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CHAPTER 1

INTRODUCTION

Remote sensing has been used in agriculture to map the hedlth status of crops for
many years. Early detection of crop stress isimportant for environmenta and economic
concerns. Crop stresses are influenced by plant biochemicals such as chlorophyll, and
these biochemical contents can be estimated from spectral reflectance characteristics of
plants (Hatfidld and Pinter, 1993). This mapping procedure congsts two stages: image

processing and spectral dataanadyss.

1.1 Image processing

Two types of remote sensing technol ogies have been used in acquiring spectra
images. One type uses broadband spectra imaging from aircraft or satdllites. This
approach has been successfully used for years. But its sengitivity islimited by the
relatively low spatia and pectra resolution of the satdllite images (Moran et d., 1997).
This technique is suitable to monitor forest damage and crops grown in large arees.

The other group is ground based, which use narrow spectral imaging bands with
imaging cameras |located just afew meters above the crop canopy (Carter and Miller,
1994). Higher spatia and spectral resolution can be achieved with this gpproach. Recent
literature has shown that the narrow bands may be crucid for providing additiond
information with sgnificant improvements over broad bands in quantifying agricultura
crops.

A suitable multi- spectral imaging system is critica in order to apply spectroscopy

technique at the plant canopy leve. Recently, due to the advancement in optics and



computer miniaturization, researchers have integrated both satellite-based and ground-
based technologies. This combines the advantages of both narrow band and broad band
spectroscopy techniques and encouraging results have been obtained.

Evans et a.(1998) developed a hyper-spectral imaging system based on aliquid
crystd tunable filter (LCTF) (See Figure 1-1). This system, which is used in this sudy,
uses LCTF to achieve variable and narrow band filtering of the reflected light. Images are
taken with video cameras located afew meters from the plants, achieving maximum
gpatia and spectra resolution. Severd gpplications of this system for evauating plant

biochemical data and stress status have been reported (Thai et d., 1998, 2000).

1.2 Spectral data analysis

To map multi-spectra images of plants to their hedth status, spectra data
extracted from these images are usudly anadyzed based on absorption/reflectance or
fluorescence. A vegetation index is caculated using reflectance vaues under two or more
gpectrd waveengths according to different mathematic formulae. Usudly vegetation
indices are more sengdtive than the reflectance a a single wavelength.

To better understand the spectrd reflectance characteristics of plants, a number of
vegetaion indices (V1) have been developed by remote sensing researchers. Vegetation
indices such as NDVI, RVI have been widdly used to quantify plant biochemica data and
detect plant health status (see Wiegand et a., 1991; Thenkabail et ., 2000).

Previous remote sensing research has identified the best wavelengths in the
vishle-near infrared spectrum for plant nitrogen content: the visible 534-640 nm and far-

red/NIR 680-750 nm wavelength ranges are found to be the most senditive to plant



nutritiona stress. The red edge between 680 nm and 750 nm, a sharp change in leaf
reflectance was identified and used for stress detection (Filella and Penuelas, 1994).

Different satisticad models have been developed to determine the relationships
between vegetation indices and plant biochemica data. Linear regresson is commonly
used to determine the basic relationships, while nonlinear models such as exponentia
models are applied to further improve fitting. Artificial Neural Networks have aso been
successfully used in pectral data analysis (Thal, et d., 1998).

When dedling with various vegetation indices, comparisons among satistical
models are usualy needed in order to evaluate their performance. Smple enumeration
(exhaudtive search) is effective for asmal set of data, but an optimal search strategy
needs to be derived for alarge set of datain order to save time or even make the analysis
possible.

Genetic Algorithm (GA), which imitates the process of naturd sdection and
evolution, is an efficient search method. In GA, each individud is regarded as a potentia
solution for the current problem. GA works by generating a new generation through
processes of evauating, sdecting, mutating and recombining of individuas. The
evauation and selection is based on the values of individud “fitness’. The optimal
individua represents the best solution for the problem and will be eventudly generated
after anumber of generations. GA is especidly powerful when used in large, complex
search space where exhaustive search is dther difficult or impossible to do.

In our study, we use both exhaustive search performed by conventiona satistical
methods and genetic dgorithm search to identify optimum Satisticd models aswell as

optima wavelengths.



1. 3 Objectives of this study

Our study aimed to determine the optimal vegetation indices and wavelengths that
could be used in spectra imaging to best characterize the plant nitrogen stress levels.
More specifically, the objectives of our work were:

1. Deveop datisticd modelsto correlate the nitrogen stress levels of bush bean
plant with vegetation indices based on different waveengths. I1dentify the best
modd with the highest correlation using exhaudtive search. The modd
development and the selection of the best modd are performed in separate
procedures.

2. Implement agenetic agorithm that integrates dl functions performed by the
datistica models described above. The modd development and mode selection
are performed in one procedure.

3. Evduate the performance of these two gpproaches based on runtime and
accuracy.

Thisthessis organized asfollows. chapter 1 is literature review. A detailed description

of the research procedure is presented in chapter 3 and chapter 4. Chapter 3 covers
objective 1 mentioned above while Chapter 4 covers objective 2. A summary of our study
isgiven in chapter 5. Chapter 6 briefly introduces our future research direction. Figure 1

— 2 illugtrates the outline of this study.
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CHAPTER 2

LITERATURE REVIEW

This chapter introduces some remote sensing techniques for plant stress detection
and described two spectrd data andysis approaches used in our sudy: polynomia

regresson and genetic agorithm.

2.1 Resear ch background
2.1.1 Resear ch techniquesfor plant stress detection

Pants under stress usudly do not function efficiently and certain biochemica
changes can be detected using remote sensing technologies. Plant Stresses are due to
factors such as disease, nutrition deficiency and dehydration.

Two spectra methods are commonly used in remote sensing research:
fluorescence and absorption/reflectance. It was found that the plant chlorophyll and blue-
green fluorescence generaly increases under stress. Thus red + far-red chlorophyll
fluorescence and blue-green fluorescence can be used in plant stress detection.
Fluorescence techniques are best suited for characterizing transent photosynthetic plant
functions (Ning et d., 1995, Gitelson et d., 1999).

