
 

 

AUTOMATIC DETECTION AND SEGMENTATION OF GREENHOUSE FRUIT USING 

DEEP NEURAL NETWORKS 

by 

Yan Du 

(Under the Direction of Yi Hong) 

ABSTRACT 

 Accurate detection and segmentation techniques are essential to monitor fruit crop 

growth and perform yield estimation automatically. Recent research on deep neural networks 

such as Faster R-CNN and Mask R-CNN has shown promising results on automatic fruit 

detection and segmentation. However, these networks suffer problems of false positives and 

missing fruits, while these hard examples often exist in fruit images collected in greenhouses due 

to leaf occlusion and poor lighting conditions. This thesis proposes to augment Faster R-CNN 

and Mask R-CNN with an online hard example mining (OHEM) algorithm, resulting in 

considerably improved detection and segmentation results on our dataset. The Mask R-CNN 

with OHEM jointly detects and segments tomatoes and demonstrates the best performance with 

an F1-score of 0.957 for detection and a dice sore of 0.816 for segmentation. Applications of the 

proposed networks include tomato counting and growth monitoring, suggesting the promise of 

their future deployment in greenhouses. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background  

Fruit harvesting has been playing an increasingly important role and becoming a very 

critical process in the overall fruit economics. For the fruit to bear quality fruit for a longer life-

cycle, the fruit need to be harvested at the right time, i.e. right maturity.  By not harvesting at the 

right stage, the total yield per plant or farm can be greatly reduced, affecting both economy and 

daily supply negatively. Successful fruit harvesting requires accurate monitor of the growth of 

the fruit. Being able to precisely monitor fruit growth is highly desired in the fruit industry 

because it is of tremendous importance in identifying abnormal growth, estimating the overall 

yield and arranging the final fruit harvesting. However, conventional approaches by sourcing 

skilled farm labors in the agriculture industry is one of the most cost-demanding factors due to 

the rising values of supplies [1]. Therefore, to meet the growing demands of an ever-growing 

world population and cater to fresh markets, intelligent approaches that enables accurate 

localization of the fruit and automatic surveillance of fruit growth have been a long-standing 

request in the fruit industry.  

Toward this goal, one promising alternative is automatic fruit harvesting, central to which 

is a fruit detection system that allows to perform yield estimation and mapping by providing an 

accurate localization of individual fruit in the field. Therefore, the development of an accurate 

fruit detection system is key to successful automatic harvesting. In general, the main objectives 

of fruit detection include two components, including 1) to distinguish the fruits from the 
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background; 2) to localize the fruits. Upon accurate fruit detection results, segmentation can then 

be carried out to classify each pixel into different classes. 

Previous works took advantages of hand-engineered features to represent the visual cues 

for discriminating the fruit from the background [2]. Despite that these approaches are well 

suited for the dataset they are designed for, feature encoding is usually unique to a specific fruit 

and the conditions under which the data were captured [3]. Therefore, changing the fruit for 

detection from one to another usually requires repeated hand-engineered encoding of the features 

of the new fruit, representing a major limitation for these approaches.   

Deep Neural Network (DNNs) offers a perfect solution to the above mentioned problem 

by providing automatic feature extraction for object detection and image semantic segmentation 

which avoids the need of hand engineered features. One of the state-of-the-art deep learning 

detectors, Faster R-CNN [1], has been recently employed by many fruit detection systems to 

improve the detection performance. For example, Sa et al. [4] proposed a fruit detection system, 

which applied Faster R-CNN framework. Their method has achieved detection of six different 

fruits, and improved accuracy compared to prior work, which in principle infers accurate 

detection of any fruit species.   

Being able to monitor the growth of fruit using DNN based methods will eventually help 

to achieve two major goals both of which are very difficult and inefficient to accomplish using 

conventional labor-based approaches. The first goal lies in achieving maximum growth rate 

while lowering necessary energy consumption, an outstanding challenge in agriculture industry. 

Given that greenhouse offers a well-controlled environment for fruits, performing fruit detection 

in a greenhouse provides us unique opportunity to monitor the growth rate as a function of 

environment conditions, such as lighting intensity and temperature. This can be studied by 
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adjusting the lighting conditions and controlling the temperature while monitoring the growth 

rate of the fruit. The other goal is associated with quality control and fruit production. By 

monitoring the growth of every individual fruit, one can easily check fruit health and find out 

abnormal ones, which leads to better estimation of fruit quality and the final production.  

The reason for choosing tomato as the detection fruit in my thesis is the following: 

Tomato is one of the most consuming fruits in the market and is easily available and cheap for 

analysis purpose. Tomato is also a major horticulture accommodated in greenhouse, offering a 

suitable environment for fruit detection task [5]. It has been shown that its demand sometimes 

increases at very high level in market due to low production or damage due to disease attacks [6]. 

Therefore, there is an essential need of an advance system for tomato detection.  

1.2 Motivation 

 Accurate counting of tomatoes and monitoring of their growth rate allow farmers to track 

the tomatoes over time, plan maintenance and harvesting activities, and further predict the yield, 

a crucial step of the overall agricultural industry. To realize precise tomato yield estimation, fully 

automated approaches utilizing object detection techniques have been confirmed suitable and 

employed in various detection tasks to tackle such problems.  

 To monitor the growth rate of tomatoes, fruit size can be measured by applying 

segmentation for each instance. Segmentation approaches provide the number of pixels within 

the segmented mask for each instance. One is, therefore, able to measure the relative size of the 

tomatoes in the image, offering tomato size, i.e., maturity, for better arrangement of following 

activities such as harvesting.  

Beyond the demanding need for automatic detection techniques for agricultural activities, 

the object detection community has been driven by the search for more accurate detection 
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method.  One of the challenges for object detection approaches (e.g., Faster R-CNN) is that the 

datasets contain a large number of easy examples and a small number of hard examples. This 

challenge motivates a few learning techniques that deal with hard examples. For instance, 

Shrivastava et al. [7] presented an effective Online Hard Example Mining (OHEM) algorithm for 

training region-based CNN detectors. Experimentally, OHEM combing with Fast R-CNN leads 

to state-of-the-art detection results by eliminating many heuristics and hyper-parameters. 

Therefore, it is intuitive to propose a framework to augment Faster R-CNN with OHEM for 

tomato detection. 

On the other hand, in order to achieve more accurate detection results, many approaches 

perform joint object detection and image segmentation. One of these approaches, Mask R-CNN 

[8], outperforms the base variants of all previous state-of-the-art models on object detection 

results. Therefore, it is also reasonable to propose a framework to augment the Mask R-CNN 

with OHEM for tomato detection and segmentation. 

 

1.3 Contributions  

In my thesis work, I firstly apply the widely-adopted Faster R-CNN on several fruit 

datasets including apple, mango, and tomato. Secondly, as a new method developed in this thesis, 

Faster R-CNN is combined with Online Hard Example Mining (OHEM) algorithm to tackle the 

hard examples on feature level. Thirdly, I also apply the commonly-used Mask R-CNN only on 

tomato datasets. At last, I establish a new approach in the present thesis where Mask R-CNN is 

augmented with OHEM. Moreover, cross validation is performed to evaluate all approaches. A 

T-test is applied to compare different approaches. The performance of detection and 

segmentation improves after augmenting Faster R-CNN with OHEM and augmenting Mask R-
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CNN with OHEM. However, the T-test results suggest that the improvement is not significant. 

Mask R-CNN significantly outperforms Faster R-CNN in Recall value and F1-score based on the 

T-test. The main contributions are: 

 Deploying and adapting the state-of-the-art object detection frameworks, Faster R-

CNN and Mask R-CNN, to detect tomatoes and measure their growth rates, 

 Combing Faster R-CNN with OHEM to tackle with hard examples on the feature 

level, 

 Augmenting Mask R-CNN with OHEM for joint object detection and image 

segmentation. 

The remainder of the thesis is organized as follows. Some related works (e.g., R-CNN, 

Image Segmentation) are introduced in Chapter 2, followed by a detailed description of the 

Faster R-CNN with OHEM and Mask R-CNN with OHEM in Chapter 3. In Chapter 4, I present 

the evaluation metrics along with the experimental results on several fruit datasets. Furthermore, 

a comparison among different approaches will be given. K-fold cross validation is performed to 

evaluate the detection and segmentation performance as well. A T-test is performed to calculate 

the difference of results between Faster R-CNN and Faster R-CNN with OHEM, and the 

difference of results between Mask R-CNN and Mask R-CNN with OHEM, the difference of 

results between Faster R-CNN and Mask R-CNN, and the difference of results between Faster R-

CNN with OHEM and Mask R-CNN with OHEM, respectively. At last, a summary and future 

direction are addressed in Chapter 5. 
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CHAPTER 2 

RELATED WORK 

 To tackle with fruit detection problems, various algorithms that have been developed. 

This chapter provides a survey of the widely used methods, which are most relevant to fruit 

detection and segmentation and therefore adopted in my thesis work. This chapter is organized as 

follows: 1) object detection based on DNNs; 2) image segmentation; 3) fruit detection and 

segmentation. 

