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ABSTRACT 

In this thesis, two music accompaniment systems are presented. Evac (the evolutionary 

accompanist) is a system that engages in musical improvisation with the user. It uses a novel, 

implicitly interactive, genetic algorithm (GA), which allows the user’s actions to influence 

Evac’s musical performance without the need for explicit rating of individuals. Evac runs in real 

time, allowing the user to experience the same kind of exploration that happens in real life 

improvisation scenarios with other musicians. EvolMusic is an accompaniment system involving 

human preference learning. It allows direct control from the user over the accompaniment by 

using machine learning techniques to learn a fitness function from the user’s preferences. 

EvolMusic records a piece of the user’s musical input, generates different accompaniments, lets 

the user vote for his or her favorite, adjusts the GA’s fitness function, and then generates new 

accompaniments which can be further used to learn the user’s preferences.   
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

Interactive music systems are computer systems whose output is modified in response to 

their musical input (Rowe, 1993). There has been extensive research conducted in the area of 

interactive music systems nowadays. Real-time accompaniment system is one of the popular 

applications of interactive music system.  

In the literature, real-time accompaniment applications have adopted various approaches 

(Dannenberg, 1994). For example, in conventional taped accompaniment (which is not 

interactive), the accompaniment is not able to synchronize with the user’s input, and it does not 

follow the user’s input.  

On the other hand, there are also interactive accompaniment systems that are able to 

detect the user’s input flow and respond to it accordingly. For example in the system proposed in 

Dannenberg’s paper ‘An On-Line Algorithm for Real-Time Accompaniment’ (1984), the 

algorithm was able to the follow the user’s input by modeling the user’s input and the stored 

score as two sequences of events, detecting the best match between this two sequences, and 

generating the timing signals used to trigger the correct accompaniment.  

However, there were inherent limitations of such an accompaniment system: it was only 

able to adjust tempos on a small scale, based on only the tempo information, ignoring all the 

other cues such as articulation, loudness and so on. Moreover, it did not allow matching to music 
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made up of sets of unordered or simultaneous events. In other words, the system was lack of 

flexibility and freedom of the accompaniment.  

 One good solution to this problem is to apply the evolutionary computing techniques to 

generate impromptu accompaniment. Evolutionary computing is a research area which draws 

inspiration from the process of natural evolution. It reflects the phenomenon of survival of the 

fittest in nature.  

The impromptu accompaniment generated using evolutionary computing techniques has 

the property of both being stochastic and following the user’s input. Following the user’s input 

makes the generated music ‘accompaniment’ rather than some random music notes. Being 

stochastic brings flexibility and freedom to the process of generating accompaniment. The 

process doesn’t need to follow a set of rules of aligning and matching, and the resulting 

accompaniment is no longer limited to a pre-set music scores.  

 This rest of the thesis is structured as follows. The second chapter proposes a system 

named ‘Evac’, which engages in musical improvisation with the user using genetic algorithm. 

Details on how the system addresses the three main considerations when an evolutionary 

algorithm is applied to musical composition are discussed. The drawbacks in the ‘Evac’ system 

are also discussed, with the main one being a mathematically coded fitness function in the 

genetic algorithm. In order to offer a possible way to address this problem, another system, 

namely ‘EvolMusic’ is proposed in Chapter 3. In spite of the fact that the EvolMusic and Evac 

both involve genetic algorithm, they are designed to address different issues and hence possess 

different characteristics. EvolMusic addresses the fitness function part of the algorithm in a 

different way, which enables the system to learn the user’s preference. Details of the 

implementation of the system, as well as its achievements and drawbacks are discussed. In 
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Chapter 4, the research conducted in this study is summarized and possible areas for future work 

are suggested. 
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CHAPTER 2 

EVAC: AN EVOLUTIONARY ACCOMPANIST
1
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2.1  ABSTRACT 

 Evac (the evolutionary accompanist) is a system that engages in musical improvisation 

with the user. Evac uses a genetic algorithm (GA) to invent musical phrases that are neither too 

similar to the user’s input, nor too different. It is notable for two reasons. First, it uses a novel, 

implicitly interactive, genetic algorithm, which allows the user’s actions to influence Evac’s 

musical performance without the need for explicit rating of individuals. Second, in contrast to 

many pieces of software in the world of evolutionary music and art, Evac runs in real time, 

allowing the user to experience the same kind of exploration that happens in real life 

improvisation scenarios with other musicians. Evac must also deal with the design problems of 

dynamic environments, since our GA’s fitness function relies on the user’s input. Sample music 

resulting from the system is available.  
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2.2  INTRODUCTION 

Our problem is music composition. In particular, our system allows the user to play 

music while simultaneously generating impromptu accompaniment to go along with the user’s 

input. The musical “brain” of the system is a genetic algorithm implemented in C#. 

Evolutionary computing is a research area which draws inspiration from the process of 

natural evolution. It reflects the phenomenon of survival of the fittest in nature.  

The two cornerstones of evolutionary progress are competition-based selection, and the 

phenotypic variations among members of the population (Eiben & Smith, 2003). The most 

important components for any evolutionary algorithm includes: representation (definition of 

individuals), an evaluation function, population, parent selection mechanism, variation operators, 

recombination and mutation, and a survivor selection mechanism. Evolutionary algorithms 

(EA’s) have three basic features that distinguish them from other algorithms: EA’s are 

population based; they use recombination, mutation, or other genetic operators; and they are 

stochastic.  

In the literature there have been four main approaches: genetic algorithms, evolution 

strategies, evolutionary programming (EP), and genetic programming. All these dialects of 

evolutionary computing follow these general outlines, with differences only in technical detail. 

For example, the representation of individuals is historically strings over a finite alphabet in 

GAs, real valued vectors in an evolution strategy, finite state machines in the classical EP, and 

tree structures in genetic programming (Eiben & Smith, 2003). All of them have been 

successfully applied to a wide range of problems, with a focus on optimization problems. 