The reflectance technique focuses on the relaionship between plant reflectance
and plant photosynthetic function. Stress due to stress factors such as nitrogen deficiency
reduces chlorophyll and as a result, modifies reflectance. This reflectance responseis
gpectrally smilar among agents of stress and plant species. Based on the proposition that

the amount of reflectance is afunction of the amount of the biochemica contentsin the



plant tissue, these biochemica contents can then be estimated by the measurement of
reflectance. Reflectance techniques can measure more readily the permanent structures of
the photosynthetic system such as chlorophyll and water content, which influence the
survival and yidd of the crop. A lot of successful research has been done with reflectance
techniques, and good correlations between reflectance and many important biochemical
variables such as biomass, nitrogen concentration and chlorophyll content have been
found (Carter and Miller, 1994, Johnson and Billow 1996, Y oder and Pettigrew-Crosby,

1995).

2.1.2 Spectral characteristicsimportant for stress detection

Agriculture remaote senang is commonly goplied in the visible, near-infrared and
thermd infrared portions of the spectrum for quantifying the biochemica contents of
hedthy and stressed plants. Green plants absorb most of the red light but very little near
infrared light from sunshine for photosynthesis. Therefore the sensor above the crop
recaives very little red light reflected from the crop. On the other hand, most near infrared
light is reflected. Conversdly, plants in stress such as nitrogen deficiency will often have
less chlorophyll and appear to be chloretic or yellow and can thus be detected by a
decrease in red light absorbance and infrared light reflectance. Due to thisimportant
feature, thered edgeistypically used for stress detection (Fillelaand Penuelas, 1994).

To enhance the plant stress signd, the measured spectra reflectance data from
two or more spectra wavelengths are computed into vegetation indices according to
different mathematic formulae. Most vegetation indices use the red spectra band, which

represents the chlorophyll level, and the near infrared (NIR) band, which represents the



green vegetative biomass. These bands contain more than 90% of the information on a
plant canopy. Many vegetation indices have been developed. Some very common used
vegetation indices are ligted in Table 2-1, among which the NDVI index is the most

widely used index and has been found to perform best in severa studies.

Table2-1 Some commonly used vegetation indices and their formulae

Index Formula
Ratio Vegetation Index (RVI) NIR/RED
Normdized Difference (NIR-RED) / (NIR + RED)

Vegetation Index (NDVI)

Nitrogen Reflectance Index (NRI) (NIR/GREEN) / (NIR/GREEN) ref

2.1.3 Optimum wavelengths and vegetation indices found by previous studies

Reflectance spectroscopy has been used to estimate nitrogen concentration and
assist nitrogen management in agriculture and environmenta research for many years. A
number of optimal spectral bands and vegetation indices have been reported by previous
Sudies.

Y oder and Pettigrew-Crosby (1995) reported that with firg-difference
transformations of log (L/reflectance), the spectral bands that correlated log
(Ureflectance) highly with nitrogen concentration in the visble-near infrared (VIS-NIR)
region were located at near 530-540 nm, 650 nm, 690 nm, 720-800 nm, 1200nm, 2070-
2210 nm.

Claude and Pierre (1991) studied the relationship between ledf reflectance and

leaf nitrogen concentration of broadlesf tree seedlings at the 400-800nm region and found



that the highest correlations were measured in the red region of the spectrum at
wavelengths 600 — 700nm.

In their studies of foliage, Johnson and Billow (1996) used NIR and visble
diffuse reflectance spectral data scanned from 400 to 2498 nm. They identified the 2100-
2350 nm region as the optimum wavelengths by regresson analyss.

Studies by other researchers aso showed different wavelength sdection. These
differences could be explained by many factors, including differencesin water content,
plant anatomy, and the concentration of cell congtituents.

In addition to the search for the optimum wave engths by reflectance
measurement, many studies have been done to search for the best vegetation index.

Wanjura and Hatfield (1987) tested the sensitivity of three commonly used
vegetation indices, RVI, NDVI and GVI (Greenness Vegetation Index), to crop biomass
of four different species. It was reported that RVI was more sendtive to high leves of
biomass and LAI (leaf areaindex). However, when crops were smal, NDVI and GVI

may be the best estimators of LAI and ground cover.

Lawrence and Ripple(1998) examined the use of seven types of vegetation indices

for predicting vegetation cover in field sudies and found that among the ratio-based
vegetation indices, the smpleratio (RVI) and NDVI performed best under conditions of
high subgirate and vegetation heterogeneity.

Thenkabail et a. (2000) compared three types of vegetation indices (NDVI,
Optimum Multiple Narrow Band Reflectance (OMNBR), and soil-adjusted vegetation
indices) and recommended twelve types of narrow band NDVI predicators for crop

variables. They adso showed that OMNBR had the “over fitting” problem.
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Studies by these researchers indicated that the performance of vegetation indices
depended on which crop variable was to be estimated, the plant species, the atmospheric
condition and optica properties of the soil background. Different vegetation indices

should be selected for specific Site Sudies.

2.2 Statigtical analysis: polynomial regression

To determine the relationship between vegetation indices and an interested
biochemicd varidble, it is usudly necessary to perform regresson or other Satistical
andyss.

Regresson isaway to study the relationships among variables. Smple linear
regression models with alog-transformed response variable have been traditionaly used
in vegetation index studies (Anderson et a., 1993; Chen and Cihlar, 1996). Some
previous sudies usng stepwise linear regresson dready identified some optimum
gpectral bands and vegetation indices and established some sensitive predicators (Y oder
and Pettigrew-Crosby, 1995; Lawrence and Ripple, 1998; Thenkabail et a., 2000).

Our study, however, adapted polynomid regresson asthe satigtical andysis
method.

A regresson modd contains a number of independent variables Xi, Xo, ..., Xn,
which are used to explain or estimate some characteristics of the dependent variable. We
can define the generd linear regresson modd interms of X variables as:

Yi=lp+ biXii+ bpXio+ ...+ b Xin+ €
Where:

by, b, ..., by are parameters (coefficients) to be determined

11



e are norma error terms

i=1,2,...,n

This generd linear regresson model with normal error terms encompasses a
variety of stuations. In generd, the variables X, ... X, do not have to represent different
independent variables, which isthe case for polynomia regression models. They contain
sguared and higher-order terms of the independent variable, making the response function
curvilinear. The following is a polynomid regresson modd with one independent
variable:

Y=o+ X+ X+ L+ braX T X"+ @
The order of the independent variableis referred to be the degree of the polynomia
regresson modd.

Polynomial regresson modes have two basic types of uses:

1. When the true response function is a polynomid function.
2. When the true response function is unknown (or complex) but a polynomid

function is a good gpproximation to the true function.

The second type of use, where the polynomia function is employed asan
gpproximation when the shape of the true response function is unknown, is very
common.