 

2.1 Object Detection Based On DNNs 

 Object detection determines location and scale of all the instances of objects in the image 

by outputting a bounding box around the detected object along with the corresponding class label 

and confidence score. There are several deep learning techniques for object detection task. I will 

give an overview of the deep learning approaches for object detection in the following sections.  

2.1.1 Region-based CNN (R-CNN) 

 The Region-based Convolutional Neural Network (R-CNN) [9] proposed by Girshick et 

al. is the first variant using deep Convolutional Neural Networks (CNNs) on bounding box 

object detection by generating candidate object regions. Uijlings et al. [10] proposed Selective 

Search for Object Recognition by combining an exhaustive search algorithm and segmentation. 

Selective Search has been widely used as a proposal method for object detection. The R-CNN 

uses Selective Search to generate the candidate object regions. Hosang et al. [11] provided a 

clear analysis of twelve proposal methods. Due to the development in deep CNNs like in [12, 
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13], the R-CNN utilizes the CNNs on each Region of Interest (RoI). In [14], He et al. extended 

the R-CNN by introducing a new network architecture called SPP-net. In SPP-net, the features in 

the feature maps are pooled into regions using Spatial Pyramid Pooling. Moreover, during 

inference, SPP-net performs much faster than R-CNN, along with higher accuracy on PASCAL 

VOC 2007. 

2.1.2 Fast R-CNN and Faster R-CNN 

 The other extension of R-CNN is the Fast R-CNN proposed by Girshick [15]. Intuitively, 

it is called Fast R-CNN because it runs faster speed and yields better accuracy compared to R-

CNN. A new pooling strategy called RoIPool is used to pool the RoIs on the feature maps. Faster 

R-CNN [1] is faster than Fast R-CNN because it involves introducing the RPN to generate the 

region proposals instead of using Selective Search.  

Faster R-CNN contains two modules. The first module Region Proposal Network (RPN), 

which is a deep fully convolutional network that proposes regions of interest. The second module 

is the Fast R-CNN detector [15], which is a detection network that utilizes the proposed regions. 

In a Region Proposal Network, the input is an image, and outputs is a set of object proposals, 

each with a classification score. This process is modeled with a fully convolutional network, 

which was proposed by Long et al [16]. Both RPN and Fast R-CNN object detection network 

share a common set of convolutional layers. As a result, the computation between RPN and Fast 

R-CNN detection network are sharing.  

 In the Faster R-CNN implementation [1], the network classifies and regresses bounding 

boxes with reference to anchor boxes of multiple scales and aspect ratios. Since this multi-scale 

design is based on anchors, it is easy to use the convolutional features that are computed on a 

single-scale image, as is done by the Fast R-CNN detector as well. 
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Lin et al. proposed a method , which is one of the further improvements based on Faster 

R-CNN. They introduced a new architecture called Feature Pyramid Network (FPN) for building 

semantic feature maps at different scales. The other improvement was proposed by Huang et al. 

[17]. They offered a guidance on selecting an object detection system to achieve the best trade-

off between speed and accuracy.  

2.1.3 You Only Look Once (YOLO)  

 YOLO [18] is an object detection approach, which models object detection as a 

regression problem to bounding boxes and corresponding class probabilities. This framework 

processes the images in real-time at 45 frames per second. Specifically, this approach resizes the 

input image to 448 × 448, then runs a single convolutional neural network on the images, and 

finally outputs the resulting detections by providing a threshold. This unified model for object 

detection is easy to construct and can be directly trained. YOLO achieves higher localization 

errors but is less likely to predict the false positives on background, compared to other state-of-

the-art object detection systems. 

2.1.4 Single Shot MultiBox Detector (SSD) 

 SSD [19] is a fast single-shot object detection approach. It achieves over 74% mAP 

(mean Average Precision) at 46 frames per second on standard datasets (e.g., PASCAL VOC). 

Firstly, the single shot means the tasks of object localization and classification are done in a 

single forward pass of the network. Secondly, the MultiBox is a technique for bounding box 

regression. Thirdly, the SSD architecture builds on the VGG16 architecture, but without the fully 

connected layers. SSD produces worse performance on smaller objects, as they may not appear 

across all feature maps.  
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Table 1. An overview of several object detection approaches. Note that the results are on 

PASCAL VOC 2007 test set. 

Approach Region Proposal 

Generation 

Feature 

Extraction 

mAP FPS Notation 

R-CNN Selective Search  Deep CNN 66.0% 0.02 Slow at test time 

Fast R-CNN Selective Search Deep CNN 70.0% 0.5 
Need external region proposal 

approach (e.g., SS) 

Faster R-

CNN 

Region Proposal 

Network 

Deep CNN 76.4% 7 Good balance between 

accuracy and speed 

YOLO Takes the whole 

image at once instead 

of region proposals 

Deep CNN 63.4% 45 

Fast 

SSD300 Eliminates proposal 

generation, with all 

computation in a 

single network 

Deep CNN 74.3% 46 Fastest, but performs worst 

for small objects 

 

 

Table 1 shows a comparison between several object detection approaches. More 

specifically, R-CNN, Fast R-CNN, and Faster R-CNN are region proposal-based approaches. R-

CNN and Fast R-CNN use Selective Search to generate the region proposals, while Faster R-

CNN uses the Region Proposal Network by sharing the convolutional layers with the detector. 

Furthermore, Faster R-CNN is the fastest approach at test time without any external region 
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proposal approaches for region proposal generation. Overall, SSD is the fastest approach, 

however, Faster R-CNN performs the best trade-off between accuracy and speed. 

 

2.2 Image Segmentation 

 Image semantic segmentation has been applied among various areas in computer vision 

and machine learning community. For example, techniques, like autonomous driving, indoor 

navigation, and virtual or augmented reality, all rely on image semantic segmentation 

mechanisms [20]. Given an image and objects, the evolution of object recognition in a coarse-to-

fine manner can be described as: image classification, object detection/localization, semantic 

segmentation, and finally instance segmentation. 

2.2.1 Semantic Segmentation 

 The fully-supervised methods like CNN for image classification task [21] leads to 

multiple networks for pixel-level labelling problems like semantic segmentation. The main 

advantage of these networks lies in learning feature representations for a specific problem in an 

end-to-end fashion.  

Firstly, the Fully Convolutional Network (FCN) [16] is one of the variants. The high 

level idea of FCN is to transform a classification-driven CNN to pixel-wise prediction by 

replacing fully-connected layers with convolutional layers, as well as introducing 

deconvolutional layers to upsample the feature maps. FCN shows how CNNs are trained in an 

end-to-end manner for semantic segmentation task, resulting in a pixel-wise prediction regardless 

the arbitrary sizes of inputs [20]. FCN can achieve significant accuracy on some standard 

benchmarks (e.g., PASCAL VOC dataset), and it also preserves the computational efficiency 

during inference phase.  
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Secondly, Ronneberger et al. [22] proposed a network, U-net, and training strategy that 

strongly utilize data augmentation for biomedical image segmentation. In particular, the 

architecture for both capturing context and enabling precise localization. As a result, the U-net 

architecture performs well on many biomedical segmentation applications. 

2.2.2 Instance Segmentation 

 Most approaches for instance segmentation are based on segment proposals [8] due to the 

development of R-CNN. For example, Hariharan et al. [23] introduced a novel architecture 

termed Simultaneous Detection and Segmentation (SDS), which is built based on R-CNN. This 

network aims at detecting all instances of a category and marking the pixels that belong to this 

category for each instance. Hariharan et al. [24] defined the hypercolumn at each pixel in an 

image as the vector of activations for all CNN units. These methods showed a significant 

improvement on the simultaneous detection and segmentation task. Dai et al. [25] proposed that 

utilizing the shape information is beneficial for object detection task by treating proposal 

segments like super-pixels as masks. Furthermore, they introduced a joint method to deal with 

objects and “stuff” (e.g., grass, sky, water). Pinheiro et al. [26] introduced a network called 

DeepMask, in which the network learns to propose segment candidates, then these segment 

candidates are classified by Fast R-CNN detector. In summary, the methods discussed above 

share a common feature: the segmentation is carried out before object detection. Similarly, Dai et 

al. [27] presented a Multi-Task Network Cascades that predicts segment proposals from 

bounding box proposals, and then classification is perform afterwards.  

 In order to combine segment proposal system and object detection system, Li et al. [28] 

proposed an end-to-end design called Fully Convolutional Instance-aware Semantic (FCIS) to 

detect and segment object instances simultaneously in a fully convolutional way. Since the object 
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classes, bounding boxes, and masks are addressed simultaneously, this solution can achieve high 

efficiency. However, it shows deficiency in segmenting overlapping instances [8]. 

 Another type of instance segmentation approach is to start with pixel-wise classification, 

then cut the pixels that belong to the same category/class into several instances. For example, [29] 

proposed a network called InstanceCut, which outputs both an instance-agnostic semantic 

segmentation and all instance-boundaries. Also, [30] introduced an end-to-end solution by 

combining watershed transform and deep learning to produce an energy map in which object 

instances are represented as energy basins. The Sequential Grouping Networks (SGN) proposed 

by Li et al. [31] contains a sequence of neural networks, each tackling with a sub-grouping 

segmentation problem. 

