarwal and Yu’s method is the most effective application of evolutionary techniques to

outlier detection of the literature surveyed here. This is most likely due to the framing of

the problem, and it suggests that it may be more useful to address regions of instance space

rather than individual instances. The method also likely benefits from the use of customized

operators to facilitate navigating the space. Both of these points deserve consideration in

designing an evolutionary method for similar problems.

30

Chapter 3

Proposed Methods

In this thesis, I evaluate the effectiveness of five different evolutionary methods for resampling

data sets so that each instance in the training set is assigned an influence proportionated

to its importance to the classifier. In three of these methods, the weights are evolved on

the basis of individual examples. In the remaining two, the weights are evolved and applied

on the basis of cluster membership. While the former allows finer tuning within the search

space, it results in a much more difficult problem space for the genetic algorithm. The

latter, on the other hand, provides much simpler search space, but can only operate on

the instance space in relatively broad strokes. Additionally, it introduces new parameters

related to clustering, and the additional computational expense of clustering itself. This is

significant as the performance of the clustering determines the ability of the genetic algorithm

to produce a beneficial weighting.

The intuition behind instance weighting is that some examples should influence the clas-

sifier’s model of the target concept more than others. When minority class examples are

assigned more weight in an imbalanced domain, classifiers trained on that data typically

have higher recall. If the imbalance ratio is very high, classifying each of these minority

instances correctly is vital to constructing an effective model of the data. In the same hy-

31

pothetical data set, many majority points may be discarded without negatively affecting

classifier performance. Points in the majority class far from class borders do not need to

have much influence in training as they do not contribute very much to the learning. Further,

majority undersampling also reduces the storage and classification time required for k-NN

classifiers and reduces the training/construction time for other paradigms. In a domain that

also exhibits a high degree of overlap, however, which points should be emphasized is less

clear: an instance surrounded by members of the opposite class could either be an impor-

tant rare case or it could be noise. Through feedback from a classifier’s performance on a

validation set, a robust method such as the GA could discern which of these is the case,

provided that there were sufficient information in the validation set to do so. By ampli-

fying or diminishing the weight accordingly, the classifier’s model reflects the importance

or undesirability of that instance, respectively. In some ways, the methods proposed are an

extension of previous work in which genetic algorithms have been used for instance selection.

Allowing the pre-processor to assign varying degrees of importance will allow more nuanced

alterations to the distribution of the data. Allowing the GA to duplicate data points mul-

tiple times permits larger changes to the distribution, which may be necessary for difficult

data sets. Intuitively: it may be more beneficial to mitigate an instance’s influence than to

ignore it entirely, and experiments using random oversampling have shown that duplicating

an instance can be more helpful than merely including it.

3.1 Measure of Merit

A single measure of merit is used in this experiment to both guide the genetic algorithm and

evaluate the final performance of classifiers trained on the resampled data. The F-measure,

or F-score, is a function of the precision and recall containing a parameter, β, whose value can

emphasize either the precision or the recall. If the two factors are given equal importance,

32

β is assigned a value of 1.0; this has been taken as a default value by many authors, and the

term F-measure often denotes the general F-measure with β set to 1.0. Here, this parameter

is given a value of 2.0, meaning that false negatives will reduce the F-measure more than

false positives, promoting higher recall at the expense of precision. In imbalanced domains,

recall is often more important for constructing useful classifiers, and the F-measure is com-

monly used as a measure of classifier performance in domains with skewed underlying class

distributions [Chawla et al., 2003, Han et al., 2005, Sun et al., 2007, He and Garcia, 2009,

Denil and Trappenberg, 2010, Khoshgoftaar et al., 2011]. In the context of this experiment,

the term F-measure will refer specifically to the F2-measure.

When classifier performance is measured across cross-validation folds, there are multiple

ways to calculate the F-measure describing the classifier’s performance on the data set as a

whole. In this experiment, the F-measure is calculated by summing the true positives, false

positives, true negatives, and false negatives over all folds and using these summed values to

calculate the overall F-measure. This approach has been shown to be less biased than either

taking the average of each fold’s F-measure or using the average precision and recall over

the folds to calculate the F-measure [Forman and Scholz, 2010]. Each of these calculations

can produce different F-measure values, so it is important to select the one which offers the

least biased measure of performance.

The F-measure is an indicator of a classifier’s ability to correctly classify data, and

hence to use the F-measure to evaluate a given resampling for a data set, a classifier must

be used constructed from that resampling. For this purpose, a 3-NN classifier using the

Mahalanobis distance is used to assign a fitness value to each individual (i.e. weighting)

in the population. The classifier is constructed from a two-fold stratified sampling of the

training data is constructed. Each fold is used as the training set and the testing set in turn,

and the F-measure is calculated over both folds as described above. Each instance’s weight is

only considered as a voting weight for the classifier; it is not considered as a misclassification

33

cost. The nearest neighbor paradigm was chosen for the classifier as it is simple, does not

require any training time, has reasonable classification time, and is used in similar work

[Cano et al., 2003, Garćıa et al., 2008]. Another good approach would have been a decision

tree learner, particularly for high-dimensional data sets, but due to the implementation here,

it would have entailed substantial overhead (i.e. through calls to Weka).

3.2 Genetic Representations

In this thesis, three genetic representations are evaluated in which each allele corresponds to

the weight to be applied to one instance (one-to-one representations). First, binary represen-

tations have been used successfully to perform beneficial instance selection [Kuncheva, 1995,

Cano et al., 2003, Kim, 2006, Byeon et al., 2008, Garćıa et al., 2008, Byeon, 2009]. In order

to justify the increased computational complexity of using real or integer-valued representa-

tions, it must be shown that these methods can provide greater improvements. The binary

representation is thus included as a baseline. For this formulation,a genetic algorithm is

used to evolve basic inclusion/exclusion of instances from the training set: a “0” in the gene

represents that the corresponding instance should be excluded from training while a “1”

indicates that it should be used to prepare the final classifier. This represents a genetic im-

plementation of undersampling, a technique which in general has yielded strong performance

in imbalanced and difficult domains [Drummond et al., 2003, Van Hulse et al., 2007]. While

undersampling is typically only applied to majority-class instances, this genetic representa-

tion permits the removal minority-class examples. Even in imbalanced domains, removing

minority class examples may produce a better model if those examples are noisy, so the

ability to do so is included for flexibility. Since the fitness function is influenced more by

recall than precision, eliminating non-noisy minority instances is sufficiently discouraged by

the fitness function.

34

The two experimental one-to-one representations employed are real-valued and integer

representations for emphasizing members of the training set. These methods represent differ-

ent resampling approaches. The integer representation resembles an extension of the binary

method in that while it is still capable of discarding instances, it can also duplicate them up

to sixteen times. There remains contention in the literature as to whether oversampling or

undersampling is more beneficial, as the former may lead to overfitting and the latter may

discard important information. The integer representation is capable of determining which

is more effective on a case-by-case basis and foregoing either undersampling or oversampling

altogether. In practice, however, it is almost certain to oversample at least some members

of the data set due to the much larger portion of the allele range devoted to oversampling.

It is also of note that the integer weights are applied in two ways. For the MLP, SVM, and

J48 classifiers, the allele value indicates the number of times the corresponding instance is

to be included in the final training set. Thus the processed training set will almost certainly

be much larger than the original data sets, though it will contain no new members. As it

seemed less sensible to duplicate points for a k-NN classifier, the integer values are instead

used as voting weights for the instances.

The real-valued representation is used to apply weights directly to the individuals, as

many classifier paradigms can either accept weights or have variants which can. Being able

to fine-tune the influence of each instance in the data set allows for a more nuanced way in

which all the examples can contribute to the training of the classifier. Furthermore, weights

for the instances range over the interval [0.0125, 4.0], allowing for substantial differences

in influence, though no instance is ever completely ignored. This representation is more

expressive than the integer representation, but with this expressiveness comes a substantially

larger search space. Worse, this large portions of this search space are likely to be have little

variation in the fitness function as the weights of safe instances (those which are far from

class borders) are largely insignificant, and, for many cases, small differences in weights will

35

not produce any difference in the F-measure. To compensate for these additional difficulties,

problem-specific genetic operators are employed; these operators are described below.

Additionally, two cluster-based representations are examined. For both of these methods,

the data is partitioned so that each instance is assigned to a cluster. Twenty clusterings

are produced by performing K-means clustering for twenty-four iterations, and the best

clustering is used in the GA. The K-means algorithm is initialized each time using the Forgy

Method, and the clustering quality is measured by the summed distance from each point

to its center as measured by the Mahalanobis distance. The genetic algorithm evolves a

real-valued weight for each cluster, and these weights are applied uniformly to the cluster

members. The cluster methods are different in that the clusters are formed either within

class boundaries or across the entire data set (i.e. clusters can be composed of members of

both classes). These are referred to as within-class cluster weighting (WCC) and across-class

cluster weighting (ACC), respectively. The former presents the obvious advantage of being

able to adjust the weights of instances based on their class, which is a common and effective

approach here as well as in the prior literature. In theory, it is more able to select sub-

concepts within classes, even in contentious areas of the instance space. It does, however,

introduce an additional cluster quantity parameter, as the number of clusters must now be

set for both classes. Across-class clustering is implemented primarily for comparison.