To test the fitness of a polynomia regresson modd and compare the performance
of different polynomia regresson modds, severa datistica tests can be used, such as
coefficient of multiple determination, partial F-Test, prediction error sum of squares

(PRESS). Thefollowing isthe formulafor the coefficient of multiple deter mination:

12
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where:
Y isthe estimated value of the response variable

Y isthe mean (average) vaue of the response variable
The adjusted coefficient of multiple determination, denoted by R.?, adjusts R by

its degree of freedom. It can be used as one criteria for multiple regresson model

Selection:
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where p isthe degree of freedom.

The use of polynomia modes is not without drawbacks. Such models can be
more expengve in degree of freedom than dternative nonlinear modes or linear models
with transformed variables (Neter et d., 1990). Fitting a polynomid regresson with
orders higher than threeis rarely done as the interpretation of the coefficients becomes
difficult and interpolation tends to become erratic.

Determining the relationship between vegetation indices and biochemica
variables usng polynomial regression has been reported by previous studies, and the
results were generdly better than smple linear regresson modds (Lawrence and Ripple,

1998).



2.3 Genetic Algorithm

Genetic agorithm (GA) isapowerful and widdy applicable stochastic search and
optimization technique. The GA search dgorithm isinspired by genetic evolution and the
process of natural selection.

For a particular problem, the genetic dgorithm maintains a population of
individuas for a generation. Each individua represents a potentia solution to this
problem at hand. Each individud is evauated to give some measure of its “fitness’.
Some individuads are transformed by means of genetic operationsto form new
individuas of the next generation. These new individuads are evauated and transformed
inasmilar way. A new population is then formed by sdlecting the fittest individuals
from the parent population and the offspring population. After severd generations, the
agorithm converges to the best individud, which generaly represents an optimal
solution to the problem. In summary, the population survive, breed, and changein a
progression towards an optimal god, smilar to the natural sdection and evolution
process. Threetypica operatorsin GA arecalled selection, crossover and mutation.

Sdection refersto survivd of thefittest. Individuasin the current population are
sdlected for high fitness and put into a mating pool for further operations. Sdlection
directs genetic agorithm toward promising regions in the search space.

Crossover isthe recombination of two individuas (parents) to form new
individuds (children). Children contain information from fit parents and are usudly

equally good or better than the parents.
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Mutation randomly change the structure of an individud. It isaway to add new
genetic materid to a population. Its main purposeis to keep the population diverse during
the search. Mutation is dso used to help the GA avoid getting stuck at alocal optimum.

A typicd generationd GA can beilludrated by the following figure:

Sdection
—» C1 Crossover
Generation Genegration
T T+1
—» Newhorn ——W
Sdection IVIUTATon
—» C2

Figure2-1 Generational GA working procedure.

The advantage of GA lieson its efficiency Snce it does not need to exhaust dl
possible search space to get the best solution. GA can handle discrete, continuous and
mixed variable spaces and isreatively easy to implement. GA isaso robust and less
sengtive to noisy conditions.

On the other hand, GA isaheuridtic search, thet is, it isasmplification or
educated guess that reduces or limits the search for solution. Heuristics do not guarantee
the optima solution, or even feasible solution and are often used with no theoretica
guarantee. Therefore GA will not guarantee to find the true optima solution. GA isaso
relatively dower due to genetic operations and searching from a population, and thereby

not suitable for easy problems.



GA isespecidly suitable for problems with multiple seerch variables and large
search space. Problems with multiple congraints that must be satisfied at the sametime
can usudly be solved by GA. Thetime saving in GA compared with exhaudtive search
for large search space problemsis remarkable. GA-based programs have been applied to
problemsin optimization, machine learning and evolving system modding. Many
successful applications of GA search have been developed in indudtriad engineering in the
past decades. Examples include the travel sdlesman problem, which gives the shortest
path among many citiesin agiven order, the bin pack problem, which conssts of placing
anumber of objects into a number of bins such that the total weights of the object in each
bin does not exceed its capacity and the number of bins usad is minimized, the airline
crew scheduling problem, which assigns a set of m flights that must be flown over a
given time period to aset of n crews to minimize the operation cost. Genetic agorithm

usualy performs alot better than conventiona search strategies in these problems.
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CHAPTER 3
STATISTICAL METHOD FOR DETERMINING

OPTIMUM VEGETATION INDICESAND WAVELENGTHS

To detect plant stress caused by nitrogen deficient, an important issue isto choose
asengtive vegetaion index and related optima wavelengths. Under these two conditions
agood correlation between nitrogen stress levels and vegetation index can be established
with more accuracy. Therefore first we need to develop a correlation andysis between
nitrogen siress levels and vegetation index.

In this chapter, after an introduction to the procedure of spectra data acquisition
(image processing), we anayze these data using polynomid regression, develop

datisticd modes, and sdlect the optimum models by exhaudtive search.

3.1 Materials and image processing

Bush bean plants (Phaseolus vulgaris L. var. Newport) were grown inside a
greenhouse and in Perlite containers during the summer of 1997. There were 6 replicates
of 4 treatments for atotal of 24 plants. The plants were fed with a complete hydroponics
nutrient solution except that nitrate and ammonium salt quantities were adjusted to
provide 4 levels of nitrogen treatments: 30, 60, 90, 120 ppm (see Theisen et ., 1998 for
culturd details). On day 47 after seeding, the plants were scanned by a multi- spectral
imaging system from 695 nm to 795 nm in steps of 5 nm (from 760nm to 770 nm steps of

2 nm were used), under natural sunlight and inside the greenhouse (see Thai et d., 1998).

17
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Our spectra imaging system interfaced a Liquid Crystd Tunable Filter into a
monochrome video imaging sysem. This sysem implemented a scheme for leveling the
system response across wavelengths in the face of varying illumination, filter
transmittance, cameralens aperture setting, and gain response (see Evans et a., 1998).
Spectralon standard targets from Labsphere were used in our study. The nomina
reflectance factors of the steps in the multi- step Spectralon targets were 2% reflectance
for Black target and 99% reflectance for White target. These reflectance factors were
used later in computing the reflectance factor of each plant canopy. The 99% target was
used for the “ control white” region of interest (ROI) when we scanned from 695 nm to
795 nm. Our image scanning scheme was designed to maintain agiven gray vaue for the
“control white” ROI at al waveengths by controlling the camera gain settings and the
LCTF attenuation factor.