When an EA is applied to musical composition, there are three main considerations 

(Burton & Vladimirova, 1999), namely the search domain, the genetic representation, and the 
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fitness evaluation. For musical composition, the search process is analogous to a combinatorial 

optimization problem, and because of the infinite combination of melodies, harmonies and 

rhythms, its search space is unlimited (Tokui & Iba, 2000). Therefore, the composition should be 

guided by some constraints. By artfully choosing our constraints, we aimed to maximize the 

musicality of Evac’s output, as well as its real-time responsiveness. To this end, we limited our 

search to melodies of length 16 (i.e., strings of 16 single notes). Each note is encoded by 11 

binary bits. All together this yields (2
11

)
16

 possible combinations: still quite large, but no longer 

infinite. 

Our goal when designing the representation was to be as simple as possible while 

maximizing the effectiveness of evolutionary search. Hence we adopted a discrete representation 

where an integer encodes several properties of a note, and an array of 16 integers represents an 

individual (musical phrase). 

The last topic is fitness evaluation. Since we are generating impromptu accompaniment 

for the user’s music, we incorporate the user’s input into the fitness function. Specifically, the 

music represented by an individual in the GA is compared with the user’s input and rated for 

similarity using music theoretic notions. To determine the individual’s fitness, we used a 

function that assigned low fitness values to those individuals who were either too similar or too 

different. High fitness individuals were similar but not identical to the user’s input. This ensured 

that the GA favored individuals that were related to the user’s input without copying it.  

The rest of the paper is structured as follows. The second section gives a brief review of 

the literature related to evolutionary computation and its application in music and art; the third 

section describes how the user interacts with Evac; the fourth section offers a detailed description 

of the Genetic Algorithm used in Evac including: individual representation of music notes, 
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fitness function and genetic operators; the fifth section discusses the results of running and 

playing with Evac, along with analyses regarding the system; the sixth section presents 

conclusions about the performance of Evac, and the seventh section discusses future work. 

2.3  BACKGROUND 

Genetic algorithms have also been frequently used as an approach to music composition. 

In a previous study (Matic 2010), position based representation of rhythm and relative 

representation of pitches (based on distance from a starting pitch), were used to allow flexible 

encoding of music compositions.  Use of a mathematical (i.e., non-interactive) fitness function as 

well as an initial population with pre-defined rhythm made the GA simpler to implement, and 

also improved the quality of the final result.  

However, strictly non-interactive fitness functions preclude human influence on 

individuals’ fitness. While in some cases this might be desirable, one of the primary goals of art 

is to give voice to human experience; as such, removing humans entirely from the loop of the 

fitness calculation represents a serious trade-off. Interactive evolutionary algorithms (IEAs) 

address that exact issue. Interactive evolutionary algorithms explicitly include the user in the 

evaluation of individuals, typically by allowing them to select the best individual(s) from a group 

or assign fitness values based on subjective appeal. In another paper on evolutionary music 

composition, Tokui and Iba (2000) combined genetic algorithms and genetic programming in an 

IEA. The GA individuals represented short pieces of rhythmic patterns, while the GP individuals 

expressed how these patterns were arranged in terms of their functions. Both populations were 

evolved interactively through user evaluation. The integration of interactive GA and GP has the 

benefit of allowing search for music structures in large search space. 
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Interactive evolutionary algorithms have also been used in generating artwork. For 

example, Graca & Machado used an IEA to generate assemblages (similar to collages) of 3D 

objects (2008). In their evolutionary art approach, users make the initial choice of source image 

and object library, then guide the evolutionary process in accordance to their artistic preference, 

until a desirable distribution of 3D objects is evolved. Several interesting points addressed by 

this system include: developing masks to allow exploration of details and ignore other regions; 

conveying different artistic notions such as motion; mimicking texture; and developing overall 

expressiveness. The limitations of this system include human fatigue, as well as the 

computational effort required to preview and render the individuals.    

User interface design has also been the subject of interactive evolutionary algorithms 

(Masson, Demeure, & Calvary, 2010). In an evolutionary system called Magellan, the traditional 

model-based (task-based) approaches and the interactive genetic algorithms were combined to 

foster the exploration of the design space and inspire the designer. The input of the system was 

the given user task model, and the output was sketches of UI’s, which could be later tuned by 

human designers. However, as with the previous example, the authors ran up against the human 

fatigue problem. 

To address the issue of human fatigue, one approach that has been used is to hardcode 

mathematical heuristics of aesthetics. For example, in a proposed jewelry design system, several 

heuristics functions evaluating aesthetics and morphology were included, which reduced the 

amount of feedback needed from the user by two orders of magnitude (Wannarumon, Bohez, & 

Annanon, 2008). It was basically a hybrid approach in which evaluations rely partially on an 

encoded fitness function (the algorithmic aesthetics), and partially on subjective human 
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feedback. However, this approach is still limited in its need for a hard-coded aesthetical 

evaluation function, which is something that may not be possible or practical for every situation. 

In order to overcome both the human fatigue problem and the hard coded fitness 

function, Hornby and Bongard (2012) developed The Approximate User (TAU) system, in which 

a model of the user’s preference was built and refined continuously during the search process. 

This preference model could then be used to drive the search algorithm, decreasing the demand 

placed on the user. Two variations of a user-modeling approach were compared to determine if 

this approach can accelerate IEA search. The first approach involved learning classification rules 

to determine which of two designs is better. The second involved learning a model to predict 

fitness scores. These two variants were compared against the basic IEA and it was shown that 

TAU was 2.7 times faster and 15 times more reliable at producing near optimal results.  