3.3 Population Initialization

Population seeding is one method used to compensate for the chromosome length of the

one-to-one genetic representations. The use of seeding can have a detrimental effect by

reducing genetic diversity early in the search. It is implemented here because preliminary

experiments indicated that the population required an exceedingly long time to converge on

good solutions, likely due to the high dimensionality of the chromosomes. Where possible,

36

the seeding was designed to produce a population with as much diversity as possible while

at the same time steering the search from suboptimal (albeit valid) solutions. Oversampling

minority-class examples and undersampling majority-class examples have been shown to be

effective in the literature, and the population initialization methods reflect this.

Since the central objective of these methods is to improve classification performance on

minority-class examples, weights on the minority class instances are initially set higher than

the majority class instances. For the binary representation, this is implemented simply by set-

ting all minority weights to one (i.e. inclusion), while the inclusion of majority-class examples

was decided randomly with even probability. For both integer-valued and real-valued one-to-

one genetic algorithms, the populations were generated by assigning weights on a class-wise

basis over two disjoint weight intervals. The minority examples are assigned weights in the

higher half of the allele range (giving them more consideration), and the majority examples

are assigned weights in the lower half (giving them less consideration in comparison). This

ensures that the mean minority instance weight will be higher than the mean majority in-

stance weight, but for any locus, the initial population should contain a variety of weightings.

Thus the population is biased towards minority inclusion/oversampling/weighting without

being totally reduced to a monoculture. If it is beneficial for a majority instance to be

weighted heavily, the individuals with a relatively high gene value will proliferate, and mu-

tation will allow the gene’s value to migrate into the upper half of the range. Similarly,

undesirable minority instances can attain relatively low weights.

The initialization of the cluster-based populations does not include any seeding because

the relative importance of each cluster is not known a priori. Values are drawn for each

allele independently from a uniform distribution over the range of possible cluster weights.

This interval is the same as for the real-valued representation: [0.0125, 4.0]. Since the

cluster-based representations are drastically shorter than the one-to-one representations, it

is sensible to forego seeding.

37

Table 3.1: Genetic algorithm parameter configuration
Crossover Rate 1.0
Mutation Rate 0.0125
Population Size 400
Children per Generation 80
Maximum Evaluations (one-to-one) 64,000
Maximum Evaluations (cluster-based) 16,000
Fitness Termination Threshold 1.0

3.4 Genetic Algorithm Configuration and Operators

The mating selection operator, survivor selection operator, and termination conditions are

the same for all five genetic representations. To ensure convergence and protect good solu-

tions, the methods employ a steady-state genetic algorithm in which eighty new offspring

are produced each generation. For mating selection, a binary tournament selection scheme is

used to fill a mating pool of eighty parents. Offspring are produced by selecting two parents

at random from the mating pool, recombining their chromosomes via crossover, and mutat-

ing the resulting two children. The eighty offspring then replace the eighty worst individuals

in the population, and the next generational cycle begins. The genetic algorithm continues

until either an individual produces an F-measure value of 1.0 (i.e. a perfect classification

over both folds of the training set) or until an evaluation limit has been reached. For the

one-to-one representations, this limit is 64,000. For the substantially shorter cluster-based

representations, the evaluation limit is 16,000.

The crossover and mutation operators for the binary and integer representations are

relatively simple. The binary GA uses canonical two-point crossover and bitflip mutation.

The integer-valued GA also uses two-point crossover, but it employs creep mutation, changing

the value of the allele by one. Creep mutation was chosen so that applications of the operator

would produce relatively small changes in the weights (and thus in the classifiers trained on

38

the data sets pre-processed with those weights).

The real-valued GA incorporates the most sophisticated operators of the one-to-one rep-

resentations. The real-valued GA uses one of two crossover methods, one of which is selected

at random each time crossover is employed. Whole arithmetic crossover combines the val-

ues of two alleles; its α parameter, which controls the interpolation between chromosomes,

is chosen randomly over the interval [-1.0, 2.0] for each application. Alternately, two-point

crossover recombines the genes by position, preserving the allele values. The mutation opera-

tor for the integer representation is an ensemble method composed of three different kinds of

mutation operator, one of which is chosen at random for each individual. The three mutation

types are creep mutation, uniform mutation, and a novel operator called Tomek Mutation

(described below). Creep operators were the most probable operation by a wide margin as

they are neither disruptive nor they computationally expensive. The amount of creep was

also subject to varying probability, as shown in the Table 3.2 below, with small mutations

typically being more probable than large ones. Uniform mutation was given a very low prob-

ability which, combined with the low mutation rate, prevented this disruptive operator from

being applied excessively. Tomek mutation was also applied sparingly because it is computa-

tionally intensive and because its problem-specific nature might cause the GA to founder on

a local optimum. Tomek mutation is a representation-specific and problem-specific operator

implemented to help navigate the wide space of real-valued weights. This method is based on

the use of Tomek links as implemented in Kubat and Matwin’s One-Sided-Selection and var-

ious other pre-processing methods [Tomek, 1976, Kubat et al., 1997, Batista et al., 2004]. It

operates as follows: for each instance in the training set, with probability equal to the muta-

tion rate, the method finds that instance’s nearest neighbor. If the nearest neighbor is of the

opposite class, then the pair of examples forms what is called a Tomek link [Tomek, 1976].

For each Tomek link, the positive (minority) example’s allele value is increased by a factor

of 1.40 and the negative example’s allele value is decreased by a factor of 0.70. If the nearest

39

Table 3.2: Real-valued mutation operator
Mutation Operator Probability of Use
Creep Mutation (0.1) 48%
Creep Mutation (0.05) 24%
Creep Mutation (0.5) 18%
Creep Mutation (1.0) 6%
Uniform Mutation 2%
Tomek Mutation 2%

neighbor is of the same class, the mutation operator does nothing. Thus, in principle, the

boundary between the positive and negative classes is expanded to enlarge the positive class

without negating the influence of the negative example too severely.

The operators for the cluster-based operators also vary in sophistication. For both

clustering genetic algorithms, crossover is performed by the same crossover method as the

real-valued, one-to-one GA: a simple ensemble of two which allows for both positional and

value-based recombination. As above, the more difficult representation is given a more so-

phisticated mutation operator. For the GA built from within-class clusters, a single-valued,

floating-point creep mutation is used. For the GA which utilizes clusters constructed across

classes, however, an ensemble similar to that used for the real-valued, one-to-one GA encod-

ing is employed (Table 3.3). Here, as there, it includes numerous creep increments and a

specialized, representation-specific mutation operator. Instead of Tomek mutation, however,

clusters’ weights are altered depending on whether they consist primarily of majority-class

instances or minority-class instances. If the cluster is composed mostly of instances in the

majority class, its weight is decreased by a factor of 0.90; if it is a minority cluster, its weight

is increased by 1.20.

40

Table 3.3: Across-class cluster weighting mutation operator
Mutation Operator Probability of Use
Creep Mutation (0.1) 48%
Creep Mutation (0.05) 24%
Creep Mutation (0.5) 16%
Creep Mutation (1.0) 8%
Minority Cluster Mutation 2%

41

Chapter 4

Experimental Setup

4.1 Artificial Data Sets

The artificial data sets in this experiment based on a simple pattern: four coplanar Gaus-

sian multivariate clusters forming an equilateral diamond with one corner at the origin.

Gaussian distributions are used, as they appear frequently in artificial data sets through-

out the literature [Japkowicz, 2001, Prati et al., 2004, Batista et al., 2005]. The cluster is

comprised of a single class; the cluster at the origin and the cluster on the Y axis are both

members of the positive (minority) class, while points generated from the two clusters on

the sides are assigned to the negative (majority) class. In two-dimensions, the means of

the clusters are (0,0), (0,16), (8, 8), and (-8, 8). For higher dimensionalities, the remain-

ing attributes are generated about 0. Essentially, the clusters form a classic XOR pattern

in the lowest two dimensions, rotated so that C4.5 classifiers do not encounter unneces-

sary difficulty. This particular shape was chosen as it made it easy to control the relevant

factors for the experiment (overlap, imbalance) while resembling a real-world distribution

arguably more closely than the uniformly-distributed backbone pattern or noisy linear bor-

der. The data sets were generated using the R statistical suite and the MASS package for R

42

Table 4.1: Artificial data set controlled parameters
Imbalance Ratio (Instance Quantities) Standard Deviation Dimensionality

3.0 (128+, 384-), 7.0 (64+, 448-), 15.0 (32+, 480-) 2.0, 3.0, 4.0, 5.0 2, 8, 16

[Venables and Ripley, 2002, R Core Team, 2013].

In total, thirty-six different artificial data sets were generated, varying degree of overlap,

degree of imbalance, and dimensionality individually. Overlap was varied by setting the

standard deviation of all the clusters uniformly; in the course of the experiment, values of

2, 3, 4, and 5 were used. Imbalance was measured by the Imbalance Ratio (IR), the ratio

of the number of majority-class examples to the number of minority-class examples; values

used were 3, 7, and 15. Evenly balanced class distributions were not used at all, since the

purpose of the experiment was to primarily classify the experimental methods’ performance

over imbalanced data sets. Finally, data sets were generated in two, eight, and sixteen

dimensions. In the case of the higher-dimensionality data sets, only the first two dimensions

are relevant to the classification task. Each set consists of 512 points.