2.2.3 Mask R-CNN 

The Mask R-CNN method was proposed by He et al [8]. This method has an extra branch 

for predicting segmentation mask of objects based on the Faster R-CNN. The intuition of 

proposing Mask R-CNN is Mask R-CNN provides a general framework for object instance 

segmentation along with object detection. In other words, Mask R-CNN can detect any object of 

interest in an image, and can output a segmentation mask for each instance of each object of 

interest as well. According to [8], Mask R-CNN was also applied to several tasks other than 

object detection. For example, Mask R-CNN has been used to estimate human poses. In 

summary, the proposed Mask R-CNN method outperforms all current methods in the community 

in all three tasks of COCO Challenge: instance segmentation, object detection, and person 

keypoint detection [32]. Mask R-CNN is, therefore, the state-of-the-art detection method on 

PASCAL VOC, COCO, and ILSVRC. 
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2.3 Online Hard Example Mining (OHEM) 

 One of the challenges for object detection approaches (e.g., Faster R-CNN) is that the 

datasets contain a large number of easy examples and a small number of hard examples. This 

challenge motivates a few learning techniques that deal with hard examples. A common solution 

for this challenge is called Bootstrapping, or hard negative mining [7]. Hard negative mining has 

been widely applied in the object detection research domain.  

 There are several hard example selection approaches that select hard examples for 

training deep networks. For example, Simo-Serra et al. [33] introduced a method that 

independently selects hard positive and negative example via selecting a larger set of random 

examples according to their loss. Similarly, Wang et al. [34] proposed an approach that finds 

hard negative patches from a large set using triplet loss given a positive pair of patches. Focusing 

on CNN for image classification, Loshchilov et al. [35] proposed a selection method that 

investigates online selection of hard examples for mini-batch Stochastic Gradient Descent (SGD) 

methods where the selection is based on loss as well.  

 Instead of focusing on image classification, Shrivastava et al. [7] proposed the online 

hard example mining approach that focuses on online hard example selection strategy for region-

based object detectors (i.e., Fast R-CNN object detector). Specifically, the online hard example 

mining approach works as follows. Firstly, the convolutional feature map is computed using the 

CNN for an input image at SGD iteration t. Secondly, instead of using a sampled mini-batch [36], 

the RoI network will do a forward pass using the feature map and all the input RoIs. Note that 

the RoI network only includes the RoI pooling layer, two fully-connected layers, and the loss 

computation for each RoI. More specifically, those hard examples will be selected based on the 

loss, where the input RoIs are sorted by loss. Thus, a number of examples (i.e., hard examples) 
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will be selected, at which the current network is worst.  Consequently, most computation is 

shared between all RoIs through the convolutional feature maps in forward propagation process. 

 

2.4 Transfer Learning 

 In practice, training an entire CNN from scratch requires a sufficiently large dataset. In 

contrast, it is easy to take advantage of pretraining a CNN on a relatively large dataset (e.g., 

ImageNet, which contains 1.2 million images with 1000 categories) [37]. There are two 

scenarios in Transfer Learning [38]. 

 The first scenario uses CNN as fixed feature extractor. Specifically, given a CNN 

pretrained on ImageNet, we remove the last fully-connected layer, and then treat the rest as a 

fixed feature extractor, and only retrain the classifier. For example, if tackling with a binary 

classification problem (i.e., a new dataset with only 2 classes), we need to remove the classifier 

with 1000 category for ImageNet, but to retrain a binary classifier instead. 

 The second scenario aims to fine-tune the CNN. This strategy is to not only retrain the 

classifier for the new dataset, but also fine-tune the weights of the pretrained network by 

continuing the backpropagation.  

 

2.5 Fruit Detection and Segmentation 

DeepFruits [4] proposed by Sa et al. is a fruit detection system using deep CNNs. The 

system applied Faster R-CNN for the task of fruit detection by transfer learning. They proposed a 

multi-modal Faster R-CNN model to combine both the color (RGB) and Near-Infrared (NIR) 

information together. As a result, their approach achieves 0.838 F1-score for the detection of the 

sweet pepper dataset. Note that this dataset was collected by their team. There are 100 training 
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images and 22 test images. Furthermore, this model is retrained on other datasets for the 

detection of seven fruits. Besides, Bargoti et al. [3] adopted Faster R-CNN on the task of fruit 

detection in orchards, including mangoes, almonds, and apples. Their study leads to the best yet 

detection performance in the author’s line of prior work. 

For tomato detection and segmentation, Yamamoto et al. [39] presented an image-

processing method to detect tomato fruits in different growth stages, including mature, immature, 

and young fruits. Specifically, to start with, a pixel-based segmentation is performed to segment 

the pixels into different classes including fruits, leaves, stems, and backgrounds. Secondly, a 

blob-based segmentation is conducted to remove the misclassifications generated from the first 

step. Thirdly, they used K-means clustering [40] to detect each fruit in a fruit cluster.  In 

summary, the results of fruit detection showed that the developed method achieved accurate 

detection performance, while detection of young fruits is very difficult due to their small size and 

the similarity of their appearances with that of stems. 
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CHAPTER 3 

NETWORK ARCHITECTURES 

 Inspired by the Online Hard Example Mining algorithm for training Fast R-CNN object 

detector, I adopted the OHEM algorithm for both Faster R-CNN detector and Mask R-CNN 

architecture. They are named as Faster R-CNN with OHEM and Mask R-CNN with OHEM 

respectively. In this chapter, at the beginning I will introduce the details of Faster R-CNN with 

OHEM, which include the architecture of Faster R-CNN and Faster R-CNN with OHEM, and 

the training strategies for each approach as well. Then the details of Mask R-CNN with OHEM 

will be given. 

 

3.1 Faster R-CNN with OHEM 

3.1.1 Fast R-CNN  

A Fast R-CNN network [15] takes a single image as input and a set of object proposals. 

Firstly, the network feeds the whole input image with several convolutional layers and max 

pooling layers. As a result, a convolutional feature map is generated. Secondly, a fixed-length 

feature vector is extracted from the feature map by a region of interest (RoI) pooling layer, for 

each object proposal. Thirdly, each feature vector is fed into a sequence of fully connected layers, 

producing two sibling output layers: classification layer and bounding box regression layer. On 

one hand, the classification layer produces Softmax probability that estimates over all object 

classes and a “background” class. On the other hand, the bounding box regression layer outputs 
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four real-valued numbers for each object class, annotating refined bounding-box positions for 

one class. 

VGG-16 network, which was proposed by Simonyan et al. [41], is used as base network. 

It contains 13 shareable convolutional layers. Their major contribution lies in a networks of 

increasing depth using an architecture with a 3 by 3 convolution filters, which shows that a 

significant improvement through pushing the depth to 16 weight layers. 

 

Figure 1. Faster R-CNN architecture. The backbone network is VGG16 net [41]. The area 

annotated with red dashed box is the Region of Interest (RoI) network. 

 

3.1.2 Faster R-CNN 

 Since Faster R-CNN is the state-of-the-art framework for object detection and performs 

the best trade-off between accuracy and speed, I deployed Faster R-CNN framework for fruit 

detection task as a baseline. 

Figure 1 shows the architecture of Faster R-CNN. The network takes an image as input, 

the shared convolutional layers are used to extract convolutional features, resulting in a feature 

map. The RoIs are generated from the Region Proposal Network. The RoIs are projected onto the 

feature map. Then the RoI Pooling layer pools the RoIs into a fixed-size feature map, followed 

by two fully-connected layers. 
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Specifically, in order to propose region proposals, a small network is slid over the 

convolutional feature map output, which is generated by the last shared convolutional layer. The 

input of this small network is an n  n spatial window of the convolutional feature map. In my 

case, n = 3 is used as spatial window. Each sliding window is mapped to a feature with lower 

dimension (e.g., 512-d for VGG). Then this feature map is fed into two fully-connected layers. 

The fully-connected layers are shared over all spatial locations. 

 We need to predict multiple region proposals at each location. For each location, the 

number of maximum possible proposals is denoted as k. Since I need to donate the four 

coordinates of the bounding boxes and two classification scores, the regression layer has 4 k 

outputs (i.e., the coordinates of k bounding boxes), and the classification layer has 2k scores (i.e., 

estimated probability of object or not object for each proposal). An anchor is associated with a 

scale and aspect ratio, centering at each sliding window. In Ren’s work [11], they used three 

scales with box areas of 1282, 2562, and 5122 pixels, and three aspect ratios: 1:1, 1:2, and 2:1. 

Consequently, there are k = 9 anchors at each sliding position. In the experiments, the same 

scales and aspect ratio are used for anchors. 

Some proposals from RPN are highly overlapping with each other. In order to reduce 

these redundant and correlated regions, [7] used a standard non-maximum suppression (NMS) 

approach from [15]. Specifically, NMS selects the RoI with the highest loss iteratively given a 

list of RoIs and their corresponding losses, and then removes all RoIs with lower loss, in which 

having the high overlap with the selected region. 