For each of the 24 plants, NDVI images were computed from the scanned image
at 695 and 760 nm with the following equation (see Carter and Miller, 1994; Wiegand et
al., 1991):

(Image@ 760nm- Image@ 695nm)

NDVI Image =
(Image @ 760nm+ Im age@ 695nm)

D

Figures 3-1 to 3-2 show the four NDVI images of bush bean plants under four
different nitrogen trestments. One can see that the gray values of the plant canopy in
these NDV I images became brighter with the increase of nitrogen concentration.

Next, we isolated the pixels of the plant canopy usng asmple gray vaue
thresholding scheme to form amask that will be used to extract the plant canopy pixdsa
al other wavelengths scanned images. During this image processing step, the mean gray

vaue for each plant canopy GV Plant; at each wavelength | ; was collected. Mean gray



vaues of ROIs positioned over the “control white’ and “control black” standard targets
were a0 collected and saved respectively as GVWhitg and GV Black; for each
wavdength | ;. We defined RWhitg, RBlack; RPlant; as the corresponding reflectance
vauesfor the “white’ target, “black” target and the plant at each wavelength | ;. Usng
cdibration data from Labsphere for their sandard targets, we could compute the values
of RWhitg and RBlack; a any wavedength | ;. Since the camera response was found to be
linear (Evans et d., 1998), a correspondence could be made between the image gray
vaues and the reflectance vaues of the objects involved. We could write the following

equation for eech wavdength | ;:

GVPlant, - GVBlack, _ RPlant, - RBlack,

= 2
GVWhite - GVBlack. RWhite - RBlack, @)

Then compute the reflectance vaue RPlant; asfollowing:
RPlant, = (CVPIant - GVBIack ), p\pite - RBlack, ) + RBlack, 3

' (GVWhite - GVBlack; )
Using equation (3) we computed the percentage reflectance for 24 wavebands

under 4 different nitrogen levels. Thus the following four vegetation index vaues can be

caculated:
NDVI (nomalized _ difference) = R-R 4
R+R
RVI (ratio) = R/ R ©)
DVI (difference) = R — R (6)
R (reflectance) = R (7

Here R; and R, corresponded respectively to the reflectance vaues under two

different wavelengths & and &,.
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Figure 3-1

NDVI image of Bush Bean plants @ 695 nm, 760nm, with nitrogen

treatments 30 ppm (top) and 60 ppm (bottom)
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Figure 3-2

NDVI image of Bush Bean plants @ 695 nm, 760nm, with nitrogen

treatments 90 ppm (top) and 120 ppm (bottom)
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3.2 Statigtical analysis and exhaustive search
3.21 Spectral reflectance characteristics

Before locating individud optimum wave ength, we plot wave engths versus
reflectance values under different nitrogen treatments as afirst step (see Figure 3-3). The
waveength portion of 695-750 nm had higher change in reflectance per waveength unit
difference than the other portions. The plot showed the typica ramp of the plant “red
edge”, which isaregion of high chlorophyll asorption in green vegetation. Thisis
congstent with previous researches (Boochs et d., 1990; Fillda & Penuelas, 1994), and

gives usavisud feding of the location of the optimum waveength.

Wavelength vs. Reflectance

——nitrogen(30) —=— nitrogen(60) nitrogen(90) nitrogen(120)

1.2

[EEN
1

o
[o0]
1

Percent Reflectance
o o
SN (@)
| |

o
N
1

\

o

680 700 720 740 760 780 800
Wavelength(nm)

Figure3-3  Plot of percent reflectance vs. wavelength for plant1l under

four nitrogen treatments



3.2.2 Computation of vegetation indices

Satidicd anayss need to be performed on individua band and index to identify
the optimum wave engths and vegetation indices. All possible two-bands wavelength
combinations will be involved for each vegetation index. These combinations need to be
computed before further corrdation anadyss.

Three digtinct types of vegetation indices, NDVI, RVI and DVI, were computed
from equations (4), (5), (6) using 24 spectral bands of percentage reflectance data. For
each index, there are 276 (24 * 23/ 2) possible combinations of two different
waved engths, which were computed with aVBA (Visua Basic for Applications) macro
program inside Microsoft Excel 2000.

For each vegetation index, we grouped combinations of al the four trestment
levels and sorted them by wavelength. Thus we got 276 * 4 = 1104 sets of data, of which
each set had 24 values (6 plants * 4 treastments) and represented the corresponding
vegetable index vaues under four different nitrogen treatment levels. Polynomia
regression analysis was then performed on each dataset. Table 3-1 showsthe NDVI
vaues of four nitrogen trestments for wavelength combination 695 nm and 760nm, and

for each of the 6 plants tested.

Table3-1 NDVI (695 nm, 760nm) values for different nitrogen treatments
wavelength |plantl plant2 plant3 plant4 plant5 plant6 treatment

695, 760 0.676157[ 0.685291 0.673049 0.711778 0.69331 0.695768 30
695, 760 0.755439 0.787415( 0.765097| 0.766605 0.777407| 0.770381 60
695, 760 0.765168 0.802903| 0.793288 0.79669 0.840219 0.816067 90
695, 760 0.851377| 0.814104 0.804599 0.809205 0.818001 0.848814 120
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3.2.3 Polynomial regression and exhaustive search

Polynomia regresson is acommonly used gpproximation method when the
relationshi ps between the independent variables and the dependent variables are
uncertain. That is, the mechanism of the true response function is unknown. Visua
examination of the plots of nitrogen trestments vs. different vegetation indices under
wavelengths 695 nm and 750 nm from our dataset indicated that there was a non-linear
relationship between nitrogen treatments and vegetation indices (see Figures 3-4 to
Figure 3-7). We therefore fit the data with polynomid regresson models. Thiswas

performed by using the software package Statistical Analysis System (SAS) version 8.0.

NDVI vs. ppm Nitrogen
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0.7 $
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[ NDVI |

NDVI

Figure3-4  NDVI vs. ppm Nitrogen under wavelengths 695 nm, 760 nm
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Figure3-5 RVI vs ppm Nitrogen under wavelengths 695 nm, 760 nm
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Figure 3-6

DVI vs. ppm Nitrogen under wavelengths 695 nm, 760 nm
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Reflectance vs. ppm Nitrogen
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Figure3-7  Reflectance vs. ppm Nitrogen under wavelength 695 nm

Polynomid regresson modes are often fitted with the hierarchica gpproachin
which higher powers are introduced one at atime and tested for significance, and if a
term of ahigher order isincluded (say, »°) then dl terms of lower order (x and X2) are
aso included. We gtarted with first degree polynomia and increased the polynomid
powers until the fourth degree.