For each of the artificial data sets, eight-fold cross-validation was used to insure that

performance on the artificial data sets was evaluated fairly. As mentioned above,two-fold

cross-validation was used during fitness evaluation to split the training data further into

training and validation sets, since there was no given validation set and it would have been

unfair to allow the testing set to guide the genetic algorithm. In practice, it would likely

benefit the method if a set of ideal training examples could be selected by experts to be

included in the validation set. In particular, this would give one an opportunity to ensure that

rare cases are represented in the guiding rubric. To test the method’s performance in total

generality, however, cross-validation is used to guide the genetic algorithm. Again, although

the genetic algorithm is evolving weights for the entirety of the training set, when the fitness is

43

evaluated, the weights (or, in the case of the binary representation, exclusion) is not applied.

Thus it is not possible for the genetic algorithm to improve the performance measure of

its individuals by down-weighting/excluding difficult examples from the evaluation of that

performance. It should be noted that stratified sampling is used at both levels of cross-

validation so that the class ratios remain the same throughout and no training sets are

produced that do not contain minority examples. Using a larger number of sub-folds for

fitness evaluation would have reduced variability, but it also would have introduced higher

computational cost and increased the absolute rarity of minority examples.

4.2 Real-World Data Sets

In order to evaluate the effectiveness of these methods, it is also important to examine their

performance on real-world data sets. The University of California at Irvine maintains a

repository of data sets collected from a wide array of research domains. Data sets from this

repository are commonly used to gauge the effectiveness of machine learning techniques. The

advantages of using this data are twofold. First, it provides an opportunity to demonstrate

whether a method can be beneficially applied to problems which do not closely resemble the

artificial data sets described above. Second, since many authors use these same data sets,

they have become something of a benchmark for proposed methods. The methods examined

in this thesis are applied to resampling the five data sets in Table 4.2. As this table suggests,

the data sets were altered slightly. As in a number of other studies, classes were merged to

create binary classification problems (Table 4.3). After merging, examples were discarded

at random from each class so that the number of examples in each class would be a factor

of sixteen. The data was culled so that each subfold would contain an identical, non-zero

number of minority-class and majority-class instances).

44

Table 4.2: UCI data sets
Data Set Name Size

(after cull)
Minority Class
(after cull)

Majority Class
(after cull)

Imbalance Ratio

ecoli 336 (336) 112 (112) 224 (224) 2.0
iris 150 (144) 50 (48) 100 (96) 2.0

SPECTF 267 (256) 55 (48) 212 (208) 4.333
wdbc 569 (560) 212 (208) 357 (352) 1.692
yeast 1484 (1472) 244 (240) 1240 (1232) 5.133

Table 4.3: Modified UCI data set class composition
Data Set Minority Class Majority Class

ecoli im, imU cp, pp, om, omL, imL, imS
iris iris-virginica iris-setosa, iris-versicolor

SPECTF 0 1
wdbc M B
yeast MIT CYT, NUC, ME1, ME2, ME3, EXC, VAC, POX

4.3 Machine Learning Components

This experiment uses various sources for the implementation of the machine learning compo-

nents. The Weka machine learning package is used widely throughout the machine learning

community as it provides efficient implementations of many different methods in an exten-

sive machine learning framework [Hall et al., 2009]. The Weka classifiers used to evaluate

the effectiveness of the pre-processing methods are J48 (an implementation of the C4.5 in-

duction tree learner) and the multilayer perceptron (MLP). J48 is used with Weka’s default

settings. During preliminary experiments, it was determined that the default configuration

was artificially inhibiting the multilayer perceptron’s classification. Consequently, the learn-

ing rate is set to 0.4 and the architecture consists of four nodes in a single hidden layer. The

libSVM package is used to provide the support vector machine implementation used here

[Chang and Lin, 2011]. Once again, preliminary experiments showed that it was necessary

to set some parameters manually. Specifically, for the higher dimensionality data sets, it

45

was found that using a polynomial kernel produced much better results than using a radial

basis function kernel, though the opposite was true when there were only two attributes.

The kernel used is set accordingly for each data set. Finally, a k nearest neighbor (k-NN)

classifier is used in these experiments; this is implemented by the author. It is used both

in the wrapper evaluation and classifier evaluation sections with a k value of 3. The Maha-

lanobis distance is employed here to ensure that no attribute has disproportionate influence

in calculating the distance between points.

46

Chapter 5

Results and Analysis

Given the number of data sets, the number of pre-processor/classifier combinations, the num-

ber of genetic runs, and the number of cross-validation folds used for each run, it is difficult

to analyze the results of this experiment without condensing them. As described above, for

each run, an aggregate F2-measure is calculated by using the summed true positives, false

positives, true negatives, and false negatives over all folds. These form the basic measure of

performance for each trial, and at no point in the analysis below is any attention given to

the F2-measures of individual stratified sampling folds. Condensing the results further, the

arithmetic mean of the aggregate F2-measures is used to assign a single value to each trial

is taken to give a representative value for each method on each data set. This is useful for

making general comparisons between resampling methods and between classifier paradigms.

Since the choice of classifier makes a large difference in the benefit afforded by each pre-

processing method, the discussion below addresses each machine learning archetype in turn

and compares the relative performance of the evolutionary pre-processing techniques within

the context of that archetype.

The Wilcoxon signed-rank test is employed to determine the comparative performance

between methods over the entirety of the data set classes: artificial and UCI. This is use-

47

ful in that it determines whether, in general, the techniques proposed were able to make a

difference in classifier performance over the original sampling. It also allows one to make

pairwise comparisons between methods to determine whether the differences in improvement

over the data sets were significant. The Wilcoxon signed-rank test is a pairwise significance

test similar to the t-test with the additional benefit that it does not assume a Gaussian dis-

tribution. This measure is used widely throughout the literature to evaluate the performance

of pre-processing techniques and learning algorithms. Examining the relative performances

over the set of artificial data (i.e. where there are 36 samples), a critical value of 1.645 is

used to ascertain whether the null hypothesis can be rejected with a confidence of at least

0.95. For the set of five UCI data sets, significance is calculated slightly differently. Five is

the absolute minimum number of samples required to apply the Wilcoxon signed-rank test,

and to reject the null hypothesis for five samples, one source’s measurements must all be

greater than the other’s measurements.

5.1 3-NN Classifier Performance

Despite its simplicity, the 3-NN classifier is competitive with the more sophisticated classi-

fier methods for the two-dimensional artificial data sets. The 3-NN classifier’s performance

is substantially diminished as the dimensionality increases, but this is a well-known effect

called the curse of dimensionality. The higher dimensionality creates a higher degree of

sparsity given a certain number of data points. This difficulty, however, presents an op-

portunity for the evolutionary pre-processing methods, and it is well-apparent in Table 5.1

that resampling provides substantial gains for the 3-NN classifiers for the data sets with

eight and sixteen dimensions. In a practical application, high dimensionality would likely

be remedied by performing feature selection. Although the unassisted 3-NN classifier suffers

as the dimensionality increases, it has the advantage of being relatively resistant to both

48

overlap and imbalance when compared to the other classifiers. For all two-dimensional data

sets with an imbalance ratio of 7.0 or 15.0 and relatively high overlap (standard deviations

greater than or equal to 3.0), its unaided performance is the best, excepting one case where

it is the second best.

The Wilcoxon signed-rank test in Table 5.2 shows the overall patterns over the artificial

data sets. Integer-based resampling and WCC offer the greatest improvements for the 3-NN

classifier. While WCC tends to offer better gains at lower levels of imbalance,the integral

representation is better when the imbalance ratio is very high (15.0). Table 5.2 confirms

that the superiority of these methods is significant, though neither has an advantage over

the other. Offering a lesser degree of improvement, the binary undersampling and real-

valued reweighting are significantly better than the control and ACC, significantly worse than

integer-based resampling and WCC, and are approximately as good as each other. Finally,

while ACC is worse than all the other evolutionary methods, it is still significantly better

than the unassisted 3-NN classifier. Thus evolutionary pre-processing is very successful for

the 3-NN classifier as all of the resampling techniques promote the construction of a better

classifier.