2.4  EVAC AND THE USER 

Evac is simple to operate – after opening the program, a very minimal user interface is 

displayed and the user begins to hear the tick of a metronome. From this moment, Evac is ready 

to accept user input. The user treats the Tab, Q, W, E, R, T, Y, U, I, O, P, open-bracket (‘[’), and 

close-bracket (‘]’) keys on their computer keyboard like keys on a piano, pressing them to trigger 

the sound of a flute and releasing them to stop the sound. One note can be played at a time. Each 

key corresponds to a specific pitch, shown in Table 1.  
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Table 1: Keyboard keys and pitches. 

Keyboard Key Pitch 

Tab A2 

Q B2 

W C3 

E D3 

R E3 

T F3 

Y G3 

U A3 

I B3 

O C4 

P D4 

[ E4 

] F4 
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After a certain amount of “prep” time, whether the user has played anything or not, Evac 

will begin playing the output of the genetic algorithm. (In fact, Evac will happily play along with 

silence forever - the fitness function, described below, has no problem with comparing against 

silence.) 

Evac addresses the human fatigue problem in a novel way. The system does not require 

the user to evaluate music pieces directly, saving them the mental fatigue of making choice after 

choice (though the trade-off is that the user has no way to directly control the software’s 

performance). Evac, however, does constantly compare its output against the user’s input. As a 

result, the user is kept in the evaluative loop. In this way, Evac dodges the issue of user fatigue - 

the only human activity involved is playing music, which is quite enjoyable. As a matter of fact, 

our system can be used as a tool to assist musicians in developing creative accompaniment 

without much effort; all one needs to do is to keep playing. 

2.5 THE GENETIC ALGORITHM APPROACH 

2.5.1 Overview 

A technical overview of Evac’s GA configuration is given in table 2. The major concern 

when designing Evac’s GA was the need to balance the competing demands of high performance 

with the limited resources available in a real-time environment. A clear microcosm of this issue 

presents itself in deciding an appropriate population size. Our population size of 100 was chosen 

to be small enough to prevent undue resource consumption: excessively large populations require 

more computation per generation, leading to more inertia and less responsiveness. Since Evac 

operates in real time, this would decrease the value of the system. On the other hand, small 

population size limits the diversity of the population. This means fewer musical ideas present in 

the population and a greater risk of stagnation. 
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Table 2: Technical overview of Evac’s GA parameters. 

Representation 

Discrete. Integers represent pitch. Relative 

position of integers represents rhythm. (See 

below.) 

Parent selection strategy Tournament selection with 4 competitors. 

Survival strategy 

Generational + elitism. (Best individual 

retained between generations.) 

Crossover Uniform crossover; probability: 90% 

Mutation 

Uniform mutation; mutation probability per 

gene: 20% 

Population size 100 

 

 

We were reluctant to use “on-line” forms of parameter control (e.g., self-adaptation, 

dynamic parameter control) for two reasons. First, some forms of control pose additional 

challenge to the evolutionary process. Second, others depend on a priori reasoning that was not 

relevant to Evac’s task. For example, a common technique is to use dynamic parameter control 

to decrease mutation rate as the algorithm progresses. Since Evac operates for as long as the user 
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is entertained, this technique is not appropriate. With that in mind, parameter tuning (i.e., trial 

and error) was used to determine a reasonable balance between the two demands. 

2.5.2 Representation 

Figure 1 shows the representation for a single music note, and for an individual of the 

GA. As mentioned earlier, the representation for a single note was an 11-bit integer encoding of 

several values. Specifically, the lowest 6 bits were used to present the pitch of the note, which 

gave us a range of 64 different pitches (more than sufficient for the thirteen pitches we used). 

The next 4 bits were used to represent the velocity of the note (i.e., volume, or the strength of the 

note), which gave us a range of 16 different levels of velocity. If the velocity for a note was 0, 

that meant it was silent (i.e., a break or rest). The next bit marked whether this note was a new 

note or a continuation of the previous one. This bit was only meaningful if there were two 

consecutive notes with the same pitch. In that case, a new note means two notes will be played. 

If the second one is not a new note, it will not be played; instead, the first note will be played for 

the duration of two notes. 

 

Figure 1: Representation for a single music note and an individual 
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However, in Evac’s GA, an individual is not merely a note, but an entire musical phrase, 

i.e. a series of notes. We took each individual to be 16 notes long; as in music, these sixteen 

notes could be played over an arbitrary length of time, depending on Evac’s settings. This 

allowed the user to determine for themselves whether they wanted to play a fast song or a slow 

song. An example of a musical phrase and the corresponding GA individual representation is 

shown in Figure 2.  

 

 

 

Position 1-5 2 3 4 5 7-16 

Velocity 0 1 1 1 1 1 

Pitch 12 7 5 3 0 0 

isNewNote n/a true True true true False 

Figure 2: Musical phrase (above) and corresponding Evac individual representation (below). 

 

 

2.5.3 Similarity Rating and Fitness Function 

An individual’s fitness was achieved by transforming a similarity function. The similarity 

function was computed by comparing each individual against the user’s input for the previous 16 
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beats, and depended only on the harmonic “distance” (musical term: interval) between the 

pitches at each index. (In our representation, such harmonic distance can be computed by simple 

subtraction of the integer pitches.) Our similarity weighting function was informed by a musical 

technique called counterpoint, in which two separate melodies (strings of notes) interweave to 

form a larger texture. These two separate melodies are harmonically interdependent, but 

independent in pitch contour and rhythm. In particular, we used a simplistic approach where 

consonant, “at rest” intervals had a higher similarity rating, while dissonant, “unstable” intervals 

had a lower similarity rating. Generally for most people, a consonance sounds pleasant whereas 

dissonance sounds unpleasant or harsh. As Roger Kamien said in his book (2008), “An unstable 

tone combination is a dissonance; its tension demands an onward motion to a stable chord. Thus 

dissonant chords are ‘active’; traditionally they have been considered harsh and have expressed 

pain, grief, and conflict.” We want our music to be more pleasant to listen to, hence we gave 

consonant intervals higher similarity ratings, which will lead to higher fitness values in the 

evolutionary process.  