3.1.3 Training 

Faster R-CNN [1] adopted a Four-step Alternating Training algorithm to learn shared 

features by optimization. Specifically, they first train the RPN. The RPN is initialized with a 
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model, pre-trained on ImageNet, thus is fine-tuned for the region proposal task in an end-to-end 

fashion. Secondly, they train the Fast R-CNN detection network using the region proposals that 

are generated by the RPN from the first step. This Fast R-CNN detection network is also 

initialized by the model, which was pre-trained on ImageNet. Now the two networks have not 

shared convolutional features yet. In the third step, the Fast R-CNN detector network is used to 

initialize RPN training, however, the shared convolutional layers are fixed and only fine-tune the 

layers that are identical to RPN. Consequently, both networks share convolutional layers at this 

point. In the fourth step, the shared convolutional layers remain fixed, then only fine-tune the 

layers that are unique to Fast R-CNN. As a result, the two networks share the same convolutional 

layers, producing a unified single network.  

I applied the Four-step Alternating Training strategy as mentioned above to train the 

Faster R-CNN. The architecture for backbone network is identical to VGG-16-net. The VGG-16 

network is composed of 13 convolutional layers followed by two fully-connected layers. The 

original Faster R-CNN was fine-tuned using the PASCAL VOC dataset, which was initialized by 

the pre-trained ImageNet dataset. I fine-tune the Faster R-CNN using our own dataset.  

3.1.4 Faster R-CNN with OHEM 

  In [7], the OHEM algorithm was proposed for training Fast R-CNN object detector. 

Inspired by the OHEM algorithm for training Fast R-CNN object detector, I adopted the OHEM 

algorithm for training Faster R-CNN detector.  

Figure 2 shows the architecture of the proposed Faster R-CNN with OHEM. On one hand, 

the Region Proposal Network remained the same as in Faster R-CNN [1]. On the other hand, 

both standard RoI network and Read only RoI network are applied. 
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More specifically, other than regular RoI network in Fast R-CNN, the other RoI network, 

which is called Read only RoI network, is introduced. Note that the standard RoI network 

allocates memory for both forward and backward passes. However, oppositely, the memory is 

allocated only for forward pass in the Read only RoI network.  Then the Read only  RoI network 

does a forward pass, computing loss for all input RoIs, given the convolutional feature map for 

each SGD iteration. Furthermore, a hard RoI sampling module is applied to select hard examples. 

Note that all RoIs from all images are annotated as R. The effective batch size for the Read only 

RoI network is |R|. However, for the standard RoI network, the batch size remains the same as in 

Fast R-CNN implementation. 

RoI Pool

Hard Example Selection

Conv 
Layers

RPN

VGG16

RoI

Feature map + RoI

7x7
feature map

Input image

Hard examples Rhard

Fully Connected
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(a)

(b)
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for each RoI
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RoI
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Figure 2. The architecture of Faster R-CNN with OHEM. The backbone network is VGG16 net. 

The area annotated with red dashed box is the standard RoI network, while the one with blue 

dashed box is the Read only RoI network. 
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I implemented the Faster R-CNN with OHEM framework that illustrated above using the 

Caffe [42] deep learning framework. For forward-backward passes, N = 1 and B = 128 are used. 

In other words, for each mini-batch, one image is first sampled from the dataset, and then B/N 

RoIs (i.e., 128 RoIs) are sampled from each image.  

 

3.2 Mask R-CNN with OHEM 

3.2.1 Mask R-CNN framework 

 

 

Figure 3. Mask R-CNN architecture. The backbone network is VGG16 net. The area annotated 

with red dashed box is the RoI network. There are two braches in the RoI network: one is for 

object detection, the other is for mask prediction. 

 

 Instance segmentation requires not only the precise detection of the objects, but also the 

segmentation of each instance. Therefore, it is a challenging task. More specifically, the goal of 

instance segmentation is to localize each object instance in the image, and simultaneously to 

classify each pixel into different categories. 
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 Since our goal is to automatically detect tomatoes in the greenhouse, while measure the 

growth rates of the tomatoes, the Mask R-CNN framework for instance segmentation becomes 

one of the solutions to tackle with the task.  

Mask R-CNN is an extension of Faster R-CNN framework. As discussed earlier, the 

outputs of Faster R-CNN for each candidate object are a class label and the bounding box. And 

Mask R-CNN adds a mask branch to the Faster R-CNN, which is the most distinct part from 

Faster R-CNN. Mask R-CNN uses the same two-stage procedure that is used in Faster R-CNN. 

Specifically, on one hand, the first training stage for Region Proposal Network in Mask R-CNN 

is identical to that in Faster R-CNN. On the other hand, in the second stage, Mask R-CNN 

predicts the classification label and bounding boxes, and also predicts a binary mask for each RoI. 

Figure 3 shows the Mask R-CNN framework for object detection and instance 

segmentation. Mask R-CNN extends Faster R-CNN framework by adding a mask branch to 

Faster R-CNN for predicting an object mask in parallel with the existing branch for bounding 

box recognition. Similar to Faster R-CNN framework, the network takes an image as input. The 

shared convolutional layers are used to extract convolutional features, resulting in a feature map. 

The RoIs are generated from the Region Proposal Network. The RoIs are projected onto the 

feature map. Then the RoIAlign layer pools the RoIs into a fixed-size feature map. Two fully-

connected layers are used for classification and bounding box regression. The mask branch 

consists a sequence of deconvolutional layer to upsample the feature map to a large scale. The 

details of RoIAlign layer and a sequence of deconvolutional layers will be given later. 

During training, a multi-task loss function is defined for each sampled RoI as follows: 
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Note that the classification loss Lcls and bounding box loss Lbox are defined the same as that in 

Faster R-CNN. More specifically, the classification loss is the log loss function. They use 

smooth-L1 loss on the position of top-left of the box, and the logarithm of the height and width 

for bounding box regression. For mask branch, assume that we have K classes, and the resolution 

of each binary mask is m × m, then the output of the mask branch is Km2-dimensional for each 

RoI. The mask loss is defined as the average binary cross-entropy loss. A Fully Convolutional 

Network (FCN) [16] is used to predict an m × m mask from each RoI, predicting a segmentation 

mask pixel-to-pixel. 

 In the original Mask R-CNN implementation [8], they extend two existing Faster R-CNN 

heads. One is ResNet C4 [43], the other is Feature Pyramid Network (FPN) [44]. For ResNet C4, 

features are extracted from the final convolutional layer of the 4-th stage in the original 

implementation of Faster R-CNN with ResNet. Therefore, it is called C4. For FPN, RoI features 

are extracted from various levels of the feature pyramid based on the scale in the implementation 

of Faster R-CNN with FPN backbone. 

 Specifically, the network architecture that is used is shown in Figure 3 for training Mask 

R-CNN instead of using the network architecture of Faster R-CNN with ResNet C4 and FPN in 

the original Mask R-CNN implementation. There are three key components in this Mask R-CNN: 

RoIAlign layer, A sequence of deconvolutional layers, and the end-to-end architecture. 

3.2.2 RoIAlign layer 

The first one is RoIAlign layer, which is identical to the one that is used in the original 

Mask R-CNN implementation. According to [8], this RoIAlign strategy plays an important and 

significant role in those segmentation tasks based on pixel level (e.g., image segmentation).  
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The RoIAlign layer, firstly introduced by [7], is to align the extracted features with the 

input. It tacks with my limitation that RoIPool layer owns. The RoIPool layer introduced in 

Faster R-CNN architecture is a standard pooling operation to pool the feature map into a smaller 

feature map (e.g., 7 × 7) from each Region of Interest. The purpose of replacing RoIAlign with 

RoIPool is to get rid of any quantization of the RoI boundaries or bins. 

RoIAlign layer removes the harsh quantization RoI Pooling, properly aligning the 

extracted feature with the input. More specifically, RoIPool contains two steps of coordinates 

quantization: one is from the original input image into feature map (i.e., generated from the last 

convolutional layer), the other is from feature map into RoI feature. The RoIPool layer works by 

dividing the Region of Interest into a regular grid, and then performing max-pooling on the 

feature map in each grid cell. These quantization results in a huge loss of location precision. 

However, RoIAlign removes these two quantization, and manipulates coordinates on continuous 

domain, which increase the location accuracy significantly. As shown in Figure 4, instead of 

using the rounding operation, the RoI is divided into 2  2 sub-windows/bins. There are four 

sampling points in each bin. RoIAlign layer applies bilinear interpolation [45] to calculate the 

interpolated values of the input features at four regularly sampled locations in each RoI bin, then 

aggregates the result using max operation.  
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Figure 4. The details of RoIAlign layer (image source: Kaiming He) 

 

3.2.3 Upsampling layers 

The second key component is a sequence of deconvolutional layers. In the original Mask 

R-CNN implementation, the object segmentation mask size is fixed (e.g., 14 × 14 or 28 × 28). 

However, three deconvolutional layers are used to obtain segmentation mask with higher 

resolution. 