The Adjusted coefficient of multiple determination (adjusted ) for al possble
two-band vegetation indices were determined and sorted. The model sdection criteria
were et to both maximize adjusted R and keep the P vaue significant (P value < 0.05).
Residua and data plots were aso used to guide regression analysis and modd selection.
Optimum bands and indices were obtained by comparison among the adjusted R values
of dl sgnificant models. This was essentidly an exhaustive search procedure because it

compared adjusted R for al possible wavelength combination of four different
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vegetation indices. The best atistical model for each vegetation index with the
corresponding adjusted R, wavelengths were listed in Table 3-2.

Table 3-2 Optimum spectral bands and regresson modelsfor nitrogen
treatments againgt individual vegetation indices

Index best bands (nm) adjusted R regression model

NDVI 710, 720 0.9096 NDV1=0.087+0.02ppmN-0.67E-5ppmN?
RVI 700, 750 0.9144 RVI = 0.29 — 0.003ppmN + 0.00001ppmN 2
DVI 715, 750 0.8715 DVI = 0.11 + 0.002 ppmN

Reflectance 700 0.7276 Reflectance = 0.17 — 0.0007 ppmN

From Table 3-2, DVI and Reflectance were smple linear regressions, while the
find modelsfor NDVI and RVI included second- degree polynomias. These four find
mode s were plotted in Figures 3-8 to 3-11.

All vegetation indices under the corresponding best wavelengths correlated well
to nitrogen trestments. The adjusted R? values ranged from 0.7276 to 0.9144. NDVI and
RV performed better than the other two indices. This was consistent with Lawrence and
Ripple s study (1998). The best waveengths identified were: 700 nm, 710 nm, 715 nm,
720 nm, 750 nm, which were aso close to those found by some other researchers
(Tucker, 1979; Y oder and Pettigrew- Crosby, 1995; Thenkabail et a., 2000).

The overdl results of this comprehensive andyss were illugtrated in contour plots
of the R? values for each wavelength pair (see Figures 3-12 to 3-14). An examination of
these results for different vegetation indices showed a remarkable strong relationships

region center at the red-NIR 695 nm to 750 nm.
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Figure 3-8
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VI vs. ppm Nitrogen (718nm, 730nm)
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wavelengths vs. Rsquare for NDV
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wavelength vs R—square for RV
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wavelengths vs. R—square for DV
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3.24 log-transformed polynomial regression

Regresson mode s with alog-transformed response variable (1og-transformed
models) were used in many previous sudies and were reported to perform better than
non-transformed model (Y oder and Waring, 1994; Anderson et a., 1993). In our study,
we aso devel oped log-transformed polynomia regresson models and sdected the best
mode by exhaustive search to seeif we could improve regression results.

Using the same spectrd reflectance data, we first calculated the inverse-log of
vegetation indices (log 1/V1), then each data set, which represents the log-transformed VI
under four nitrogen treatments for a specific wavelength pair, was fitted with firdt,
second, third and fourth degree polynomia models. The genera regression formulawas:

log (UY) = by + X+ X2+ ...+ by XP+ X + @

Where p indicated the degree of polynomia. The mode selection criteriaand the
exhaustive search procedure were the same as those described in section 3.2.3.

Table 3-3 shows the result for the log-transformed polynomid regresson. The
fina regresson mode for NDVI under wavelengths 710 nm and 720 nm explained
substantially more variation than the other three vegetation indices, with an adjusted R of
0.9167. NDVI, RVI and DVI were second- degree polynomia regresson. Reflectance
was asmple linear regresson. All modds were satistically sgnificant, and the adjusted
R2 vduesranged from 0.7294 to 0.9167.

Comparing results of Table 3-2 and Table 3-3, we found that |og-transformation
could improve regression results for NDVI and DVI, but did not improve the
performance of RV1. The optimum wave engths and polynomia models selected by both

gpproaches were smilar except for RVI.
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Table 3-3 Optimum spectral bands and regresson models for nitrogen
treatments againgt individual log-transfor med vegetation indices

Index best bands (nm)  adjusted R regression mode

NDVI 710, 720 0.9167 log/NDV1=2.28-0.013ppmN+0.00005ppmN 2
RVI 710, 720 0.9087 log1/RV1=0.17+0.04ppmN-0.00001ppmN?
DVI 715, 750 0.9138 log1/DV1=2.39-0.02ppmN+0.00009ppmN 2

Reflectance 700 0.7294 logl/Reflectance = 1.27 + 0.006ppmN




CHAPTER 4
GENETIC ALGORITHM FOR DETERMINING

OPTIMAL WAVELENGTHSAND VEGETATION INDICES

In this chapter, we gpplied genetic dgorithm to perform Satigticd anadysis and
mode selection. The problem formulation, GA working procedure, and experimenta
tridswill be described in different subsections. We dso discussed the experimenta
results and compared GA'’ s performance with the SAS procedure obtained in the previous

chapter based on accuracy and runtime.

4.1 GA search system architecture

To identify the best wavelengths, vegatation index and regression model, the
complete spectrd reflectance data were fed as input to the GA, from which some datasets
were randomly chosen. Each dataset represented vegetation index vaues of different
nitrogen trestments under a particular wavelength pair. Each dataset was then evauated
by the fitness function. The fitness function performed datisticd andyss and returned a
vaue as ameasure of merit of the current regresson mode. The GA search was directed
by the fitness selection and went toward the more optimd (fit) direction until it found the
optimd solution. The overdl GA search system architecture isillugtrated in Figure 4-1.,

In generd, a genetic dgorithm has the following components (Michdewicz,
1996): a genetic representation of solution to the problem, away to creete aninitid
population of solutions, an evauation function rating solutions in terms of their fitness,

genetic operators that ater the genetic compostion of offsprings during reproduction and
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vaues for the parameters of genetic algorithm. We formatted our problem based on these

components.
Spectral GA Best wavelengths
data —> 3| Begtindex type
_ Best model type
l T fitness
Fitness
function

Figure4-1  Outline of the Genetic Algorithm sear ch process

4.2 Problem formulation
1. Representation
A vector of integers was used to represent a GA individud. Individuds
were encoded by integer permutation. The god of the GA was essentidly to
search for apermuted individua that best satisfied al the problem condraints.
Each individua consisted of four variables. The first and the second represented
the two wave engths, the third represented vegetation index type, the fourth

represented the regresson modd (i.e. the degree of the polynomid), as shown in

Figure 4-2.