Table 3 presents the 12 different musical intervals and their corresponding similarity 

values. We adopted these values based on music theory knowledge and our own musical 

intuition. If two notes have an interval that is higher than 12, their similarity value was calculated 

in this way: first, a similarity value was calculated based on Table 3 using the remainder of that 

interval value divided by 12, then the resulting similarity value was decreased by 0.2 to get the 

final similarity value. Rests have a similarity value of 1 to other rests, and a similarity value of 0 

to non-rests. 

The similarity value of an individual was the sum of the similarity values calculated for 

each of the 16 notes within that individual. Once a similarity value had been obtained for an 
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individual, that similarity value was passed through a weighting function (i.e., the fitness 

function, shown in Figure 4) to calculate the individual’s fitness value. The decision of weighting 

functions was based on the principle that individuals with excessively low or high similarity 

should receive low fitness values. Individuals with mid-to-high range similarity values should 

receive higher fitness values. Several fitness functions were tested and the one with the best 

performance among them, a quadratic function, was chosen. 

 

 

 

Figure 3: Music intervals shown on piano keyboard 
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Table 3: Musical intervals and their corresponding similarity values. 

Interval : Musical Name Similarity value 

0 : Unison 1 

1 : Minor second 0 

2 : Major second 0.3 

3 : Minor third 0.4 

4 : Major third 0.6 

5 : Perfect fourth 0.1 

6 : Tritone 0 

7 : Perfect fifth 0.8 

8 : Minor sixth 0.6 

9 : Major sixth 0.4 

10 : Minor seventh 0.3 

11 : Major seventh 0.1 

12 : Octave 0.9 
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To provide a brief idea of how Table 3 works out in practice, assume we are interested in 

the individual: [0, 3, 5, …]. Furthermore, assume the first three notes of the user’s input for the 

last 16 beats was [0, 10, 22, …]. To determine the similarity rating, simply calculate the absolute 

value of the differences between each note: [0 - 0, 10 - 3, 22 - 5, …] = [0, 7, 17, …], then 

compare to table 3. We can see distances of 0 (a unison - i.e., the same note) have a similarity 

value of 1, distances of 7 have a similarity value of 0.8. For the distances of 17, we first get the 

remainder of 17 divided by 12, which is 5, and from Table 3 we get distances of 5 have a 

similarity value of 0.4. We then decrease 0.4 by 0.2 (which is a static value got from 

experimentation) and get 0.2. Thus, for each interval we have similarities [1, 0.8, 0.2, …]. To 

obtain the similarity score for an individual, simply sum the similarities of each interval. Thus, 

assuming the individual in question consisted of only those three intervals listed explicitly above, 

our example would have a similarity value of 2. To obtain the individual’s final fitness score, 

apply the fitness function shown in Figure 4:                  , yielding -64. 

  

 

 

Figure 4: Fitness function: f(x) = – (x-10)
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2.5.4 Genetic Operators 

For mutation we used uniform mutation. For each individual (i.e., series of notes), the 

algorithm goes through each one and decides whether that note will be mutated. Once a certain 

note is chosen to be mutated, a new random integer will be generated to replace that note.  Since 

all three components (pitch, velocity, isNewNote) are encoded within this integer, we don’t need 

to deal with the components separately. A high mutation rate (20%) was chosen to prevent the 

algorithm from converging on a simple parallel imitation of the user (i.e., shifted up some 

number of pitches, but otherwise identical).  

For crossover, we used uniform crossover. Specifically, we did not do crossover between 

notes; instead, we performed crossover between different individuals. There are two reasons to 

adopt this strategy. First, it is simple. Second, and more importantly, we suspect that, in keeping 

with ideas like the Building Block Hypothesis, recombining effective individuals will allow us to 

more rapidly reach higher levels of quality. 

2.6 RESULTS AND ANALYSES 

Four excerpts of Evac sessions are available on the website 

https://www.dropbox.com/sh/h5cbz756tcyxy6n/vUXrcnmjKg , labeled “Evac Demo 1”, “Evac 

Demo 2”, “Evac Demo 3”, and “Evac Demo 4.” Again, the flute sound is played by a human 

user and the piano sound is played by the computer. What follows are subjective evaluations of 

Evac’s performance; further research would involve more rigorous measures of quality (e.g., 

systematically conducted surveys regarding Evac’s effectiveness, rating by experts on its degree 

of musicality and quality of accompaniment, etc.) 

The first thing to be said about Evac is that it is surprisingly fun to use. We opted to use a 

flute as the voice for the user’s input, and a piano as the voice for the program. The result was 

https://www.dropbox.com/sh/h5cbz756tcyxy6n/vUXrcnmjKg
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both musical and entertaining. While Evac does not provide hours of entertainment, there are just 

enough moments of unexpected beauty to keep one engaged for half an hour or an hour. It is 

particularly exhilarating when, instead of simply complementing the user’s phrases, the 

evolution yields phrases that seem to demonstrate some initiative of their own. 

On a similar note, the major goal of implicit interactivity was to minimize the amount of 

user fatigue suffered while controlling the algorithm. In our experience, this was a total success. 

Working with Evac felt much more like playing a game than interacting with an algorithm. 

While we mentioned that Evac could keep one engaged for something on the order of an hour, 

we suspect, if there were good reason, people would be able to continue significantly longer than 

that. 

We did notice that it takes Evac some time to “catch up” when the user changes musical 

directions. This is to be expected - the population had optimized for a certain fitness function, 

and when the user changes their behavior, the algorithm needs time to adapt to the new fitness 

landscape. Nor, all told, is the time it takes to adapt excessive. Typically within one or two 

cycles of 16 beats, it has found its way into something that is at least not offensive, if not truly 

complementary. 