Specifically, a 7 × 7 fixed size feature map is generated by the RoIAlign layer, then three 

deconvolutional layers are applied subsequently. Given an input feature map, annotated as Si, the 

deconvolutional layer operation acts as the opposite way as convolutional layer operation, 

resulting in a larger feature map, annotated as So. And the relationship between  Si and So.  is 

defined in the following equation: 

                                                                (2) 
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where s is the stride step, d is padding, Sf is kernel size or filter size. These parameters for the 

three deconvolutional layers are shown in Table 2: 

 

Table 2. The parameters for each deconvolutional layer in Mask R-CNN. 

Deconvolutional 

layers 
Stride s Padding d Kernel size  Input feature map  Output feature map  

Deconv 1 4 1 8 7 × 7 30 × 30 

Deconv 2 4 1 8 30 × 30 122 × 122 

Deconv 3 2 1 4 122 × 122 244 × 244 

 

 

For instance, the output feature map given by the Deconv 1 layer is calculated as follows: So = 4 

× (7 - 1) + 8 – 2 × 1 = 30, which means the output feature map size is 30 × 30. Similarly, the 

output feature map given by the Deconv 3 layer is computed as follows: So = 2 × (122 -1) + 4 – 2 

× 1 = 244, resulting in a 244 × 244 output feature map. In summary, three deconvolutional layers 

are used to up-sample the feature map to the size of 244 × 244. More details are shown in Figure 

5. 

3.2.4 End-to-end architecture 

 Figure 3 show the architecture of this end-to-end network. The network consists of two 

branches, one is detection branch for object detection, the other is a mask branch for instance 

segmentation. Note that the architecture for object detection branch is identical to the one in 

Faster R-CNN. Compare to original Mask R-CNN implementation, VGG16 network instead of 

ResNet C4 or FPN backbone is used to extract the features given an input image. As in Faster R-
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CNN, the RPN is used to generate Region of Interests (RoIs) or candidate bounding boxes by 

sharing the VGG16 convolutional backbone. On one hand, for each RoI, the image feature map 

from the last convolutional layer of VGG16 (i.e., conv5_3) is pooled into a 7 × 7 feature map by 

the RoIAlign layer. On the other hand, the mask branch up-samples the 7 × 7 feature map to 244 

× 244 feature map, which has higher resolution. Furthermore, a Softmax layer is used to assign 

each pixel in the output feature map to its corresponding class. Finally, this network is trained 

end-to-end.  

 

 

Figure 5. A sequence of deconvolutional layers for up-sampling the feature map in Mask R-CNN. 
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3.2.5 Network architecture of Mask R-CNN with OHEM 

  

 

Figure 6. The architecture of Mask R-CNN with OHEM. The backbone network is VGG16 net. 

The area annotated with red dashed box is the standard RoI network. The one with blue dashed 

box is the Read only RoI network. 

 

 Specifically, I adopted the design of the OHEM module in Shrivastava et al’s work [7] 

for Mask R-CNN. In the Mask R-CNN with OHEM architecture, there are two RoI networks, 

one is the standard RoI network in Faster R-CNN, the other is called the Read only RoI network. 

The details are given below. In each SGD iteration, the RPN generates RoIs given an image, and 

the convolutional network generates a convolutional feature map as shown in Figure 6. The Read 

only RoI network, which includes the Hard RoI module, computes the loss over all input RoIs 

(i.e., |R|). Then the RoIs will be sorted according to the loss. Therefore, the hard examples (i.e., 

the ones with higher loss) are selected as input to the standard RoI network. The forward pass as 

well as backward pass are performed on this standard RoI network only for those hard examples 
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(i.e., |Rhard|). Note that the effective batch size for the Read only RoI network is the number of 

the hard examples selected |Rhard|, and the standard RoI network adopts the mini-batch strategy as 

in Faster R-CNN.  

3.2.6 Implementation of Mask R-CNN with OHEM 

 Since I have applied the OHEM on Faster R-CNN, I observe that the OHEM helps to 

improve the detection results, especially in increasing the Recall value. Therefore, it’s intuitive 

and straightforward to come up with the idea that we can combine OHEM with Mask R-CNN as 

well. On one hand, we assume that the hard example mining strategy at feature level can improve 

the detection performance. On the other hand, by adding the mask branch to the object detector 

can improve the detection result as well because the predicted mask can provide valuable hints 

on some features like shape information. 

 As mentioned earlier, the Four-step training strategy is adopted for training the Fast R-

CNN. However, the end-to-end training strategy is used for training the Mask R-CNN. 

Therefore, I trained the Mask R-CNN with OHEM using the end-to-end training scheme, which 

is identical to the training strategy of Mask R-CNN.  
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CHAPTER 4 

EXPERIMENTS 

In this Chapter, I qualitatively and quantitatively evaluate each network as follows: (1) 

the results of Faster R-CNN for different types of fruits; (2) the results of Faster R-CNN with 

OHEM; (3) the results of Mask R-CNN and Mask R-CNN with OHEM for tomato dataset only; 

(4) a comparison of the performance for the approaches mentioned above. At the end, the 

applications of tomato detection and segmentation will be addressed. 

 

4.1 Datasets 

4.1.1 Apple and Mango dataset 

Table 3 shows the number of training images and test images. Note that the Apple and 

Mango datasets are obtained from [19]. One can easily observe that the number of images is 

relatively small because of the limited image annotation datasets from [20]. In order to compare 

different approaches in a fair fashion, we used the same training and testing images for all 

proposed approaches, and the experimental results are shown in the Chapter 4. 

 

 

Table 3. The number of images used for both training and testing for different fruits. 

Name of Fruits Training(# of images) Test (# of images) Total (# of images) 

Apple 51 10 61 

Mango 113 23 136 
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4.1.2 Tomato dataset 

 Table 4 shows the number of training images and test images for our tomato dataset. For 

tomato detection and segmentation, we obtained all the images from two security cameras. Both 

cameras are placed by the side of two tomato plants. Firstly, we tried to put the cameras right 

above the tomato plants to capture more tomato plants in a single image, but it turned out that we 

can obtain better observations of tomatoes, which is more beneficial for our tomato detection 

task. The cameras have both day and night mode, however, we did not collect those images at 

night. In other words, the images in our tomato set used in all experiments are color (RGB) 

images. Specifically, we collected four images per day at 9:00 am, 11:00 am, 2:00 pm, and 5:00 

pm respectively. Moreover, the collection period started from middle December to the end of 

January. The purpose to collect images from different time points in a single date is to monitor 

the tomatoes under different light conditions. For example, the light conditions at 11:00 am and 

2:00 pm are generally much stronger than that at 9:00 am and 5:00 pm.  

 Note that there are several datasets for tomato detection and segmentation. The difference 

among those datasets are given below. On one hand, two datasets are used for tomato detection, 

the images in each dataset are obtained from Camera 1 and Camera 2 respectively. On the other 

hand, for tomato segmentation, I have generated the mask as groundtruth for tomatoes from the 

first camera, only since it is significantly time-consuming to generate the groundtruth mask for 

any kind of supervised segmentation task. The first dataset for tomato segmentation contains 128 

images in total from the first camera, the size of these images is 1280 × 720. The second dataset 

for tomato segmentation contains the images that are cropped into size of 900 × 500 from the 

images in the first dataset. The purpose doing this is to focus much more on the tomato plants. 
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Table 4. The number of images used for both training and testing for tomato. 

Name of 

Fruits 

Task Image Size Training (# of 

images) 

Test (# of 

images) 

Total (# of 

images) 

Tomato 

(Camera 1) 

Detection 1280 × 720 112 28 140 

Tomato 

(Camera 2) 

Detection 1280 × 720 102 26 128 

Tomato 

(Camera 1 + 

Camera 2) 

Detection 1280 × 720 214 54 268 

Tomato 

(Camera 1) 

Detection + 

Segmentation 

1280 × 720 100 28 128 

Tomato 

(Camera 1) 

Detection + 

Segmentation 

900 × 500 100 28 128 

 

   

 

 

 

 

 

 

 

 

 

Figure 7. Four images at different time slots on the same day from Camera 1 (i.e., 01/04/2018). 
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Figure 8. Four images at different time slots on the same day from Camera 2 (i.e., 01/04/2018). 

 

Figure 7 and 8 show a comparison of images in different time slots within a single day 

from Camera 1 and Camera 2 respectively. Furthermore, for ground truth labelling, we used the 

same strategy for all fruit datasets including tomato dataset. A Matlab script is used for drawing 

the bounding box for each object of interest. Note that we labeled all tomatoes as ground truth, 

even though they appear tiny in the image. 

 

4.2 Evaluation Metrics 

 In this section, evaluation metrics for both object detection and instance segmentation are 

given as follow. Note that the evaluation metrics including Precision, Recall, and F1-score are 

used to measure the performance of Faster R-CNN and Faster R-CNN with OHEM. However, 
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other than these three metrics for object detection, Dice Score is used to evaluate the 

segmentation performance of Mask R-CNN and Mask R-CNN with OHEM. 