Gene 1 2 3 4

String wavelengthl wavelength? végetation index regresson mode

Figure4-2 A GA representation for an individual.



The vaues of wavdengthl and waveength 2 range from 1 to 24, which
represent al 24 spectra bands used in our study. The values of vegetation indices
range from 1 to 4, with each representing one type of vegetation index. The vaues
of regresson model range from 1 to 4, which represented first, second, third and
fourth degree polynomia regresson moddls.

An example of an individua could be{1, 12, 2, 3} where (1, 12) meant
the first waveength (695 nm) and the twelfth wavelength (750 nm), 2 meant RVI,

and 3 meant third degree polynomid regression.

. Htnessfunction

Thefitness function took two waveengths, one vegetation index type and
one regression model type asinput. It then sdected dl reflectance values (i.e. dl 6
tested plants) under four nitrogen trestments by the two wavelengths. Depending
on the type of the vegetation index, the vegetation index vaue could be computed
by equations 4, 5 or 6. This gave aset of data which could be used for regresson
andyss. After computation Ssmilar to the polynomid regresson procedure with
the specified degree (Y ounger, 1979), the fitness function returned a vaue that
represented the correlation between the nitrogen treatments and the vegetation
index chosen. Thisvaue is based on the adjusted coefficient of multiple
determination (adjusted R?). Since the adjusted R vaue varied from avery
narrow range of 0 to 1, the selection pressure towards the optimum was small.
This problem was caled “poor scading” (Goldberg, 1989). We multiplied the

vaue of adjusted R by 1000 as the measurement of fitness before the individual



input was evauated. The objective of GA was to maximize the thus modified
adjusted R

Note that another statistical test, the P value, which indicates whether a
mode is sgnificant or not, should also be considered as a modd sdection
criterion Since a non-ggnificant datistica modd (P value > 0.05) was
meaningless. But the computation of the P value was too complex to be
implemented in our current system. Therefore we use only adjusted R as the
regresson modd selection criterion, i.e, the measure of merit of the fitness

function.

. Sdection

In GA, sdection means survivd of the fittest. The effect of sdlection isto
gradudly bias the sampling procedure toward individuals whose fitnessis
estimated to be above average. Over time, the fitness of the population will
become more and more optima. Some commonly used selection types are
Roulette whed sdlection, Tournament selection, Rank and scaing. The Roulette
whed sdection (Holland et ., 1986) was used in our study sinceit was relatively
easy to implement. This method reproduced a new generation proportiond to the
fitness of each individud. A mode roulette whed was made to display fitness
probabilities of individuas. The sdection process was based on spinning the
whed the number of times equd to population size, each time sdecting an
individua for the new population. The drawback of this selection method was that
early on there was a tendency for afew super individuas to dominate the

selection process. Later on, when the population was largely converged,
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competition among individuas was less strong. Strategies such as fitness sharing,

fitness scaling to be described later can be used to overcome this drawback.

4. Operators

a. Crossover operator: Crossover operator isthe major operator of GA

(Goldberg et a., 1993). It changes the composition of offgpring by
exchanging and recombining genes of parents. There are severd crossover
operators such as point crossover, random crossover and uniform
crossover. Figure 4-3 illugtrates single point crossover used in our study,
which involves cutting the chromosomes of the parents a arandom point

and exchanging the sub-chromosomes of parents.

Crossover Crossover

Point Point
BT i
Offspring 3912 7423

Figure4-3 Single point crossover

b. Mutation operator: the mutation operator mutates one or more genesin an
individua and randomly changes the individud. It is used together with
crossover to explore the entire solution space and to avoid loca optimum.
Mutation aso prevents the loss of diveraty in the population. It isusudly
used as a background operator to overcome some drawback of crossover.
Some commonly used mutations are random mutation, uniform mutation,
and boundary mutation. Figure 4-4 shows the random mutation operator

used in our study.
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mutation site mutation site

85%1 > 8541

Figure4-4  Random mutation operator

4. Repar

Using integer permutation encoding for individua representation,
infeasible or illegd individuas can be generated during populaion initidization,
crossover or mutation. Infeesble individud refersto the individud lying outsde
the feasible solution region of a given problem. lllegd individud refersto
individua that does not represent a solution to a given problem (Gen and Cheng,
2000). For example, anindividua {3, 3, 2, 1} was generated in our problem by
integer permutation. Thiswas anillegd individua and did not represent a
solution to our problem because the first two numbers should represent two
different wavelengths and should not be identical when vegetation index 2 (RV1)
was used.

Integer permutation encoding aso leads to redundant individuals. For
example, individud {1, 2, 3, 2} and individud {2, 1, 3, 2} are essentidly the
sameindividua snce wavedength par 1-2 and 2-1 are identical for vegetation
index vaue computation. They map into the same solution for our problem.

Repair techniques are usudly adopted to solve the above problems. GA
can be improved by adding arepair operator that applies certain congraints to

individuals. These congraints convert an illegd individud to alegd individud



and ensure that no redundant individud is generated. Some examples of repair
operation are:

{3,3,2,1} > {3,3,4,1}

{1,5,4,2y > {1,5,2, 2}

{5123 > {1,523}

In the first two examplesillega individuas are converted to legd ones. In
the third example a redundant individud is repaired to avoid duplication. After
repair operation, only legd and unique individuds are kept, resulting in areduced
search space and better performance.

. Specid GA operations

To make the GA more robust and efficient, in addition to the conventiona
operations such as selection, crossover, mutation, three “safeguard” operations
were used in our program to avoid locd optimum and maintain population
diversty.

a. Fitness scding: this was done to keep appropriate levels of competition
throughout asimulation. This operation gpplied linear scaing on the raw
fitness value. We smply caculated the scaed fitness ' from the raw
fitnessf usng alinear equation:

f=af+b

The coefficientsa and b could be calculated based on the number of

expected copies desired for the best population member, which was

denoted by c. They were chosen to enforce equality of the raw and the

scded average fitness and cause the maximum scaled fitnessto be a
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specified multiple of the average fitness. In our study, ¢ was set t01.8, a
and b were caculated according to different mathematic formulae (see
Goldberg, 1989 for cdculation details).

On the early stage, fithess scaling prevented the early domination of
extraordinary individuas. On the later Stage, it encouraged a healthy
competition among near equd individuas.