Evac also seems to yield a better experience with slower songs. To some degree, this can 

be attributed to the processing demands - for slower songs, fewer computations need to be 

performed per second, and as a result the program responds more smoothly and immediately to 

user input. At the same time, this is also a function of the latency present in the system. Even at 

modest speeds, there is still appreciable (if not crippling) delay between when the user presses a 

key and when the corresponding flute sound plays. Slower tempos mean the latency introduces 

relatively less error, thereby making the delay less intrusive. This latency also limits the user’s 
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play style, to some extent. Because of the latency, it is difficult to perform quick, intricate 

movements while keeping time with the rest of the system. As such, it is simpler and easier for 

users to play mostly long, sustained notes with some flourishes, either at the beginning or the 

end. Highly rhythmic melodies are essentially a non-option because of this. 

Though latency introduces some difficulties, perhaps Evac’s greatest weakness is its utter 

lack of phrasing. This means that, while Evac almost always sound good with what the user 

plays, it is difficult to let Evac “take the lead.” This is not ideal both because the user must 

always be actively determining where the song will go, and because if the user runs out of ideas, 

the session effectively comes to an end. Of course, this is not surprising; Evac’s fitness function 

only takes into account the “harmoniousness” of an individual melody in relation to what the 

user has done, so there is no reason to expect that it would demonstrate phrasing behavior. 

2.7 CONCLUSION 

Evac is excellent for what it is - a first approximation that demonstrates the power of 

implicit interactivity. Evac demonstrates satisfying performance on musical improvisation with 

the user. Evac’s ability to run in real time allows the user to experience the same kind of 

exploration that happens in real life improvisation scenarios with other musicians. 

On one hand Evac is able to follow the music that the user plays; on the other hand, Evac 

is more than a simple reharmonizer. It never copies the user, nor does it repeat its own previous 

melody. When the user stops playing (while keeping the program running), Evac will also slow 

down gradually, but it will never completely stop playing – it will play few notes every now and 

then, as if it is asking and waiting for the user to respond. Once the user starts playing again, 

Evac will re-start the cooperation with the user, with very short amount of time needed at the 

beginning to adapt to the user’s music style. 
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2.8 FUTURE WORK 

The most immediate need is for reduced latency. If Evac responded immediately and 

effortlessly to user input, we anticipate using it would become even more fun. This in turn would 

improve the extent to which it fulfilled its original purpose: eliminating user fatigue. There are 

also some small audio rendering issues (particularly at the end of notes) that could use fixing. 

These small improvements, together with a strong graphical user interface, would make Evac 

worthy of public distribution. 

If its other operations could be suitably optimized, the next greatest need is for more 

sophisticated parameter control. Parameter tuning has many downsides, and there is a reasonable 

chance that well-designed parameter control could reduce or eliminate the issue with Evac not 

taking the lead (e.g., by increasing mutation rate and number of notes played when user isn’t 

playing much, etc.). Furthermore, sophisticated parameter control could throttle back the GA’s 

resource usage in the event that other, non-Evac processes begin demanding CPU time. 

There is also an entire branch of research that we have yet to exploit, despite its great 

potential relevance: evolutionary computation in dynamic environments. Techniques like storing 

good solutions to be used in case their environment returns, or using random immigrants to help 

adapt to a new fitness landscape could be easily applied to our problem domain, since our fitness 

function changes whenever the user moves in a new musical direction. Using these kinds of 

strategies would yield serious improvements in Evac’s ability to simulate a real human 

improvisation partner, since a key part of musical improvisation with other people is recognizing 

song sections which can be returned to or modified. 

Finally, the fitness function has several weaknesses that could be addressed in future 

research. Most obvious is that both the fitness function and the similarity function are hard-
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coded, and thus rely on human expertise. Minimizing the human involvement in these features 

would improve Evac’s ability to participate in improvisation across different musical traditions 

and with different individuals. Such an innovation might also be engineered to address the issue 

with phrasing, or to other musical problems like how to coordinate the actions of more than one 

automated instrument. 

Once Evac or its peers are advanced enough, one might even connect them to one 

another, and see what kind of music machines would make just for themselves. 
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3.1  ABSTRACT 

 This project is an extension of a previous work “Evac: An Evolutionary Accompanist 

(Zhang & Bailey, 2013)”, in which a computer improvisational accompaniment system, Evac, 

was built and described. In spite of the fact that the EvolMusic and Evac both involve genetic 

algorithms (GA), they are designed to address different issues and hence possess different 

characteristics.  

The two main differences are as follows. Firstly, Evac uses an implicitly interactive 

genetic algorithm, which has a hardcoded mathematical fitness function and allows the user’s 

music input to influence Evac’s response without the user’s explicit inference, while EvolMusic 

allows direct control from the user over the accompaniment using machine learning techniques 

to learn  a fitness function from the user’s preferences. Secondly, Evac runs in real time, i.e., the 

accompaniment is generated and played online, while EvolMusic records a piece of the user’s 

musical input, generates four different accompaniments, lets the user vote for his or her favorite, 

adjusts the GA’s fitness function, and then generates new accompaniments which can be further 

used to learn the user’s preferences.   
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3.2  BACKGROUND 

The increasing popularity of interactive music systems in computer music have led to 

extensive research nowadays. In his book “Interactive Music Systems – Machine Listening and 

Composing,” Robert Rowe defined interactive computer music systems as computer systems 

whose output is modified in response to their musical input. In the book “Composing Interactive 

Music: Techniques and Ideas Using Max”, Todd Winkler defined interactive music as “a music 

composition or improvisation where software interprets a live performance to affect music 

generated or modified by computers” (Winkler, 2001). The systems affect the output music by 

altering musical parameters such as pitch, tempo, rhythm, orchestration and so on. Modeling of 

human hearing, understanding and response are involved in the interactive systems (Rowe, 

1993).  