49

Table 5.1: 3-NN classifier performance on the artificial data sets
Control Binary Integer Real ACC WCC

IR: 3, Std. Dev.: 2.0, 2 Dimensions 0.99372 0.9739 0.99468 0.9953 0.99244 0.9934
IR: 3, Std. Dev.: 2.0, 8 Dimensions 0.53966 0.64166 0.72846 0.67882 0.7519 0.7755
IR: 3, Std. Dev.: 2.0, 16 Dimensions 0.40598 0.54348 0.61642 0.5635 0.60204 0.65846
IR: 3, Std. Dev.: 3.0, 2 Dimensions 0.88606 0.87476 0.91066 0.90128 0.88778 0.90174
IR: 3, Std. Dev.: 3.0, 8 Dimensions 0.4422 0.5345 0.58512 0.56162 0.52918 0.6357
IR: 3, Std. Dev.: 3.0, 16 Dimensions 0.3132 0.49042 0.50848 0.46776 0.49904 0.56884
IR: 3, Std. Dev.: 4.0, 2 Dimensions 0.691 0.7194 0.76346 0.72378 0.67516 0.74796
IR: 3, Std. Dev.: 4.0, 8 Dimensions 0.37074 0.50728 0.57824 0.5212 0.48452 0.61956
IR: 3, Std. Dev.: 4.0, 16 Dimensions 0.25522 0.45754 0.49014 0.40306 0.37912 0.53992
IR: 3, Std. Dev.: 5.0, 2 Dimensions 0.4972 0.6023 0.62516 0.60566 0.51494 0.66466
IR: 3, Std. Dev.: 5.0, 8 Dimensions 0.20998 0.41544 0.43622 0.37292 0.2603 0.47384
IR: 3, Std. Dev.: 5.0, 16 Dimensions 0.1501 0.37488 0.41158 0.32596 0.2495 0.46024
IR: 7, Std. Dev.: 2.0, 2 Dimensions 0.99184 0.95372 0.98936 0.99252 0.9881 0.98628
IR: 7, Std. Dev.: 2.0, 8 Dimensions 0.30674 0.432 0.56774 0.479 0.4672 0.60482
IR: 7, Std. Dev.: 2.0, 16 Dimensions 0.2638 0.36364 0.41962 0.39374 0.3953 0.44566
IR: 7, Std. Dev.: 3.0, 2 Dimensions 0.75712 0.76816 0.82686 0.7973 0.75486 0.83328
IR: 7, Std. Dev.: 3.0, 8 Dimensions 0.15068 0.34644 0.39536 0.31136 0.3117 0.3869
IR: 7, Std. Dev.: 3.0, 16 Dimensions 0.08994 0.22844 0.23826 0.18654 0.16098 0.25042
IR: 7, Std. Dev.: 4.0, 2 Dimensions 0.65644 0.67686 0.7741 0.71266 0.6377 0.74786
IR: 7, Std. Dev.: 4.0, 8 Dimensions 0.09888 0.23922 0.22092 0.23024 0.19032 0.28896
IR: 7, Std. Dev.: 4.0, 16 Dimensions 0.05014 0.24648 0.24142 0.1608 0.1575 0.26024
IR: 7, Std. Dev.: 5.0, 2 Dimensions 0.25238 0.38756 0.43476 0.36842 0.2467 0.44652
IR: 7, Std. Dev.: 5.0, 8 Dimensions 0.05884 0.23808 0.27546 0.17218 0.14236 0.27734
IR: 7, Std. Dev.: 5.0, 16 Dimensions 0.04378 0.20596 0.22578 0.12592 0.08652 0.21938
IR: 15, Std. Dev.: 2.0, 2 Dimensions 0.97998 0.88026 0.97548 0.9655 0.96634 0.96768
IR: 15, Std. Dev.: 2.0, 8 Dimensions 0.09898 0.2542 0.37616 0.28416 0.22052 0.31044
IR: 15, Std. Dev.: 2.0, 16 Dimensions 0 0.17318 0.17698 0.10186 0.05094 0.12264
IR: 15, Std. Dev.: 3.0, 2 Dimensions 0.74794 0.69246 0.75634 0.75112 0.76886 0.73132
IR: 15, Std. Dev.: 3.0, 8 Dimensions 0.1925 0.23178 0.2596 0.2166 0.19354 0.21248
IR: 15, Std. Dev.: 3.0, 16 Dimensions 0 0.0871 0.0991 0.05538 0.05154 0.07004
IR: 15, Std. Dev.: 4.0, 2 Dimensions 0.30466 0.42982 0.50814 0.42814 0.3305 0.47126
IR: 15, Std. Dev.: 4.0, 8 Dimensions 0.03782 0.09742 0.0935 0.05524 0.04436 0.0677
IR: 15, Std. Dev.: 4.0, 16 Dimensions 0.02252 0.14376 0.17516 0.0625 0.04302 0.07814
IR: 15, Std. Dev.: 5.0, 2 Dimensions 0.40048 0.36116 0.37444 0.4141 0.35558 0.41758
IR: 15, Std. Dev.: 5.0, 8 Dimensions 0.01504 0.15064 0.1379 0.04022 0.04424 0.1132
IR: 15, Std. Dev.: 5.0, 16 Dimensions 0.05084 0.14002 0.14506 0.07674 0.05514 0.1333

50

Table 5.2: Wilcoxon signed-rank test for the 3-NN classifier’s performance on the artificial
data set

Control Binary Integer Real ACC WCC
Control - - - - -
Binary + - = + -
Integer + + + + =
Real + = - + -
ACC + - - - -
WCC + + = + +

5.2 J48 Classifier Performance

The J48 implementation of C4.5 is very competitive compared to the other unassisted clas-

sifiers. One of its strengths is its relative resistance to degradation as the dimensionality

increases. As noted above, the dimensionality of the artificial data sets is increased by

adding attributes which do not affect the classification boundaries. For those attributes,

majority and minority classes’ samples are generated from the same distribution. Since the

inductive tree classifier works by greedily selecting attributes which produce which contain

the most information, they are able to ignore these extraneous features without any diffi-

culty. In contrast, the 3-NN classifier used here must account for all features, and differences

in the noisy features contribute to the distances between instances. Additionally, J48 is

relatively resistant to the negative effects of imbalance and overlap, at least as they appear

in the artificial data sets and in comparison with support vector machines and the multilayer

perceptron.

Examining the performance increases offered by evolutionary pre-processing, it is clear

that the inductive tree classifier benefits less than the nearest-neighbor approach. One reason

for this is likely that the GA is guided by the performance of a nearest-neighbor algorithm,

and thus the resampling developed may not be optimal for J48. This is also the case for

51

the multilayer perceptron and support vector machines. Comparing the relative value of

the evolutionary resampling methods, once again the integer-based resampling approach

and WCC emerge as the best methods. The Wilcoxon signed-rank tests in table 5.4 show

that WCC is better than the control and all of the other methods except integer-based

resampling by a significant margin. For J48, though, integer-based resampling is not as good

as WCC. While binary undersampling and evolutionary real-valued weighting are, as stated

above, significantly worse than WCC, they are not worse than integer-based resampling by a

significant margin. Thus, among these four pre-processing methods, only WCC stands apart,

but all of these methods are significantly better than the unaided classifier and ACC. ACC

is able to offer relatively good improvements for some data sets (e.g. the two-dimensional

data set with an IR of 15.0 and a cluster standard deviation of 5.0), but overall it offers

comparable performance to the unmodified data set at considerable computational expense.

52

Table 5.3: J48 classifier performance on the artificial data sets
Control Binary Integer Real ACC WCC