. FAtness sharing: if apopulation contained identical individuas, only one of
them received the fitness vaue cdculated in the normd way, the others
were assigned degraded fitness to reduce their reproductive abilities. In
our program, we defined the fitness decreasing factor as the percentage of
decreased fitness to be applied, which was provided by the user. In our
study, the fitness decreasing factor was set to 10%. Identicd individuas
received degraded fitness base on the fithess decreasing factor.

Fitness sharing helped to maintain the population diversity, and reduce the
chance of awhole population being dominated by asngle, rdaive
superior individud.

Diversity restoration: this operation monitored the evolution process of
GA. When it found that there was not any progressin the recent n
generaion (n was provided by the user), it automatically applied mutation
on the population. This mechanism reduced the tendency for GA to get

stuck at aloca optimum.
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6. Termination criterion
GA converges when atarget vaue was reached or certain convergence
criterion was met. GA could aso be stopped when the maximum number of
eval uations has been exhausted. Two termination criteria were used to in our
problem:

a. The GA stopped when this condition was met: average fitness/ maximum
fitness > t in the population, where 0.95 <t < 1. In our experiment, t was
Set t0 0.98. At this point the population loses diversity and practicaly
converges to asingle point in the search space.

b. A target value (which isthe best adjusted R value found by the SAS
procedure) is given to GA. The GA will not stop until it finds this target
vaue.

7. Evdudion

The evduation of GA’s performance is based on how long it tekesto find
the optima solution and how good is the solution. Since CPU time depends on
each individual computer’ s hardware and operating system, we useiteration
number to measure the speed of convergence. One iteration means one cal to the
fitness function from a unique individua, which corresponds to one execution of
aspecific degree of polynomid regression in the SAS procedure. Using
termination criterion a described above, the difference between the adjusted R
found by GA and the one provided by SASisagood indicator for GA’s
performance. Using termination criterion b, iteration number for convergence can

be used to evauate the performance of GA.



4.3 Genetic algorithm working procedure
The genetic agorithm gpproach to determine optimum waveengths and
vegetation indices works as follows:
1. Generate aninitid population of N random solutions. Set the generation
number to T.
2. Sdect two solutions, P1 and P2, from the population using Roulette Whed
section.
3. Combine P and P> to form anew solution, C, usng the single point crossover
operator.
4. Mutate C randomly with the random mutation operator.
5. Make C lega and non-redundant by applying the repair approach.
6. Repeat Steps 2 to 5 to generate a new offspring population of the same size N.
7. Sort generation T and its offgpring by the fitness vaues.
8. Condruct generation T+ 1 by keeping g% solutions on the top of generation T
and replace the remaining individuas with (1-g)% solutions of the top of the
offspring population, where g is generation gap.

9. Repeat above steps until the termination criteriais stisfied.

4.4 Experimental procedure
1. Source code modification.
The software package “ GA- playground” written by Arie Dolan
(http://mwww.arieldolan.com/ofiles'gaa.html) was used to perform GA search. This

package was implemented in JAVA. In addition to providing the fitness function,



some modifications need to be made for our problem requirement. In the origina
GA-playground, the stopping criterion of GA was st to an exit vaue which must
be provided by the user. We modified the source code and add another option so
that the GA could converge when the termination criterion a described above was
met, which did not require a user provided exit vaue. The code which caculated
iteration number was rewritten so that only fitness function cals from unique
individuas were counted. A repair operator was added to GA to avoid illegal and
redundant individuals.

. GA parameter stting

Torunthe GA, atext filewith GA parameters setting information must be
provided to the GA-playground for GA initidization and configuration. An dlde
definition file that defines the range of each dlele (variable) was aso needed to
generate the initid population.

The user must set severd parameters before usng the GA-playground
program (see Table 4-1). Generation gap represents the percentage of individuals
to copy to the new generation T+ 1 from the old generation T. Crossover rate and
mutation rate represent the percentage of individuals undergo crossover and
mutation. Parameter setting may be adjusted to get the best result. Table 4-1 ligts
our final parameter settings. The graphic user interface (GUI) of this program

shows current search status (see Figure 4-5).
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Table4-1 GA parameter setting

GA type Generationd GA with generation gep
Initid pool: Randomly

Stop GA: 1. Until converge;, 2. Target value
Population sze: 100

Number of gene: 4

Objective: Maximize

Crossover type: Single point crossover

Mutation type: Simply random

Selection type: Roulette Whedl

Generation gap: 5-25%

Crossover rate: 1.0

Muitation rate; 0.02

File  GR  Log o Dplion: Miec  Help

et Winalas: (s g1y | Grugdis Wasidane (Tegghes ]

#1 Cumani: BLeB @ 907 503
2 Cument BLES: 514.372
Chiamogama: ~BLEG-
waks: §14.373

Parainitar 30 Wk 1000
Farsmebar®] vabkoe 11 000
Parainidsr#2 Wakss 1.000
Farsmebar #3 valoe 2000

= o
Test Chrwrwsesms Tt Bax Ter Chavmssons Vel
[Basthinm oz oma: BLEG [Bst thrarrcrs i aks: 614972560 60414

r&ini ':'leI Lies | 13'?' Eisk E'“l (:bl.l] IMBI.ITM' “ml M|

st yEaniving 0 hrpencieil | B doo - bhoiveon wehoe] i Jaa [ T GA Flapmreend mb & s

Figure4-5  The GA-playground user interface



47

4.5 Result and discussion

The experimentd tests were run on a persona computer with a 166 MHz Pentium
processor under Windows 2000 operating system.

We did two experiments using different termination criteria. In the first
experiment, the target value (exit value) was not provided to the GA. GA stopped after
convergence, that is, when the ratio average fitness / maximum fitness is greater than
0.98. The result found by GA was compared to the result found by the SAS procedure. In
the second experiment, the target value (the best adjusted R from SAS) was provided to
GA. We evduated GA’ s performance based on its convergence iterations.
1. Run GA until convergence

We run GA 100 times with each generation gap setting of 5%, 10%, 15%, 20%
and 25%. The convergence criteriawas Set to: average fitness / maximum fitness > 0.98.
Table 4-2 showed the resuilt.

Table 4-2 GA experimental result using termination criteria: average fitness/

maximum fitness> 0.98.

generation average  percentage of mean Best best best
gap (%) iteration  true optimum R error bands(nm) VI modd
5 2228 9 0.000055 700, 750 RVI 2
10 2164 90 0.000132 700, 750 RVI 2
15 1354 81 0.000239 700, 750 RVI 2
20 851 60 0.000424 700, 750 RVI 2
25 691 37 0.000804 700, 750 RVI 2

2. Stop GA when reaching the target value (adjusted R = 0.9144). We run GA 100 times.

The generation gap was et to 20%. Table 4-3 ligs the result.