Rowe also identified categories for interactive computer music systems. The first way to 

classify interactive systems is based on whether they are ‘score-driven’ or ‘performance-driven’ 

(Rowe, 1993). Score-driven interactive systems involve music alignment, that is, the computer 

being able to detect and match the music input, based on stored event sequences or pieces of 

music scores; whereas performance-driven music systems do not expect input music that 

matches any stored files, or has any known patterns.  

The second way to classify interactive systems is based on how the systems produce new 

output music – there are transformative, generative, and sequenced interactive systems. 

Transformative music systems take any form of music input and transform them into new pieces 

of music to output; the transformation can be minor changes or changes that cause the resulting 

music completely different from the input music. Generative computer system, on the other 

hand, generate music base on musical rules. They don’t take any music input, though they may 
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use some raw music elements as source material. Sequenced computer music systems can detect 

real-time music input and choose to output their stored music pieces based on the events they 

detected.  

The third way to classify computer music systems is to distinguish them as player or 

instrument paradigms (Rowe, 1993), i.e., some systems aim at constructing an artificial music 

performer, while others aim at behaving as a musical instrument themselves. For example, a 

player paradigm system played by a single human performer would behave like a duet, whereas 

an instrument paradigm system played by a single human would behave like a soloist. Instrument 

paradigm systems are interactive in that they take the performer’s musical input and generate 

their own musical output. For example, consider a system that mimics a guitar, but is “played” 

by singing.  

According to Todd Winkler (2001), there are generally five steps in the interactive 

process: human performer or musical instruments input; computer listening; software 

interpretation of the computer listener and detecting useful data for composition; computer 

composition based on the interpretation from last step; and finally sound output by hardware. 

In the literature, real-time music accompaniment applications have adopted different 

approaches (Dannenberg, 1984) ranging from conventional taped accompaniment (one does not 

follow user input, i.e., one that is unable to synchronize the user’s input with the accompaniment 

the computer plays back), to interactive improvisation involving algorithms such as evolutionary 

computing algorithms. Roger B. Dannenberg at Carnegie-Mellon University published a series 

of papers in which he proposed and developed computer music systems that can listen to a live 

monophonic performer, align his or her input to a stored music score, and then play back pre-

composed accompaniment simultaneously.  



 

 

32 

 

In the paper “An On-Line Algorithm for Real-Time Accompaniment” published in 1984, 

he proposed his computer accompaniment system for the first time. He noted that there are three 

sub-processes involved, namely taking input from a live soloist and processing it, aligning the 

processed input with a stored musical score, and determining the timing signals used to trigger 

the correct accompaniment from a pre-composed score. Since the live performer is not immune 

to making mistakes while performing, and the computer’s input detection is not perfect, the 

accompaniment system must maintain a certain level of tolerance in matching the input with the 

stored score.  

Specifically, the way the system was implemented was based on modeling the user’s 

input and the stored score as two sequences (or streams) of events. Then the problem was boiled 

down to finding the “best” match between these two sequences. There are many ways to seek the 

‘best’ match, and the one Dannenberg adopted was rather intuitive – to find the ‘longest common 

subsequences’ of the two sequences (Dannenberg, 1984). The concept of a “virtual clock” was 

used to generate the timing information to play the accompaniment based on the matching. Two 

experimental systems were constructed: one with an AGO keyboard for input and the other one 

with trumpet input.  

Limitations of these systems included (Dannenberg, 1984): it was only able to adjust 

tempos on a small scale rather than attempt to adjust tempos in a certain musical manner; it was 

only able to adjust the accompaniment based on the tempo information, ignoring all the other 

cues such as articulation, loudness and so on; and last but not least, it assumed that the input is an 

ordered set of events, thus it did not allow matching to sets of unordered or simultaneous events. 

Despite the limitations, the system was able to follow and accompany a live performer and had a 

desirable level of tolerance for different tempos, extra notes and omitted notes. 
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To overcome the shortcomings inherent in a mathematical approach to music composing 

or music understanding, we can adopt machine learning techniques. Machine learning can use 

multi-dimensional training data and take into account a large number of low-level features such 

as pitch and tempo, thus building effective classifiers which are able to undertake higher-level 

music processing.  

In the paper “A Machine Learning Approach to Music Style Recognition” (Dannenberg, 

1997), three types of machine learning classification techniques, namely naïve Bayesian 

classification, linear classification, and neural networks, were used to classify an improvisation 

as certain music styles (Rubine, 1991). For each type of classification, two sets of experiments 

were carried out. The first experiment was to classify the piece of music into four styles: 

“Frantic,” “lyrical,” “syncopated,” or “pointillistic”. In the second sets of experiments, four 

additional musical styles were added for consideration: “quote”, “blue”, “low,” and “high.” 

Training data were labeled for use in supervised training, and 13 lower-level features were 

identified based on the MIDI data.  Cross-validation was used for the training. Confidence 

measures were used to reduce false positives.  

Results showed that all three types of classifiers can classify music with a high accuracy 

rate, ranging from 77% to 99%. The experiment with four target features showed higher 

accuracy rate. Neural networks took hours to train while the other two types of classifiers took 

minutes (Bishop, 1995). The technique developed in the paper was believed to have applications 

in the field of music composition, understanding and performance. 

Evaluation is another important step to consider in computer music generation, though it 

was omitted for EvolMusic. In the paper “Critical Issues in Evaluating Freely Improvising 

Interactive Music Systems” (Linson 2012), several approaches to evaluating interactive 
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computer music systems were reviewed, with their strengths and weaknesses analyzed and 

compared.  

Specifically, it discussed the advantages and disadvantages of computer based 

quantitative evaluation (Pressing, 1987), and also concluded that human expertise, which 

conducts qualitative evaluation, is more appropriate and in some circumstances, indispensable 

(Pearce and Wiggins, 2001). The paper pointed out that quantitative evaluation has advantages in 

evaluating music in which the melody and/or the rhythms are constrained by a set of ‘well-

defined style-based rules’.  