IR: 3, Std. Dev.: 2.0, 2 Dimensions 0.93366 0.95208 0.95926 0.96184 0.96408 0.95384
IR: 3, Std. Dev.: 2.0, 8 Dimensions 0.95664 0.9479 0.96748 0.95036 0.97652 0.98656
IR: 3, Std. Dev.: 2.0, 16 Dimensions 0.93364 0.93342 0.91972 0.93568 0.91392 0.93442
IR: 3, Std. Dev.: 3.0, 2 Dimensions 0.86448 0.86068 0.86526 0.86384 0.84332 0.8569
IR: 3, Std. Dev.: 3.0, 8 Dimensions 0.84836 0.84394 0.8416 0.84856 0.80676 0.8473
IR: 3, Std. Dev.: 3.0, 16 Dimensions 0.87508 0.86614 0.86468 0.84832 0.86774 0.87184
IR: 3, Std. Dev.: 4.0, 2 Dimensions 0.64292 0.72908 0.6739 0.72768 0.63736 0.73252
IR: 3, Std. Dev.: 4.0, 8 Dimensions 0.73318 0.76118 0.736 0.73618 0.74514 0.75572
IR: 3, Std. Dev.: 4.0, 16 Dimensions 0.71176 0.74742 0.67158 0.71994 0.69878 0.74212
IR: 3, Std. Dev.: 5.0, 2 Dimensions 0.54308 0.62078 0.52418 0.60896 0.55088 0.68936
IR: 3, Std. Dev.: 5.0, 8 Dimensions 0.60662 0.6349 0.55228 0.60518 0.55388 0.65104
IR: 3, Std. Dev.: 5.0, 16 Dimensions 0.51524 0.58144 0.54762 0.57338 0.55858 0.61018
IR: 7, Std. Dev.: 2.0, 2 Dimensions 0.94492 0.93938 0.94062 0.95516 0.9489 0.9552
IR: 7, Std. Dev.: 2.0, 8 Dimensions 0.91708 0.92476 0.93752 0.92062 0.91452 0.92892
IR: 7, Std. Dev.: 2.0, 16 Dimensions 0.95948 0.96212 0.97012 0.95692 0.96452 0.96298
IR: 7, Std. Dev.: 3.0, 2 Dimensions 0.7144 0.7683 0.78252 0.7349 0.7267 0.785
IR: 7, Std. Dev.: 3.0, 8 Dimensions 0.76434 0.7219 0.7192 0.73936 0.74406 0.74286
IR: 7, Std. Dev.: 3.0, 16 Dimensions 0.69664 0.6827 0.67978 0.65574 0.66144 0.66738
IR: 7, Std. Dev.: 4.0, 2 Dimensions 0.58412 0.63986 0.62078 0.6376 0.62954 0.6694
IR: 7, Std. Dev.: 4.0, 8 Dimensions 0.5674 0.58428 0.62654 0.55956 0.57096 0.56596
IR: 7, Std. Dev.: 4.0, 16 Dimensions 0.53842 0.58884 0.4881 0.53618 0.5054 0.55566
IR: 7, Std. Dev.: 5.0, 2 Dimensions 0.266 0.36254 0.38654 0.38128 0.294 0.4557
IR: 7, Std. Dev.: 5.0, 8 Dimensions 0.48506 0.47828 0.49014 0.44542 0.4297 0.48394
IR: 7, Std. Dev.: 5.0, 16 Dimensions 0.31504 0.385 0.35492 0.35894 0.33964 0.38488
IR: 15, Std. Dev.: 2.0, 2 Dimensions 0.93404 0.9036 0.9271 0.9255 0.92152 0.90968
IR: 15, Std. Dev.: 2.0, 8 Dimensions 0.84882 0.87258 0.87352 0.87368 0.8491 0.85402
IR: 15, Std. Dev.: 2.0, 16 Dimensions 0.94022 0.90374 0.9192 0.90208 0.92768 0.91506
IR: 15, Std. Dev.: 3.0, 2 Dimensions 0.65176 0.69066 0.7154 0.70682 0.75294 0.7042
IR: 15, Std. Dev.: 3.0, 8 Dimensions 0.8292 0.73704 0.80458 0.76694 0.78478 0.7403
IR: 15, Std. Dev.: 3.0, 16 Dimensions 0.54916 0.56772 0.59472 0.58082 0.58566 0.58314
IR: 15, Std. Dev.: 4.0, 2 Dimensions 0.23034 0.5013 0.53994 0.48898 0.3991 0.47794
IR: 15, Std. Dev.: 4.0, 8 Dimensions 0.15408 0.30052 0.3515 0.26704 0.20398 0.31356
IR: 15, Std. Dev.: 4.0, 16 Dimensions 0.47464 0.42614 0.41336 0.48688 0.42686 0.45814
IR: 15, Std. Dev.: 5.0, 2 Dimensions 0.27942 0.40458 0.41946 0.42522 0.33114 0.3722
IR: 15, Std. Dev.: 5.0, 8 Dimensions 0.18774 0.19374 0.30734 0.21866 0.22622 0.23922
IR: 15, Std. Dev.: 5.0, 16 Dimensions 0.1818 0.18264 0.25572 0.1268 0.1692 0.22368

53

Table 5.4: Wilcoxon signed-rank test for the J48 classifier’s performance on the artificial
data sets

Control Binary Integer Real ACC WCC
Control - - - = -
Binary + = = + -
Integer + = = + =
Real + = = + -
ACC = - - - -
WCC + + = + +

5.3 Multilayer Perceptron Classifier Performance

The unassisted mulitlayer perceptron classifier offers very competitive performance on the

mildly imbalanced data sets, but for data sets where the imbalance ratio is above 3.0, its

performance diminishes in comparison with support vector machines and J48. Like J48, it is

less affected by increases in dimensionality than 3-NN. By reducing the weights on the input

nodes corresponding to the noise dimensions, the multilayer perceptron is able to effectively

mitigate their effect over the course of training. Ultimately, its difficulty with the higher-

imbalance data sets (i.e. two thirds of the artificial data) means that it is not very strong as

an unaided method in this experiment.

The MLP classifier’s performance on the artificial data sets without resampling was lack-

luster compared to support vector machines and J48, evolutionary pre-processing improved

its capabilities substantially. Two notable cases are the data sets with an imbalance ratio

of 15.0 and a cluster standard deviation of 5.0 in two and sixteen dimensions. These two

data sets are relatively challenging: they represent the extremes of both overlap and im-

balance. Among the unaided classifiers, MLP achieves the second-lowest mean F2-measure.

Pre-processing the data using integer-encoded resampling, however, yields the best results

out of all classifiers and all pre-processing methods. While these examples demonstrate ex-

54

Table 5.5: Wilcoxon signed-rank test for the MLP classifier’s performance on the artificial
data sets

Control Binary Integer Real ACC WCC
Control - - - = -
Binary + - = + -
Integer + + + + +
Real + = - + -
ACC = - - - -
WCC + + - + +

ceptionally dramatic increases in the F2-score, the multilayer perceptron generally benefits

from the application of evolutionary pre-processing. Comparing the various evolutionary

techniques, it is clear that integer-encoded resampling produces the best results by far. This

is especially true for the highly imbalanced data sets. As in the case of the other two classi-

fiers, WCC also provides relatively large gains compared to the other pre-processing methods

and the control. For the MLP classifier, table 5.5 shows that the integer-encoded method

is significantly better than WCC, and WCC is significantly better than the other methods.

Real-valued evolutionary weighting and binary resampling offer commensurate, modest ben-

efits for this classifier, and as in the case of J48, ACC does not produce a significant benefit

for the classifier when analyzed in the context of the entire artificial set.

5.4 Support Vector Machines Classifier Performance

The support vector machines classifier performed relatively well on the eight and sixteen

dimensional artificial data sets compared to the 3-NN and multilayer perceptron algorithms.

Among the two-dimensional data sets, the SVM classifier did very, very poorly when the

imbalance and overlap were both relatively high. One example of this is the two-dimensional

data set with an imbalance ratio of 7.0 and a standard deviation of 5.0. For those data

55

sets on which the SVM classifier exhibited exceptionally poor performance, however, higher-

dimensionality data sets with the same amount of imbalance and overlap did not pose ex-

ceptional difficulty. In fact, the SVM offered very competitive performance (e.g. the sixteen-

dimensional data set with an imbalance ratio of 7.0 and a standard deviation of 5.0). This

difference is likely attributable to the use of the RBF kernel function for the two-dimensional

data sets and the polynomial kernel function for the higher dimensionality data sets. The

fact that this effect is especially pronounced in the presence of both imbalance and overlap

(especially overlap) suggests that the previously documented synergy between overlap and

imbalance for SVM classifiers may also be partially responsible.

The SVM method did not benefit greatly from evolutionary pre-processing compared to

the multilayer perceptron or the nearest-neighbor classifier. Small gains in performance were

the norm, and the only large gains were in the aforementioned data sets where unassisted

support vector machines failed to produce an acceptable classification. This is visible in

table 5.6. Having noted this fact, comparing the methods’ relative performance is still

valuable. Here, as for the other classifiers, integer-based resampling is a relatively good pre-

processing method. Although within-class cluster weighting was able to produce significant

improvements for the other machine learning paradigms, SVM with WCC is not significantly

better than unassisted SVM when examined over the array of artificial data sets. Table 5.7

shows that, for support vector machines, only binary undersampling and integer resampling

are able to produce a significant improvement in classification in general, and neither of

these two is significantly better than the other. Fortunately, none of the resampling methods

significantly degraded the performance of the SVM classifier.

56

Table 5.6: SVM classifier performance on the artificial data sets
Control Binary Integer Real ACC WCC