Table4-3 GA Experimental result using termination criteria: exit value = 0.9144

Experiment iteration best bands best best
Number number (nm) VI modd
1 740 700, 750 RVI 2

2 1046 700, 750 RVI 2

3 156 700, 750 RVI 2

4 555 700, 750 RVI 2

5 116 700, 750 RVI 2

99 317 700, 750 RVI 2
100 499 700, 750 RVI 2

Average iterations: 560

Accuracy and runtime

From the result of experiment one, one can see that as the iteration number
increased, GA gpproached the true optimal solution (See figure 4-6). Big generation gap
led to fast convergence but less true optima solutions percentage wise, while smal
generation gap led to rdatively dow convergence but more true optima solutions. This
was consstent with De Jong’ swork (1975) that the nonoverlapping population model
was best in mogt optimization studies.

We defined the term mean absolute R error to measure the difference between

the GA solution and the true optima solution, which could be represented as.

n

a | SASsolution - GAsolution |

i=1

mean absolute R error =
n

In our experiment, the minimal mean absolute R? error achieved by GA was
0.000055 with generation gap 5%. Asthe iteration number decreased, the mean absolute

R? error increased, which indicated that there was tradeoff between runtime and accuracy.
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Figure4-6  Theeffect of iteration number and generation gap on the per centage
of true optimal solution

From the result of experiment two, the convergence number of iterations for GA
ranged from 116-1959. The average convergence iteration was 560. In the polynomid
regression procedure performed by SAS, where al possible two-bands vegetation indices
were exhausted, the totd iteration number (number of polynomia regressions executed)
were 276 * 4*4 = 4416, where 276 represented the combinations of al wavelength pairs,
the first 4 stood for the four types of vegetation indices, and the second 4 stood for four
types of polynomid regresson modds. GA saves dmost 85% of thetimein the
searching. From runtime point of view, GA outperforms SAS procedure.

From our experiments, GA identified the optimal wavelengths 700 nm and 750
nm. RVI was the best vegetation index found by GA. Thefind regresson modd for RVI
was second degree polynomid:

RVI = 0.29 —0.003ppmN + 0.00001ppmN?2
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Besides efficiency, another advantage of GA was smplicity. Unlike the
regression procedure performed by SAS, which required additiona computation to find
al two-bands combinations for different vegetation indices before datigticd andys's, no
pre-computation was needed by GA since the individua encoding (integer permutation)
of GA had automaticaly handled this. GA dso performed gatidticd analyss and fitness
selection at the same stage rather than in two separate stages, which was unavoidable in
the SAS procedure. Therefore GA was smpler and more efficient Snce it integrated data
pre-processing, datisticd andyss and modd sdection in asingle procedure.

One mgor limitation of the current GA implementation was that the fitness
function was not complete. It used only adjusted R as model sdlection criteria This may
lead to infeasible solutions. In experiment 1, GA may sdect an indggnificant solution
(third degree polynomia model) due to the lack of significant test in the fitness function.
Further implementation of the fitness function that included a Sgnificant test will be

needed to overcome this limitation.



CHAPTER 5

SUMMARY AND CONCLUSION

In this thes's, we devel oped two gpproaches to identify optimum spectral bands
and vegetation indices that could best characterize the relationship between vegetation
indices and the bush bean plant nitrogen treatments levels. The first onewas an
exhaugtive search approach, using a SAS procedure of polynomid regression on
individua bands. The other was an optima stochastic search using genetic agorithm
(GA).

Our study employed a hyper-spectral imaging system based on aliquid crystd
tunable filter and involved 24 discrete spectrd bandsin the VIS-NIR spectrum and 4
types of vegetation indices (NDVI, RVI, DVI, Reflectance).

In the first gpproach, al possble two-bands vegetation indices under four
nitrogen treatments with 6 plantsin each trestment were computed. Polynomid
regression was then performed on individua bands to find the relationship between
vegetation indices and nitrogen treatments. The optimum spectral bands and vegetation
indices were identified by exhaugtive search. The result indicated that al vegetation
indices correlated well with nitrogen trestments under the corresponding optimum
gpectra bands. The second degree polynomid regresson modd of RVI under
wavelengths 700 nm and 750 nm performed best with an adjusted R of 0.9144.
Depending on the type of vegetation indices, other optima spectra bands were dso

determined: 710 nm, 715 nm, and 720 nm.
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In the second approach, genetic algorithm was used to search for the optimd
solution. Integer permutation encoding was used for the representation of GA individuals.
Single point crossover and random mutation were gpplied. A repair operator was aso
added to avoid illegd and redundant individuas. The fitness function performed
polynomid regresson analyss. Each individua was evaluated by the rescaled adjusted
R vaue. Two experiments were carried out with different termination criteria In the first
experiment, we ran GA until the convergence condition, average fitness / maximum
fitness > 0.98, was met. GA achieved 0.000055 mean absolute R error with generation
gap 5%, and 94% of the solutions were true optima solutions. As the generation gap
increased, the convergence number of iterations decreased, but the mean absolute R
error increased. Therefore there was a tradeoff between runtime and accuracy. Inthe
second experiment, we ran GA until it found the same best adjusted R provided by the
SAS procedure. GA found the best solution in significantly less iteration than the SAS
procedure.

Comparing the performance of these two approaches, we may conclude that both
can be used to fulfill our god. The SAS procedure provided accurate result and true
optima solution, but it could not be performed in a single procedure therefore was not
efficient and practica. The GA search combined data pre- processing, polynomid
regresson and regression model selection in one procedure therefore saved time. But it
may sdect an inggnificant modd due to the limitation of the current fitness function
implementation. There was atradeoff between accuracy and runtime for these two

approaches.



CHAPTER 6

FUTURE RESEARCH

Using current available data, we have identified the optimum waveengths and
vegetation indices, and established the satistical models that correlated nitrogen stress
levelswith vegetation indices. Thisisthe cdibration stage. Our future research direction
will focus on validating current modd and improving GA:

1. Tedt the established model by cross-validation if more data are available, that is,
apply the model to some new data and evauate the performance of the modd.

2. Improve GA by adding P value asamode sdlection criterion. This ensures that
the find modd sdected by GA is gdidticaly sgnificant.

3. After cross-vaidation test, use the established modd to predict nitrogen

concentration given the spectra data
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