On the other hand, for music like freely improvised music, the quantitative evaluation 

loses its advantages because freely improvised music differs in evaluation criteria (Lehmann and 

Kopiez, 2010). In other words, definable musical rules are not enough to describe or to judge 

freely improvised music, because of the spontaneous characteristics and real-time negotiating 

interactions of this music style (MacDonald, et al, 2011). Other shortcomings of quantitative 

analysis include that it cannot decide which musical features from a performance have the most 

significance in the analysis process. Also, it is not good at detecting large scale structures within 

a music piece, nor does it take into account the listening context or the subjectivity of the 

audience (Clarke, 2005).  

In contrast, human experts don’t have as many inherent problems in these aspects (Smith, 

1997), although it is conventionally thought to be lack of scientific rigor. For example, human 

experts are able to avoid measuring merely the compliance to musical rules.  

That said, the paper still noted that no evaluation methods should be used to replace the 

others for all the music systems, and it is important to find an appropriate and flexible evaluation 

method for a specific music system (Stowell, 2009). For example we can collect listeners’ 
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opinions through a survey, if we have a population of listeners available; or focus on the 

underlying software to find more results in answer to our research questions (Collins, 2008). In 

conclusion, the author said that there has been no ‘well-established evaluation method that is 

widely recognized in the literature’ for interactive computer music systems.  

For this paper, no formalized evaluation system was built due to the limitation of time and 

resources. In spite of that, one can keep playing and listening to the responsive real-time 

accompaniment, maybe in different styles, and have some idea of the quality of the resulting 

music pieces. 

3.3  USER INTERFACE OF EVOLMUSIC 

The user interface of EvolMusic is simple and clear. It has nine buttons in total and the 

layout is intuitive: one bigger button to let the user input music, four buttons assigned to play 

each of the four generated accompaniments, and four other buttons to let the user vote for the 

respective accompaniments. On startup, the interface shows the greeting words at the message 

area, the top right of window, and only the button for inputting music is clickable, with all the 

other eight buttons greyed out (as shown in figure 1).  
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Figure 5: Startup window of EvolMusic 

 

 

Once the user starts inputting music by typing on the keyboard, EvolMusic starts 

counting notes the user has input, and correspondingly the number of notes left for the user to 

input is shown in the message area of the window. At this stage, all the buttons on the window 

are greyed out (as shown in figure 2), to suggest the user to complete the music input before any 

further action. 
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Figure 6: EvolMusic interface when user inputs music 

 

 

After the user has played 12 notes, the window shows the message “Generating songs!” 

(as shown in figure 3) while EvolMusic works on generating four pieces of accompaniment. All 

the buttons are still greyed out at this point. 
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Figure 7: EvolMusic interface when new accompaniments being evolved 

 

 

Once EvolMusic has completed generating all accompaniments, all the buttons become 

clickable to indicate the accompaniments, along with recorded user’s input music, are ready to 

play and be voted on (as shown in figure 4). 
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Figure 8: EvolMusic interface when it’s ready to let user play the generated 

accompaniments and vote 

 

 

3.4  SYSTEM DESIGN 

EvolMusic was developed based on Evac (Shu & Bailey, 2013), and the main frame of the 

GA remains unchanged. The main part that has been changed is the fitness function. In the 

following two sections, first we will discuss in short about the overall configuration for the GA 

being used here (for more detail descriptions please refer to the paper “Evac: An Evolutionary 

Accompanist”); then we will go into more detail about the hill climbing technique used in fitness 

function learning. 

3.4.1 Genetic Algorithms 

As with Evac, the GA individual representation used in EvolMusic was an array of 16 

single notes. Each single note was an 11-bit integer encoding of several values (as shown in 
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figure 5). Tournament selection was used as the parent selection strategy. A generational survival 

strategy with elitism was used. Uniform crossover with 90% probability and uniform mutation 

with mutation rate of 20% per gene were used. The population size was chosen to be 100, which 

was small enough to prevent excessive computing time, and large enough to maintain a certain 

level of diversity in the GA individuals. 

 

 

  

Figure 9: Representation for a single music note and an individual 

 

 

3.4.2 Fitness Function Learning 

In Evac, the fitness of an individual in the GA was achieved by transforming a similarity 

function. The similarity function was computed by comparing each individual against the user’s 

input for the previous 16 single notes. Depending on the harmonic “distance”, a mathematical 
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value was assigned to each of the 12 different musical intervals that Evac allows the user to 

input. The similarity value of an individual was the sum of the similarity values calculated for 

each of the 16 single notes within that individual, and the fitness value for that individual was 

determined by passing its similarity value through a quadratic function. The quadratic function 

was set so that individuals with excessively low or high similarities received lower fitness 

values, whereas those with mid-to-high range similarity values received higher fitness values. 

However, with EvolMusic, the quadratic weighting function was omitted, and the 

“similarity pairing values” were adjustable based on human evaluation (user voting) instead of 

being hardcoded. It should be pointed out that here since the similarity pairing values directly 

reflected the user’s preference, the sum of the similarity paring values does not need to be passed 

through any weighting function; rather, the sum of the similarity pairing values can serve directly 

as fitness values for an individual. To reduce the size of the search space for the fitness function, 

instead of dealing with similarity values for all 12 intervals, the intervals were hand-grouped into 

four sets: high, medium-high, medium-low, and low similarity (as shown in table 1). 