IR: 3, Std. Dev.: 2.0, 2 Dimensions 0.99246 0.99624 0.98874 0.98874 0.9912 0.99246
IR: 3, Std. Dev.: 2.0, 8 Dimensions 0.98684 0.98258 0.98436 0.98464 0.98212 0.98936
IR: 3, Std. Dev.: 2.0, 16 Dimensions 0.94616 0.92564 0.94926 0.94902 0.9493 0.94528
IR: 3, Std. Dev.: 3.0, 2 Dimensions 0.83252 0.86392 0.86384 0.83518 0.8368 0.83356
IR: 3, Std. Dev.: 3.0, 8 Dimensions 0.70956 0.76896 0.72724 0.70386 0.71222 0.7138
IR: 3, Std. Dev.: 3.0, 16 Dimensions 0.8673 0.84778 0.86508 0.86116 0.8588 0.85964
IR: 3, Std. Dev.: 4.0, 2 Dimensions 0.57636 0.64972 0.63138 0.55474 0.55316 0.55848
IR: 3, Std. Dev.: 4.0, 8 Dimensions 0.62378 0.68744 0.62916 0.59144 0.61152 0.6218
IR: 3, Std. Dev.: 4.0, 16 Dimensions 0.6428 0.70082 0.6587 0.63744 0.65056 0.6417
IR: 3, Std. Dev.: 5.0, 2 Dimensions 0.35552 0.47968 0.47964 0.3509 0.37526 0.36812
IR: 3, Std. Dev.: 5.0, 8 Dimensions 0.4693 0.53768 0.47134 0.46392 0.44914 0.44948
IR: 3, Std. Dev.: 5.0, 16 Dimensions 0.47834 0.5765 0.48302 0.4765 0.46076 0.4722
IR: 7, Std. Dev.: 2.0, 2 Dimensions 0.9718 0.93974 0.96164 0.96672 0.96926 0.9724
IR: 7, Std. Dev.: 2.0, 8 Dimensions 0.94234 0.93824 0.9381 0.94838 0.95278 0.95032
IR: 7, Std. Dev.: 2.0, 16 Dimensions 0.9144 0.928 0.92886 0.92144 0.93346 0.929
IR: 7, Std. Dev.: 3.0, 2 Dimensions 0.60896 0.64384 0.701 0.5885 0.59406 0.60212
IR: 7, Std. Dev.: 3.0, 8 Dimensions 0.60978 0.6781 0.62958 0.60402 0.62164 0.62796
IR: 7, Std. Dev.: 3.0, 16 Dimensions 0.67866 0.62764 0.65478 0.6563 0.68094 0.66696
IR: 7, Std. Dev.: 4.0, 2 Dimensions 0.39956 0.43766 0.5472 0.40724 0.40882 0.40586
IR: 7, Std. Dev.: 4.0, 8 Dimensions 0.37526 0.49266 0.42028 0.38152 0.38222 0.38846
IR: 7, Std. Dev.: 4.0, 16 Dimensions 0.47592 0.53176 0.50858 0.4823 0.4676 0.48724
IR: 7, Std. Dev.: 5.0, 2 Dimensions 0.00764 0.11316 0.28174 0.0152 0.0076 0
IR: 7, Std. Dev.: 5.0, 8 Dimensions 0.3272 0.39806 0.36266 0.37294 0.36868 0.36198
IR: 7, Std. Dev.: 5.0, 16 Dimensions 0.25218 0.22548 0.26842 0.25124 0.2298 0.23486
IR: 15, Std. Dev.: 2.0, 2 Dimensions 0.75028 0.70446 0.7616 0.7616 0.75594 0.7616
IR: 15, Std. Dev.: 2.0, 8 Dimensions 0.90736 0.87114 0.926 0.90564 0.9096 0.90158
IR: 15, Std. Dev.: 2.0, 16 Dimensions 0.8341 0.74266 0.83646 0.84014 0.83726 0.81664
IR: 15, Std. Dev.: 3.0, 2 Dimensions 0.30286 0.22728 0.40688 0.28978 0.296 0.28914
IR: 15, Std. Dev.: 3.0, 8 Dimensions 0.67918 0.66652 0.68698 0.64836 0.68838 0.67602
IR: 15, Std. Dev.: 3.0, 16 Dimensions 0.42652 0.42042 0.41238 0.4071 0.42488 0.39424
IR: 15, Std. Dev.: 4.0, 2 Dimensions 0 0.00758 0.1145 0 0 0
IR: 15, Std. Dev.: 4.0, 8 Dimensions 0.24688 0.28746 0.24194 0.23714 0.24628 0.23834
IR: 15, Std. Dev.: 4.0, 16 Dimensions 0.22602 0.1483 0.19752 0.234 0.21994 0.1786
IR: 15, Std. Dev.: 5.0, 2 Dimensions 0.11378 0.09792 0.13242 0.11344 0.11378 0.10614
IR: 15, Std. Dev.: 5.0, 8 Dimensions 0.25094 0.2811 0.24208 0.25062 0.21676 0.209
IR: 15, Std. Dev.: 5.0, 16 Dimensions 0.14078 0.15236 0.1504 0.1167 0.12822 0.13112

57

Table 5.7: Wilcoxon signed-rank test for the SVM classifier’s performance on the artificial
data sets

SVM Control Binary Integer Real ACC WCC
Control - - = = =
Binary + = + + +
Integer + = + + +
Real = - - = =
ACC = - - = =
WCC = - - = =

5.5 Effects of Imbalance and Overlap

The main reason that an array of artificial data sets was employed here was to be able to

evaluate each evolutionary pre-processing method and each classifier paradigm while control-

ling data set features which have been shown to make constructing effective classifiers more

difficult. This would allow one to determine where, if anywhere, each pre-processing method

is most beneficially applied. Unfortunately, no overarching trend is easily discernible with

respect to the relative benefit of pre-processing and either overlap or imbalance. In general,

imbalance and overlap hinder classifier performance. Which classifier method will offer the

greatest gains, however, does not seem to be predictable from the relative quantities of these

two features in the artificial data sets. It may be the case that trends would emerge by

examining more data sets with different distributions. It is possible that the absolute rarity

of the minority class and the stochastic process of generating the data determine which data

sets are difficult individually and which pre-processing methods work well on each individ-

ual data set. In that case, there may be larger trends with respect to the efficacy of each

pre-processing method and the levels of imbalance and overlap that are simply not visible

here.

58

Table 5.8: 3-NN classifier performance on the UCI data sets
control binary integer real ACC WCC

Ecoli 0.94274 0.92474 0.95228 0.95874 0.93656 0.94704
Iris 0.93932 0.91586 0.94444 0.9463 0.93676 0.94188
SPECTF 0.34264 0.42626 0.5031 0.4318 0.31666 0.55432
Wdbc 0.94532 0.92656 0.95026 0.94312 0.94864 0.95196
Yeast 0.52758 0.54132 0.59564 0.57464 0.53112 0.6007

Table 5.9: J48 classifier performance on the UCI data sets
control binary integer real ACC WCC

Ecoli 0.94374 0.94716 0.93328 0.94438 0.92594 0.94438
Iris 0.9224 0.919 0.9185 0.92522 0.90932 0.93412
SPECTF 0.3719 0.45304 0.40096 0.34822 0.34414 0.4975
Wdbc 0.92168 0.91326 0.92608 0.9263 0.91248 0.92876
Yeast 0.5122 0.54854 0.52146 0.53934 0.47198 0.58828

5.6 UCI Data Set Performance

The results on the UCI data sets resemble those from the artificial data sets. This is encour-

aging, as it suggests that the conclusions drawn from the analysis above may be applicable

outside the scope of data sets resembling Gaussian clusters in an XOR pattern. When the

unassisted classifier is able to achieve high performance, there is little, if any, gain from pre-

processing. This is demonstrated by the Ecoli, Iris, and Wdbc data sets. On more difficult

SPECTF set, all four classifier methods are improved by the use of pre-processing, and the

greatest performance gains occur when binary undersampling, integer-based resampling, and

WCC are used. For the yeast data set, which the unassisted classifiers also had difficulty,

smaller gains are also visible, particularly from WCC and and integer resampling. Another

notable feature of this set is the total failure of all SVM applications excepting the integer-

based approach. This is almost certainly not a feature of the classifier but the result of poor

SVM configuration for the data set.

59

Table 5.10: MLP classifier performance on the UCI data sets
control binary integer real ACC WCC

Ecoli 0.94846 0.94202 0.94672 0.94354 0.95832 0.94328
Iris 0.93254 0.947 0.94706 0.95296 0.93358 0.94182
SPECTF 0.35682 0.53638 0.48008 0.36804 0.43244 0.51274
Wdbc 0.95366 0.95694 0.95892 0.95722 0.95056 0.96042
Yeast 0.52974 0.57774 0.6245 0.5658 0.5233 0.61232

Table 5.11: SVM classifier performance on the UCI data sets
control binary integer real ACC WCC

Ecoli 0.78346 0.7426 0.92482 0.78656 0.78344 0.77876
Iris 0.96262 0.95454 0.94036 0.9626 0.94166 0.95686
SPECTF 0.3845 0.54196 0.44112 0.41506 0.42134 0.39616
Wdbc 0.69068 0.8445 0.66986 0.67418 0.68974 0.66714
Yeast 0 0 0.38392 0 0 0

Applying the Wilcoxon signed-rank test, no significant differences in classifier perfor-

mance can be noted for any pre-processing method using either the unaided multilayer

perceptrons the or unaided support vector machines. The former is more surprising than the

latter, and it suggests that the multilayer perceptron may have had exceptional difficulty

with the artificial data sets due to some property of the instance space. The 3-NN classifier,

on the other hand, does benefit significantly from multiple methods as shown in table 5.12.

As in the artificial data sets, integer resampling and WCC provide the best improvements:

they are significantly better than the unaided classifier, ACC, and binary undersampling.

The results of the Wilcoxon signed-rank test on tthe J48 classifier’s results are shown in

table 5.13. The J48 classifier benefits from within-class cluster weighting, which is able

to augment the unaided classifier and offer significantly better performance than integer-

based resampling. In contrast, across-class cluster weighting poses a significant hindrance

to the classifier. The differences in the remaining methods’ performances were not deemed

significant.