4.2.1 Evaluation measures for object detection 

In my work, I applied precision, recall, and along with the corresponding F1 score as 

evaluation metric to evaluate the performance of each approach for fruit detection. More 

specifically, an object is considered as detected when the Intersection of Union (IoU) between 

the predicted bounding boxes and ground truth bounding boxes is greater than a certain threshold 

(e.g., 0.7). Note that the threshold affects the performance evaluations Although the threshold 

affects the performance evaluations. Theoretically, the smaller the threshold is, the higher the F1 

score will be). The Precision, Recall, and F1 score are computed as following given the IoU 

threshold:  

Precision=                (3) 

                      (4) 

      (5) 

where Tp: the number of true positives (correct detections), Fp : the number of false positives 

(false detection), Fn: the number of false negatives (miss) and Tn is the number of true negatives 

(correct rejection). 

4.2.2 Evaluation measures for instance segmentation 

 I adopted one of the evaluation measures called Dice Score [46] of binary segmentations:  

Dice =        (6) 
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where Pgt is ground truth mask, and Ppd is the predicted result or algorithmic result. This measure 

evaluates the degree of overlapping between predicted mask and ground truth mask. 

4.3 Experimental Results    

4.3.1 Experimental results on Apple and Mango Dataset 

 

 

Figure 9. Test images from Apple dataset and detection results using Faster R-CNN. 

 

Figure 9 shows two test images from Apple dataset on Faster R-CNN without any hard 

example mining strategies. Note that the red rectangle box denotes the object that is predicted to 

be detected, along with the corresponding confidence score. For example, for the test image on 

the left, all detected bounding boxes contain the object of interest (i.e., apple). Therefore, the 

number of true positives is 6. Moreover, there is no false negative in this image. 
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(a) (b)

 

Figure 10. (a): Result on Faster R-CNN with hard example mining on image level; (b): Result on 

Faster R-CNN with OHEM algorithm. Note that the dashed regions in blue and yellow show two 

differences between these two detected results, respectively. 

 

Figure 10 shows a comparison of results between the network trained on Faster R-CNN 

with hard example mining and Faster R-CNN with OHEM algorithm. Note that the approach of 

Faster R-CNN with hard example mining means after inference, the images with hard examples 

(i.e., false positives and false negatives) are selected manually, then these selected images are 

used to retrain the network. 

We can observe that the region annotated as blue shows the differences between these 

two approaches.  For the image on the left, the network is not able to detect most of the apples 

within this region, while for the image on the right, the network can detect three apples out of 

four in this region. Similarly, within the region annotated as yellow, none of the five apples are 

detected in the image on the left, while three apples out of five are detected in the image on the 
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right. To conclude, the Faster R-CNN with OHEM approach performs better on this single test 

image. The quantitative results will be shown later. 

(a) (b)

 

Figure 11. (a): Result on Faster R-CNN; (b): Result on Faster R-CNN with OHEM. Note that the 

dashed region in blue shows the difference between these two detected results. 

 

Figure 11 shows a comparison of results between the network trained on Faster R-CNN 

and Faster R-CNN with OHEM algorithm. Observer that in (a), the predicted bounding box on 

the bottom left is a false positive example, which is a false detection of mango.  

 

Table 5: Performance evaluation of different approaches on Apple dataset. 

Approach Precision Recall F1-score 

Faster R-CNN 0.750 (0.14) 0.966 (0.125) 0.844 (0.119) 

Faster R-CNN (Hard) 0.803 (0.123) 0.929 (0.076) 0.861 (0.113) 

Faster R-CNN with OHEM 0.870 (0.087) 0.959 (0.081) 0.912 (0.081) 
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Table 6. Performance evaluation of different approaches on Mango dataset. 

Approach Precision Recall F1-score 

Faster R-CNN 0.783 (0.128) 0.864 (0.082) 0.822 (0.104) 

Faster R-CNN (Hard) 0.791 (0.118) 0.872 (0.010) 0.837 (0.079) 

Faster R-CNN with OHEM 0.809 (0.073) 0.884 (0.093) 0.845 (0.098) 

 

 

Table 5 and 6 show the quantitative results for Faster R-CNN, Faster R-CNN (Hard), and 

Faster R-CNN with OHEM. Note that the Faster R-CNN (Hard) means the approach that 

manually selects the images with hard example (false positives and false negatives), then retrain 

the network using these hard examples images only. Also note that all evaluation metrics 

including Precision, Recall, and F1 score are computed based on the IoU threshold at 0.7.  

Here are some observations: as shown on this table, applying the hard example mining on 

image level, in other words, by heuristically choosing images that contain hard examples to train 

the network again can increase the Precision value and decrease the Recall value, ending up with 

slight increase of F1 score for this Apple dataset. Furthermore, instead of selecting hard 

examples on image level, adopting online hard example mining algorithm for training Faster R-

CNN detector increases the Precision value by 10% compared to solely training Faster R-CNN 

for the same dataset. However, the Recall value for Faster R-CNN with OHEM approach slightly 

drops to 0.959. Nevertheless, Faster R-CNN with OHEM outperforms other two methods on F1 

score. 
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4.3.2 Experimental results on Tomato Dataset 

(a)

(b)

 

Figure 12. (a): Detection result on Faster R-CNN; (b) Detection result on Faster R-CNN with 

OHEM. Note that the yellow and green arrows indicate two differences between these two 

detected results. The highlighted tomatoes are not detected in (a). 

 

 

Figure 12 shows the detection result of Faster R-CNN and Faster R-CNN with OHEM 

respectively on our tomato dataset (from Camera 1). We can observe that Faster R-CNN with 

OHEM can detect some instances that are not detected by Faster R-CNN framework. The details 

are highlighted as yellow and green, respectively. 

I applied both Faster R-CNN and Faster R-CNN with OHEM on our tomato dataset. 

Hereafter, I call the dataset that contains images collected from Camera 1, the dataset that 

contains images from Camera 2, and the dataset contains the combination of images from both 
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Camera 1 and Camera 2. In this section, I will show the experimental results considering Camera 

1 and Camera 2 separately, and the combination set as well. 

 

Table 7. Test results on different approaches (training images are from Camera 1 only, 28 test 

images) 

Approach Precision Recall F1-score 

Faster R-CNN 0.956 (0.086) 0.715 (0.138) 0.818 (0.133) 

Faster R-CNN 
with OHEM 

0.923 (0.098) 0.784 (0.127) 0.848 (0.121) 

 

Table 8. Test results on different approaches (training images are from Camera 2 only, 26 test 

images) 

Approach Precision Recall F1-score 

Faster R-CNN 0.968 (0.044) 0.878 (0.084) 0.914 (0.073) 

Faster R-CNN 
with OHEM 

0.930 (0.067) 0.916 (0.098) 0.919 (0.082) 

 

Table 9. Test results on different approaches (training images are from two cameras, 54 test 

images) 

Approach Precision Recall F1-score 

Faster R-CNN 0.942 (0.086) 0.847 (0.135) 0.876 (0.112) 

Faster R-CNN 
with OHEM 

0.915 (0.078) 0.879 (0.114) 0.890 (0.105) 
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Table 7 shows the experimental results of Faster R-CNN and Faster R-CNN with OHEM 

for the dataset Camera 1. Table 8 shows the experimental results of Faster R-CNN and Faster R-

CNN with OHEM for the dataset Camera 2. Table 9 shows the experimental results of Faster R-

CNN and Faster R-CNN with OHEM for the combination dataset.  

In summary, when training with dataset Camera 1 only using Faster R-CNN with OHEM, 

the Recall value increases by 7%, and F1-score increases by 3%, compared to Faster R-CNN. On 

the other hand, when training with dataset Camera 2 only, the Recall value increases by 4%, 

along with a slight increase in F1-score. To conclude, augmenting Faster R-CNN framework 

with OHEM enables the decrease of Precision value and the increase of Recall and F1-score. 

4.3.3 Experimental results on Mask R-CNN and Mask R-CNN with OHEM 

4.3.3.1 Data preparation and ground truth generation 

The input of Mask R-CNN for tomato segmentation requires both the bounding box 

annotation and the ground truth for each instance in a single image. Similar to tomato detection, 

dataset is the same as the one used in tomato detection, however, I am only using the images 

from Camera 1. In total, there are 100 training images, and 28 images for testing. 

 For ground truth mask generation, since the network requires one mask image for each 

instance, it’s time-consuming and requires a lot of human labor. Here I list two ways generating 

the ground truth mask. One is utilizing an application called DeepSegments 

(https://github.com/andrewcking/deep-segments). DeepSegments is a tool for generating ground-

truth segmentations for use in deep learning segmentation models. It provides a simple method 

for researchers to quickly segment their datasets. Users can choose from two different 

segmentation methods, SLIC or graph cuts. The program will make label suggestions by 

propagating user-given labels to unlabeled portions. Label suggestions can be given by an 
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unsupervised k-means algorithm or a user-supplied pre-trained model. The other tool that is used 

is an Image Processing tool in Matlab called Image Segmenter. Specifically, by clicking the 

Draw Freehand function, we can easily draw a mask for the tomatoes and save it into a binary 

image.  