 

 

Table 4:  Interval categories  

Interval : Musical Name Similarity value 

0 : Unison High 

1 : Minor second Low 

2 : Major second Low 

3 : Minor third Medium-high 
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4 : Major third Medium-high 

5 : Perfect fourth High 

6 : Tritone Low 

7 : Perfect fifth High 

8 : Minor sixth Medium-high 

9 : Major sixth Medium-high 

10 : Minor seventh Medium-low 

11 : Major seventh Medium-low 

12 : Octave High 

 

 

During the hill climbing technique to learn similarity values, there were four alternate 

model manipulations: higher similarity values between notes, lower similarity values between 

notes, increased relative distance between notes, and similarity values between notes that were 

unchanged. Specifically, the way the first three models tune the similarity values are shown in 

table 2. γ was set to 0.9 originally, and tuned over time, to accumulatively slow down the 

manipulation speed. The similarity values were controlled so that they were always between 0 

and 1. As can been seen from the mathematical functions, “Model_up” and “Model_down” do 

not adjust similarity values linearly – the size of the adjustments gets smaller as the similarity 

values grow (Model_up) or shrink (Model_down). While Model_up and Model_down “squash” 

the similarity values, the third model spreads all the similarity values, where mind in the equation 

was either the difference between 1 and the maximum similarity value, or the minimum 

similarity value, depending on which one is smaller. 
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Table 5: Implementation of the three model manipulations 

 
 

Implementation functions 

Model_up 

 

                                                            ) 

 

Model_down 

 
                                                          

 

Model_spread 

 

                                                    

 
                                   ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

                                  ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
) 

 
 

 

3.5 RESULTS AND CONCLUSION 

First of all, the UI design of EvolMusic made it very handy and intuitive to use.  Second, 

the choice of input 12 notes at a time was successful – it allowed the user to input music that was 

long enough for a human being to sense and judge, and short enough to avoid human fatigue of 

listening and evaluating, as well as to prevent memory loss when the user compares and votes. 

Third, the computing time of generating new accompaniments were not unbearably long – it 

generally took less than 3 seconds.  

More important, EvolMusic achieved its main goal successfully – to be able to generate 

different accompaniments and learn human preferences based on user feedback. The four 

accompaniments were all reasonably good – which was to some extent a merit inherited from 

Evac. The user was able to sense the difference between these accompaniments and make a 

choice, at least with multiple trials of listening and comparing, which was well supported by 

EvolMusic. 
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However, the fact that there were only four models of adjusting similarity values made 

the learning a bit crude. There were two reasons behind using only four models: first, more 

manipulating models means more computing resources will be consumed; second, too many 

accompaniment choices will add more burden and confusion to the user, since he or she would 

have to listen to and compare all the alternatives. 

3.6 FUTURE WORK 

Despite the positive results of EvolMusic, there are a few things that might be improved. 

First of all, EvolMusic was not able to incorporate the Evac’s real time performance. After the 

user votes for his or her favorite accompaniment, and EvolMusic digests that information and 

generates new accompaniments, the user would have to repeat the same procedure again – 

listening to four alternative accompaniments and voting. In other words, EvolMusic was only 

able to learn the user’s preference, but not to put that knowledge to use in accompaniment. This 

problem will have to be solved if we want EvolMusic to be practically useful. 

Second, though with careful listening, a user can find the differences between the 

alternative accompaniments, maybe it is a good idea to make the differences more obvious.  

Third, as with Evac, EvolMusic was also just a prototype to convey the author’s initial 

idea. As a result, these two pieces of software are not to their highest potential. Many details 

need to be improved in order to make them more successful. For example, a button to tune the 

volume of the accompaniment relative to the user’s input music seems necessary for the software 

UI; permitting the user to choose the number of notes in the input, as well as more timbre 

choices are desirable. Finally, more than one accompaniment instrument should be considered to 

enhance the performance of the software. 
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CHAPTER 4 

SUMMARY AND CONCLUSIONS 

The goal of this research was to apply evolutionary algorithm and machine learning 

techniques to the interactive music composition area. Two music accompaniment systems that 

address different issues were proposed in this research. Implementation details, achievements 

and drawbacks of these two systems were discussed.  

The first system proposed, Evac, uses a novel, implicitly interactive genetic algorithm 

which allows the user’s musical input to influence the generated accompaniment without the 

need for explicit rating of the individuals of the genetic algorithm. In contrast to many pieces of 

software in the world of evolutionary music and art, Evac runs in real time, allowing the user to 

experience the same kind of exploration that happens in real life improvisation scenarios with 

other musicians. Evac demonstrates satisfying performance on musical improvisation with the 

user, though it shows several disadvantages such as latency. Another drawback in Evac is the 

hardcoded fitness function in the genetic algorithm, which leads to the research in the second 

system – EvolMusic. 

EvolMusic does not use hardcoded mathematical fitness function and implicit genetic 

algorithm; instead, it allows direct control from the user over the accompaniment using machine 

learning techniques to learn a fitness function from the user’s preferences. EvolMusic does not 

run in real time; instead, it records a piece of the user’s musical input and generates four different 

accompaniments, lets the user vote for his or her favorite, adjusts the GA’s fitness function, and 

generates new accompaniments which can be further used to learn the user’s preference. 
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In the future, s possible extension is to combine the functionality of the two systems, so 

that the resulting system will be able to both run in real time and learn the user’s preference.  If a 

system is able to learn the user’s preference, and put that knowledge to use in accompaniment, 

then it will be practically more useful. 

Another area worthy of exploration is to develop accompaniments of more obviously 

different music styles. Now though, with careful listening, a user can find the differences of 

music in both the changing patterns in the generated accompaniment in Evac and the alternative 

accompaniments offered to the user to choose in EvolMusic. It may be a good idea to make the 

changes and differences more obvious. 

Furthermore, the system can be improved in several minor aspects to make it more 

practically desirable. For example, different accompaniment instruments can be considered to 

enhance the performance of the software, or several instruments playing together to form a more 

sophisticated accompaniment. If different instruments are incorporated, then volume control for 

each instrument is a reasonable design variable. More keys to allow the user to input music 

should be allowed in future system design. Finally, a better user interface may be needed. 
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