60

Table 5.12: Wilcoxon signed-rank test for the 3-NN classifier’s performance on the UCI data
sets

Control Binary Integer Real ACC WCC
Control = - = = -
Binary = - - = -
Integer + + = + =
Real = + = = =
ACC = = - = -
WCC + + = = +

Table 5.13: Wilcoxon signed-rank test for the J48 classifier’s performance on the UCI data
sets

Control Binary Integer Real ACC WCC
Control = = = + -
Binary = = = + =
Integer = = = + -
Real = = = + =
ACC - - - - -
WCC + = + = +

61

Chapter 6

Conclusions and Future Directions

This thesis contributes to the development of evolutionary data resampling methods by

proposing a variety of novel representations and evaluating their performance across data

sets with varying dimensionality, imbalance, and overlap. Binary undersampling, integer

resampling, real-valued weighting, and cluster-based weighting for clusters generated within

and across class boundaries were compared against a baseline. For many data sets, especially

data sets with high degrees of imbalance and overlap, training the classifier with the pre-

processed data sets yielded dramatic improvements. The experiment presented in this thesis

sheds light onto how these pre-processing methods are best applied, and it suggests some

avenues for future research.

Among the evolutionary resampling methods evaluated here, the integer representation

generally provides the greatest and most consistent improvements for classifiers trained on

the artificial data sets. The benefits of this technique are particularly notable for 3-NN

classifiers and multilayer perceptrons. Although one might anticipate that this method

would cause detrimental over-fitting (as random oversampling does), this does not appear

to be the case. Furthermore, integer-based resampling is successful despite the fact that

it lacks any domain-specific operators. It is important to note, however, that using this

62

method causes the size of the training data to increase substantially. Consequently, the time

required for classification increases for the 3-NN classifier, and the time required to construct

(i.e. train) a model of the instance space increases for the multilayer perceptron. While this

growth in the size of the training data imposes greater computational costs, it may be the

source of the representation’s success: by increasing the number of minority class samples,

it eliminates the problem of absolute rarity identified by Japkowicz and Stephen as the most

detrimental aspect of between-class imbalance [Japkowicz and Stephen, 2002]. The success

of such a simple method lacking domain-specific operators is very encouraging, as there are

many possible improvements to investigate. In order to avoid overfitting, instances could

be oversampled not by direct duplication but by small, random perturbations. To reduce

dimensionality, one could consider for resampling only those elements that are in a borderline

region. Addressing only elements at risk for misclassification is a common tactic for pre-

processing methods. To answer the problem of data set growth, it is possible to incorporate

a term in the fitness function which penalizes exceedingly large data sets, introduce a local

search element to attempt to reduce the sum of allele values without degrading the fitness,

or introduce genetic operators which cause large allele values to decay if there is not strong

selection pressure to maintain their presence.

Weighting the instances based on within-class cluster weighting also produced substantial

gains for all of the classifiers except support vector machines. The 3-NN classifier especially

benefits from WCC, particularly in learning the UCI data sets. The principal advantage

of this method is the the size of the genetic representation, which allows for fast conver-

gence and better efficiency. Unfortunately, the effectiveness of this method is limited by

the quality of the clusters used to reduce the complexity of the data set, and producing

representative clusters is itself a nontrivial problem. The optimal number of clusters and

the placement of those clusters must be determined in advance, and there is no guarantee

that a process which maximizes typical metrics of cluster quality (e.g. the Davies-Bouldin

63

index) will also maximize the quality of clusters for the purpose of assigning weights to their

constituent instances. Hence, cluster-based representations present a promising direction for

further development both in developing new representations and genetic operators, and also

in improving the clustering process to be less reliant upon a priori information.

Determining the inclusion/exclusion of each instance using a binary evolutionary ap-

proach has also proven effective in the experiments here. In particular, this technique

was beneficial for the SVM classifier where most other methods failed. The success of the

binary representation is not entirely surprising since, despite its simplicity, similar tech-

niques have proven very successful in other work [Cano et al., 2003, Garćıa et al., 2006,

Byeon et al., 2008]. Furthermore, and in contrast with the integer-encoded genetic algorithm

described above, any performance improvement from binary undersampling is accompanied

by the secondary benefits of a smaller data set. For this reason, the binary one-to-one ap-

proach would be preferable to integer-encoded resampling for improving the performance of

an SVM classifier or a C4.5 decision tree constructor, since they produce a commensurate

improvement in the F2-measure. Given their inherent simplicity and the amount of previous

work done with them, binary one-to-one representations offer relatively little in the way of

further improvement, though this is not to say that they have been exhausted.

In spite of its flexibility and representational power, the real-valued weighting method

did not prove particularly effective. This may be due in part to the finding that in some

cases, resampling can be more effective than equivalent re-weighting, and it may be also

due to a sub-optimal traversal of the real-valued, high dimensional search space (i.e. it

could offer better performance with different genetic operators). At this point does not

appear that real-valued one-to-one pre-processing methods are an especially promising area of

research. Of course, the performance one real-valued GA scheme with one set of parameters

is not a sufficient basis to infer anything about the effectiveness of methods with similar

representations. The effectiveness of smaller and simpler representations, however, seems to

64

indicate that the greater expressiveness of this representation is not only unnecessary but

may also be detrimental to converging on a useful resampling of the data.

In general, these experiments suggest that the evolutionary pre-processing techniques

presented here are most applicable when the unaided classifier is unable to construct an

effective model. The evolutionary methods examined above are not well-suited to correcting

small failures. For data sets where the unaided classifier attained perfect or nearly-perfect

classification results, resampled data sometimes produced less effective classifiers. Further-

more, even in cases where they performed poorly, support vector machines were not greatly

improved by the pre-processing techniques proposed here. On the other hand, the methods

showed that resampling is able to compensate for classifier failure attributable to a variety

of causes. The pre-processors are able to compensate for poor classifier configuration, the

curse of dimensionality, and difficulties which appeared to arise from the data set itself. This

is encouraging, as configuring machine learning methods is often accomplished by trial and

error, and methods that reduce the effect of poor configuration could prove very useful.

Finally, it is of note that in experiments such as the one presented here, where a variety

of sophisticated methods are applied on many different problem instances, parameter con-

figuration becomes a significant problem. With respect to the machine learning methods,

the best configuration may vary from data set to data set. Similarly, the ability of genetic

algorithms can be heavily reliant upon balancing exploration and exploitation with respect

to the fitness landscape. In the former case, reasonably good configurations were sought by

trial and error in preliminary experiments, but the search was not exhaustive and it did not

address each data set individually. With respect to the evolutionary parameters, time did

not permit extensive parameter tuning. Any of the evolutionary methods described above

could, however, be extended by applying some form of parameter control. In short, any

of the evolutionary techniques or any single application of a machine learning method may

have suffered here from poor configuration.

65

Bibliography

[Aggarwal and Yu, 2005] Aggarwal, C. C. and Yu, P. S. (2005). An effective and efficient

algorithm for high-dimensional outlier detection. The VLDB journal, 14(2):211–221.

[Autio et al., 2007] Autio, L., Juhola, M., and Laurikkala, J. (2007). On the neural network

classification of medical data and an endeavour to balance non-uniform data sets with

artificial data extension. Computers in Biology and Medicine, 37(3):388–397.

[Batista et al., 2004] Batista, G. E., Prati, R. C., and Monard, M. C. (2004). A study of the

behavior of several methods for balancing machine learning training data. ACM SIGKDD

Explorations Newsletter, 6(1):20–29.

[Batista et al., 2005] Batista, G. E., Prati, R. C., and Monard, M. C. (2005). Balancing

strategies and class overlapping. In Advances in Intelligent Data Analysis VI, pages 24–

35. Springer.

[Brodley and Friedl, 1999] Brodley, C. E. and Friedl, M. A. (1999). Identifying mislabeled

training data. Journal of Artificial Intelligence Research, 11:131–167.

[Byeon, 2009] Byeon, B. (2009). Enhancing the quality of high dimensional noisy data for

classification and regression problems. PhD thesis, University of Georgia.

66

[Byeon et al., 2008] Byeon, B., Rasheed, K., and Doshi, P. (2008). Enhancing the quality

of noisy training data using a genetic algorithm and prototype selection. In IC-AI, pages

821–827.

[Cano et al., 2003] Cano, J. R., Herrera, F., and Lozano, M. (2003). Using evolutionary

algorithms as instance selection for data reduction in kdd: an experimental study. Evolu-

tionary Computation, IEEE Transactions on, 7(6):561–575.

[Chang and Lin, 2011] Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A library for support

vector machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27.

Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[Chawla et al., 2002] Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P.

(2002). Smote: Synthetic minority over-sampling technique. Journal of Artificial Intelli-

gence Research, 16:321–357.

[Chawla et al., 2008] Chawla, N. V., Cieslak, D. A., Hall, L. O., and Joshi, A. (2008). Au-

tomatically countering imbalance and its empirical relationship to cost. Data Mining and

Knowledge Discovery, 17(2):225–252.

[Chawla et al., 2003] Chawla, N. V., Lazarevic, A., Hall, L. O., and Bowyer, K. W. (2003).

Smoteboost: Improving prediction of the minority class in boosting. In Knowledge Dis-

covery in Databases: PKDD 2003, pages 107–119. Springer.

[Crawford and Wainwright, 1995] Crawford, K. D. and Wainwright, R. L. (1995). Applying

genetic algorithms to outlier detection. In ICGA, pages 546–550.

[Denil and Trappenberg, 2010] Denil, M. and Trappenberg, T. (2010). Overlap versus im-

balance. In Advances in Artificial Intelligence, pages 220–231. Springer.