 However, since the ground truth generated by DeepSegments applies either the SLIC or 

graph cuts method, the results are not accurate enough, especially when the boundaries of the 

tomatoes share the similar color intensity with the leaves near by the tomatoes. That is one of the 

drawbacks of utilizing SLIC. Therefore, I chose the Image Segmenter tool in Matlab as a ground  

truth generation method. Note that I also need to generate the ground truth mask for test set in  

order to do experimental evaluation. 

4.3.3.2 Training and inference of Mask R-CNN  

More specifically, I trained the network end to end using Adam [47] optimizer with 0.9 

momentum, 0.999 momentum2, and 10 -8 delta. Adam is a gradient-based optimization method 

like SGD [48]. The network was trained on a Titan X GPU with 12 GB for 20k iterations. The 

learning rate is fixed to 0.001. Similar to He et al.’s work, 15 anchors are used in the RPN 

including 5 scales and 3 aspect ratios. To compute the multi-task loss, which is mentioned 

earlier, the top 2000 RoIs are chosen from the RPN. Note that an RoI will be considered as 

positive when the Intersection of Union (IoU) between the groundtruth box and the proposed RoI 

is larger or equal to 0.5. And an RoI is considered as negative otherwise. I chose the mini-batch 

size as 40. Note that 40 is the maximum value due to the memory limitation on the GPU. 

On the other hand, in testing phase, I choose the top 1000 RoIs which are generated by 

the RPN, and the object detector is performed on these RoIs, followed by a NMS. I set a 

classification threshold to be 0.8 so that the predicted bounding boxes are selected from the 
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outputs of the detection branch when the classification score is larger or equal to 0.8. Then the 

mask branch takes these detected objects as inputs to generate binary mask for each instance.  

4.3.3.3 Training and inference of Mask R-CNN with OHEM 

Similar to the training on our Mask R-CNN, I trained the Mask R-CNN with OHEM in 

an end-to-end manner using Adam optimizer in Caffe with 0.9 momentum, 0.999 momentum2, 

and 10 -8 delta. The same setting is used as in training Mask R-CNN: the network was trained on 

a Titan X GPU with 12 GB, but for 25k iterations instead. Note that I choose 25 as mini-batch 

size since 25 is the maximum value available due to the memory limitation. The learning rate is 

fixed to 0.001. There are 15 anchors in the RPN including 5 scales and 3 aspect ratios. 

During testing, the classification threshold is set to be 0.8, which is identical to the one in 

Mask R-CNN. 

Table 10. An overview of the parameters of different approaches for training. 

Approach Optimizer Momentum Momentum2 Delta Batch-size Learning Rate 

Faster R-CNN Adam 0.9 0.999 10 -8 128 0.001 

Faster R-CNN 

with OHEM 
Adam 0.9 0.999 10 -8 128 0.001 

Mask R-CNN Adam 0.9 0.999 10 -8 40 0.001 

Mask R-CNN 

with OHEM 
Adam 0.9 0.999 10 -8 25 0.001 
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Table 10 shows an overview of the parameters used in different approaches during 

training phase. Note that the Adam optimizer is used in all approaches with the same momentum, 

momentum 2, and delta value. 

4.3.3.4 Experimental results 

In this section, a thorough discussion of the qualitative and quantitative results of tomato 

detection and segmentation will be given.  

Figure 13. A qualitative result of Mask R-CNN with OHEM. Note that the transparent blue 

pixels demonstrate the predicted mask, while the transparently white pixels show the ground 

truth mask. 

Figure 13 shows a qualitative result of Mask R-CNN with OHEM. This network predicts 

the locations of the tomato and the segmentation masks simultaneously. Specifically, the yellow 

bounding boxes illustrates the locations of the tomatoes, the transparent blue pixels demonstrate 

the predicted mask for each instance within the corresponding bounding box, and the 

transparently white pixels show the ground truth mask for each instance, which is annotated by 
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ourselves. Furthermore, the predicted number of bounding boxes (i.e., number of tomatoes) are 

shown on the top-right corner of the images. 

Table 11. A comparison between different approaches on tomato detection and segmentation. 

Network Precision Recall F1-score Dice Score 

Faster R-CNN 0.936 (0.085) 0.805 (0.121) 0.859 (0.104) -- 

Faster R-CNN 
with OHEM 

0.934 (0.076) 0.863 (0.116) 0.892 (0.097) -- 

Mask R-CNN 0.991 (0.032) 0.917 (0.113) 0.948 (0.093) 0.806 (0.020) 

Mask R-CNN 
with OHEM 

0.986 (0.037) 0.935 (0.095) 0.957 (0.079) 0.816 (0.016) 

Table 11 shows a comparison between different approaches after correction for ground 

truth mask on both training and test sets. The ground truth masks on both training and test sets 

are not accurate enough since I had included the parts which are occluded by leaves when I 

generated the ground truth. Therefore, I decided to correct those instances on both training and 

test sets. As shown in the table, after correction, the Precision values for Faster R-CNN, Faster 

R-CNN with OHEM, and Mask R-CNN drop slightly, while Recall values for all approaches 

increase. Overall, the F1-score for all approaches increases, compared to the results before 

correction. Furthermore, the dice score for both Mask R-CNN and Mask R-CNN with OHEM 

increases as well. 
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Figure 14. Experimental results on all approaches. 

Figure 14 demonstrates a bar chart, showing the experimental results on different 

approaches. Note that since Faster R-CNN and Faster R-CNN with OHEM can only handle with 

object detection task, there is no Dice Score evaluation for these two methods. The exact value 

for each performance metric is shown on the top of each bar, along with an error bar showing the 

standard deviation. 

In order to better evaluate the performance, the cross validation strategy is performed on 

all approaches. In k-fold cross validation, the original sample is randomly partitioned into k 

equal-sized subsamples. A single subsample is used as the validation data for testing the model, 

and the remaining k-1 subsamples are used as training data. Then this procedure is repeated k 

times, where each subsample is used as validation data only once. Finally, the calculation is 

performed by averaging over k results. In particular, 3-fold cross validation is applied in the 

experiments. 
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Table 12. A comparison between different approaches on cross validation results. 

Network Precision Recall F1-score Dice Score 

Faster R-CNN 0.963 (0.056) 0.815 (0.123) 0.862 (0.087) -- 

Faster R-CNN 
with OHEM 

0.952 (0.064) 0.817 (0.115) 0.875 (0.081) -- 

Mask R-CNN 0.952 (0.099) 0.942 (0.089) 0.940 (0.074) 0.787 (0.048) 

Mask R-CNN 
with OHEM 

0.950 (0.095) 0.947 (0.083) 0.941 (0.072) 0.789 (0.081) 

Table 12 shows a comparison between different approaches using cross validation. Note 

that after augmenting Faster R-CNN with OHEM, the Recall value increases slightly by 2%. And 

the Recall value increases by 5% after augmenting Mask R-CNN with OHEM. Moreover, Mask 

R-CNN framework outperforms the Faster R-CNN framework, especially in Recall and F1-score, 

which approves that assumption that made in earlier chapter: the mask branch enables more 

information for object detection performance. Finally, this table also shows the mask prediction 

results given by Mask R-CNN and Mask R-CNN with OHEM. However, the dice score only 

increases by 2% after augmenting Mask R-CNN with OHEM. 
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Figure 15. Cross validation results on all approaches. 

Figure 15 shows the cross validation results on all approaches. Again, the exact value for 

each performance metric is shown on the top of each bar, along with an error bar showing the 

standard deviation. 

Furthermore, a T-test is performed. A T-test is an analysis framework used to determine 

the difference between sample means. A T-test with two samples is commonly used with small 

sample sizes, testing the difference between the samples when the variances are unknown. In 

particular, a function ttest_ind in scipy library is used to calculate the T-test for the means of two 

independent samples. This is a test for the null hypothesis that two independent samples have 

identical average values. The T-test is performed to compare the difference between Faster R-

CNN and Faster R-CNN with OHEM, the difference between Mask R-CNN and Mask R-CNN 

with OHEM, the difference between Faster R-CNN and Mask R-CNN, and the difference 

between Faster R-CNN with OHEM and Mask R-CNN with OHEM, respectively. 
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Table 13. T-test result between Faster R-CNN and Faster R-CNN with OHEM. 

Evaluation Metric Result on fold1 Result on fold2 Result on fold3 Average 

t-value p-value t-value p-value t-value p-value t-value p-value 

Precision -1.74 0.087 -0.743 0.46 0.151 0.88 -0.777 0.476 

Recall 2.358 0.021 0.397 0.693 -0.415 0.68 0.78 0.465 

F1-score 1.626 0.109 0.172 0.864 -0.258 0.797 0.513 0.59 

Table 14. T-test result between Mask R-CNN and Mask R-CNN with OHEM. 

Evaluation Metric Result on fold1 Result on fold2 Result on fold3 Average 

t-value p-value t-value p-value t-value p-value t-value p-value 

Precision 0.178 0.859 0.104 0.917 0.132 0.9 0.138 0.892 

Recall -0.26 0.793 -0.791 0.432 0.001 0.999 -0.177 0.741 

F1-score -0.04 0.966 -0.325 0.746 0.043 0.966 -0.107 0.893 

Table 15. T-test result between Faster R-CNN and Mask R-CNN. 

Evaluation Metric Result on fold1 Result on fold2 Result on fold3 Average 

t-value p-value t-value p-value t-value p-value t-value p-value 

Precision 1.014 0.314 1.313 0.196 -1.443 0.154 0.295 0.221 

Recall -7.043 0.000 -6.296 0.000  -3.815 0.000 -5.718 0.000 

F1-score -5.527 0.000 -4.365 0.000 -3.267 0.002 -4.386 0.001 
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Table 16. T-test result between Faster R-CNN with OHEM and Mask R-CNN with OHEM. 

Evaluation Metric Result on fold1 Result on fold2 Result on fold3 Average 

t-value p-value t-value p-value t-value p-value t-value p-value 

Precision 0.180 0.859 0.998 0.322 -1.512 0.136 -0.111 0.439 

Recall -4.805 0.000 -7.192 0.000 -3.826 0.000 -5.274 0.000 

F1-score -3.059 0.004 -4.821 0.000 -3.440 0.001 -3.773 0.002 

Table 13-16 show the T-test result between Faster R-CNN and Faster R-CNN with 

OHEM, and the T-test result between Mask R-CNN with Mask R-CNN with OHEM, the T-test 

result between Faster R-CNN and Mask R-CNN, and the T-test result between Faster R-CNN 

with OHEM and Mask R-CNN with OHEM, respectively. 

The T-test measures whether the average value differs significantly across samples. If we 

observe a large p-value, for example larger than 0.05 or 0.1, then we cannot reject the null 

hypothesis of identical average scores. While if the p-value is smaller than the threshold, e.g. 1%, 

5% or 10%, then we reject the null hypothesis of equal averages. On one hand, we observe that 

in both Table 13 and Table 14, the p-values are larger than 0.1 for each evaluation metric, 

suggesting that the difference is not significant across two approaches (i.e., Faster R-CNN versus 

Faster R-CNN with OHEM, and Mask R-CNN versus Mask R-CNN with OHEM). In other 

words, augmenting the detection and segmentation framework with OHEM does not 

significantly improve the performance of detection and segmentation. On the other hand, we can 

observe that in both Table 15 and Table 16, the p-values for Precision are larger than 10%, while 

the p-values for both Recall and F1-score are smaller than 1%. We can conclude that Mask R-
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CNN does not significantly improve the Precision, compared to Faster R-CNN, while Mask R-

CNN significantly outperforms Faster R-CNN in both Recall and F1-score. 

4.4 Applications  

There are two applications of fruit detection and segmentation. One is tomato counting 

for yield estimation, the other is size measurement. 

4.4.1 Tomato counting for yield estimation 

On one hand, we can detect how many tomatoes are there in one single image. Since we 

are able to obtain the accurate information of individual tomato location, it is possible to count 

the number of tomatoes, thus, we can further perform yield estimation and mapping. Ultimately, 

we may be able to design an automated harvesting system in the greenhouse at UGA in the 

future, given the hardware facilities.  

 (7) 

Table 17. The absolute Difference in Count for different approaches. 

Network |DiC| 

Faster R-CNN 2.269 (1.589) 

Faster R-CNN with OHEM 1.769 (1.394) 

Mask R-CNN 1.154 (1.347) 

Mask R-CNN with OHEM 0.731 (1.041) 



52 

Figure 16. The absolute Difference in Count for different approaches. 

Table 17 shows |DiC| for different approaches. Countgt is the true number of tomatoes in 

one image, and the Countpd is the predicted number of tomatoes in one image. Note that Countpd

is also shown on the top-right corner of each image. |DiC| is calculated as in equation (7). The 

|DiC| is averaged over all test images. The standard deviation is also given along with |DiC|. It is 

clear to conclude that Mask R-CNN with OHEM achieves the lowest |DiC| among all 

approaches. Figure 16 shows a bar chart, representing the comparison on the absolute Difference 

in Count. 

Similarly, Table 18 and Figure 17 demonstrate the comparison on the absolute Difference 

in Count after applying 3-fold cross validation. 
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Table 18. The absolute Difference in Count using cross validation. 

Network |DiC| 

Faster R-CNN 2.688 (1.719) 

Faster R-CNN with OHEM 2.210 (1.863) 

Mask R-CNN 1.278 (1.574) 

Mask R-CNN with OHEM 1.254 (1.534) 

 

 

Figure 17. The absolute Difference in Count using cross validation. 

 

4.4.2 Size measurement 

 On the other hand, since we have the predicted mask for each instance of tomatoes, it is 

possible to measure the growth of tomatoes over time by calculating the relative size for each 

tomato instance. Figure 18 shows the growth trajectories for each tomato instance over the 

tomato growth period (i.e., 32 days), starting from 12/12/2017 to 01/12/2018.  
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In Particular, the X axis demonstrates the day within the growth period, while the Y axis 

shows the relative size of the tomato instances (i.e., the number of pixels of the segmented 

mask). Note that the values on the right hand side of the plot illustrate the growth rate of each 

tomato instance.  Also, note that the growth trajectories were drawn using robust linear 

regression. 

Day 17

Day 18

Day 17

Day 18

Figure 18. Growth trajectories for each tomato within 32 days. Note that there is only one growth 

trajectory with a negative growth rate. The details are shown in the plot on the bottom left. 

Note that all trajectories illustrate that the relative size of each tomato instance keeps 

increasing at different growth rates, except one on the bottom right. The figure at the bottom left 

shows the details of the growth trajectory of this tomato instance. In particular, I highlighted two 
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points with red circle for day 17 and 18, respectively. Also the corresponding predicted results 

are shown on the right hand side of the figure. 

After examining this tomato instance over time, I observer that this tomato instance is 

covered by leaves. In some specific dates, it’s covered by leaves significantly, however, in other 

dates, it’s slightly covered by the leaves. The reason for this is straightforward: as the tomato 

grows, the weight increases. So the tomato starts falling down towards the ground, which means 

the location of this tomato instance changes over time.  

Therefore, we might want to propose an algorithm in the future to deal with the occlusion 

problem for this tomato datasets. Occlusion problem also exists in other fruit datasets. Once we 

are able to infer the occluded part of the fruit, it becomes more accurate to calculate the number 

of white pixels as the measurement of fruit size. 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

In summary, four different approaches are applied in this thesis. Specifically, Faster R-

CNN and Faster R-CNN with OHEM are frameworks tackling with fruit detection task, 

achieving 0.859 and 0.892 F1-score on our tomato dataset respectively. Furthermore, Mask R-

CNN and Mask R-CNN with OHEM manage to predict the fruit location and segmentation mask 

simultaneously in an end-to-end manner, achieving 0.948 and 0.957 F1-score respectively. 

Moreover, K-fold cross validation is performed on all approaches, resulting in a 2% increase in 

Recall by augmenting Faster R-CNN with OHEM, and a 5% increase in Recall by augmenting 

Mask R-CNN with OHEM. 

To conclude, augmenting Faster R-CNN and Mask R-CNN with OHEM can improve the 

detection performance. Furthermore, the prediction of both tomato counting and size 

measurement is promising. 

Future work could potentially include several directions. Firstly, as shown in section 

4.4.2, most of predictions demonstrated by the growth trajectories are promising, except for one 

tomato instance because of the occlusion problem. Even though the occlusion problem is 

inevitable in the real world situation, it is still possible to measure the actual size of the fruits by 

inferring the occluded parts. Therefore, a potential future direction could be proposing an 

algorithm to infer the areas that are partially covered by leaves. Since we are measuring the 

growth of tomatoes by counting the number of pixels within the segmentation, it is difficult and 

inaccurate to measure the size of the tomatoes if they are mostly covered by leaves.  
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 Secondly, since we have a set of images that are taken by the cameras every a half hour, 

it is intuitive to come up with the idea to take advantage of the time information. Specifically, the 

objects or fruits in the images taken in the same day tend to have higher similarity including 

color and shape information. Moreover, even for the images taken at the same time but different 

days, the lighting condition tends to be similar as well. For example, the images taken at 9 am 

are more likely to be darker than those taken at noon. Therefore, time information can potentially 

be utilized for future research. In my opinion, in the future work, a LSTM model can be added to 

the existing network architecture as an additional branch for time information. 

Thirdly, weakly-supervised learning method for object detection and segmentation is also 

a potential direction. Since the ground truth annotation, especially for segmentation, is time-

consuming and requires human labor, a weakly or semi-supervised learning algorithm is desired 

for this task in the future. In particular, a weakly-supervised framework can be proposed based 

on Generative Adversarial Network (GANs) [49]. A GAN contains a generator network to 

provide extra training examples to a classifier, which plays a role as a discriminator in the GAN 

framework. Since we can obtain the detection performance with F1-score of above 90%, we are 

able to localize the objects precisely. Inspired by the idea of GAN, we want to leverage the Mask 

R-CNN framework without providing the ground truth mask, but only the bounding box 

annotation. Thus, the generator can output fake images for the discriminator given the pixel-level 

class annotation from the mask branch.  
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