67

[Drummond et al., 2003] Drummond, C., Holte, R. C., et al. (2003). C4. 5, class imbalance,

and cost sensitivity: why under-sampling beats over-sampling. In Workshop on Learning

from Imbalanced Datasets II, volume 11. Citeseer.

[Fan et al., 1999] Fan, W., Stolfo, S. J., Zhang, J., and Chan, P. K. (1999). Adacost: mis-

classification cost-sensitive boosting. In ICML, pages 97–105. Citeseer.

[Forman and Scholz, 2010] Forman, G. and Scholz, M. (2010). Apples-to-apples in cross-

validation studies: pitfalls in classifier performance measurement. ACM SIGKDD Explo-

rations Newsletter, 12(1):49–57.

[Freund et al., 1996] Freund, Y., Schapire, R. E., et al. (1996). Experiments with a new

boosting algorithm. In ICML, volume 96, pages 148–156.

[Galar et al., 2013] Galar, M., Fernández, A., Barrenechea, E., and Herrera, F. (2013). Eus-

boost: Enhancing ensembles for highly imbalanced data-sets by evolutionary undersam-

pling. Pattern Recognition.

[Garćıa et al., 2006] Garćıa, S., Cano, J. R., Fernández, A., and Herrera, F. (2006). A

proposal of evolutionary prototype selection for class imbalance problems. In Intelligent

Data Engineering and Automated Learning–IDEAL 2006, pages 1415–1423. Springer.

[Garćıa et al., 2008] Garćıa, S., Cano, J. R., and Herrera, F. (2008). A memetic algorithm for

evolutionary prototype selection: A scaling up approach. Pattern Recognition, 41(8):2693–

2709.

[Garćıa et al., 2012] Garćıa, S., Derrac, J., Triguero, I., Carmona, C. J., Herrera, F., et al.

(2012). Evolutionary-based selection of generalized instances for imbalanced classification.

Knowledge-Based Systems, 25(1):3–12.

68

[Garćıa et al., 2007] Garćıa, V., Sánchez, J., and Mollineda, R. (2007). An empirical study

of the behavior of classifiers on imbalanced and overlapped data sets. In Progress in

Pattern Recognition, Image Analysis and Applications, pages 397–406. Springer.

[Hall et al., 2009] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and

Witten, I. H. (2009). The weka data mining software: an update. SIGKDD Explor.

Newsl., 11(1):10–18.

[Han et al., 2005] Han, H., Wang, W.-Y., and Mao, B.-H. (2005). Borderline-smote: A

new over-sampling method in imbalanced data sets learning. In Advances in intelligent

computing, pages 878–887. Springer.

[He and Garcia, 2009] He, H. and Garcia, E. A. (2009). Learning from imbalanced data.

Knowledge and Data Engineering, IEEE Transactions on, 21(9):1263–1284.

[Hoffmann, 2001] Hoffmann, F. (2001). Boosting a genetic fuzzy classifier. In IFSA World

Congress and 20th NAFIPS International Conference, 2001. Joint 9th, volume 3, pages

1564–1569. IEEE.

[Hoffmann, 2004] Hoffmann, F. (2004). Combining boosting and evolutionary algorithms

for learning of fuzzy classification rules. Fuzzy Sets and Systems, 141(1):47–58.

[Holte et al., 1989] Holte, R. C., Acker, L., and Porter, B. W. (1989). Concept learning and

the problem of small disjuncts. In IJCAI, volume 89, pages 813–818. Citeseer.

[Japkowicz, 2001] Japkowicz, N. (2001). Concept-learning in the presence of between-class

and within-class imbalances. In Advances in Artificial Intelligence, pages 67–77. Springer.

[Japkowicz and Stephen, 2002] Japkowicz, N. and Stephen, S. (2002). The class imbalance

problem: A systematic study. Intelligent data analysis, 6(5):429–449.

69

[Jo and Japkowicz, 2004] Jo, T. and Japkowicz, N. (2004). Class imbalances versus small

disjuncts. ACM SIGKDD Explorations Newsletter, 6(1):40–49.

[Kelly Jr and Davis, 1991] Kelly Jr, J. D. and Davis, L. (1991). A hybrid genetic algorithm

for classification. In IJCAI, volume 91, pages 645–650.

[Khoshgoftaar et al., 2011] Khoshgoftaar, T. M., Van Hulse, J., and Napolitano, A. (2011).

Comparing boosting and bagging techniques with noisy and imbalanced data. Systems,

Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 41(3):552–

568.

[Kim, 2006] Kim, K.-j. (2006). Artificial neural networks with evolutionary instance selection

for financial forecasting. Expert Systems with Applications, 30(3):519–526.

[Kubat et al., 1997] Kubat, M., Matwin, S., et al. (1997). Addressing the curse of imbalanced

training sets: one-sided selection. In ICML, volume 97, pages 179–186.

[Kuncheva, 1995] Kuncheva, L. I. (1995). Editing for the¡ i¿ k¡/i¿-nearest neighbors rule by

a genetic algorithm. Pattern Recognition Letters, 16(8):809–814.

[López et al., 2012] López, V., Fernández, A., Moreno-Torres, J. G., and Herrera, F. (2012).

Analysis of preprocessing vs. cost-sensitive learning for imbalanced classification. open

problems on intrinsic data characteristics. Expert Systems with Applications, 39(7):6585–

6608.

[Moreno-Torres and Herrera, 2010] Moreno-Torres, J. G. and Herrera, F. (2010). A prelim-

inary study on overlapping and data fracture in imbalanced domains by means of genetic

programming-based feature extraction. In Intelligent Systems Design and Applications

(ISDA), 2010 10th International Conference on, pages 501–506. IEEE.

70

[Nickerson et al., 2001] Nickerson, A., Japkowicz, N., and Milios, E. (2001). Using unsuper-

vised learning to guide resampling in imbalanced data sets. In Proceedings of the Eighth

International Workshop on AI and Statitsics, pages 261–265.

[Orlic and Loncaric, 2010] Orlic, N. and Loncaric, S. (2010). Earthquakeexplosion discrim-

ination using genetic algorithm-based boosting approach. Computers & geosciences,

36(2):179–185.

[Özyer et al., 2007] Özyer, T., Alhajj, R., and Barker, K. (2007). Intrusion detection by

integrating boosting genetic fuzzy classifier and data mining criteria for rule pre-screening.

Journal of Network and Computer Applications, 30(1):99–113.

[Prati et al., 2004] Prati, R. C., Batista, G. E., and Monard, M. C. (2004). Class imbalances

versus class overlapping: an analysis of a learning system behavior. In MICAI 2004:

Advances in Artificial Intelligence, pages 312–321. Springer.

[Punch III et al., 1993] Punch III, W. F., Goodman, E. D., Pei, M., Chia-Shun, L., Hovland,

P. D., and Enbody, R. J. (1993). Further research on feature selection and classification

using genetic algorithms. In ICGA, pages 557–564.

[R Core Team, 2013] R Core Team (2013). R: A Language and Environment for Statistical

Computing. R Foundation for Statistical Computing, Vienna, Austria.

[Seiffert et al., 2008] Seiffert, C., Khoshgoftaar, T. M., Van Hulse, J., and Napolitano, A.

(2008). Resampling or reweighting: A comparison of boosting implementations. In Tools

with Artificial Intelligence, 2008. ICTAI’08. 20th IEEE International Conference on, vol-

ume 1, pages 445–451. IEEE.

[Stefanowski, 2013] Stefanowski, J. (2013). Overlapping, rare examples and class decompo-

sition in learning classifiers from imbalanced data. In Emerging Paradigms in Machine

Learning, pages 277–306. Springer.

71

[Sun et al., 2007] Sun, Y., Kamel, M. S., Wong, A. K., and Wang, Y. (2007). Cost-sensitive

boosting for classification of imbalanced data. Pattern Recognition, 40(12):3358–3378.

[Tolvi, 2004] Tolvi, J. (2004). Genetic algorithms for outlier detection and variable selection

in linear regression models. Soft Computing, 8(8):527–533.

[Tomek, 1976] Tomek, I. (1976). Two modifications of cnn. Systems, Man, and Cybernetics,

IEEE Transactions on, 6(11):769–772.

[Turney, 1995] Turney, P. (1995). Cost-sensitive classification: Empirical evaluation of a

hybrid genetic decision tree induction algorithm. Journal of Artificial Intelligence Research

(JAIR), 2.

[Van Hulse et al., 2007] Van Hulse, J., Khoshgoftaar, T. M., and Napolitano, A. (2007).

Experimental perspectives on learning from imbalanced data. In Proceedings of the 24th

international conference on Machine learning, pages 935–942. ACM.

[Venables and Ripley, 2002] Venables, W. N. and Ripley, B. D. (2002). Modern Applied

Statistics with S. Springer, New York, fourth edition. ISBN 0-387-95457-0.

[Weiss, 2004] Weiss, G. M. (2004). Mining with rarity: a unifying framework. ACM SIGKDD

Explorations Newsletter, 6(1):7–19.

72

Appendices

73

Appendix A

Data Resampling Techniques

[To be finished]

74

Appendix B

Data Set Performance Charts

[To be finished]

75

