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Chapter 1

Introduction

This thesis investigates techniques for the development of mobile robot control architec-

tures. The work is split into two main parts. In the first part (Chapters 2 and 3) a simu-

lation technique is proposed by which potential control architectures could be investigated

without recourse to constructing a physical robot. In the second part (Chapter 4) a machine

learning technique is developed that could eventually be incorporated into a robot’s control

architecture. Neither part of this thesis represents a fully completed project, but rather the

foundations from which to pursue two separate projects, both of which could contribute to

our toolbox for the development of intelligent robots.

1.1 Simulation

The main problem for the use of simulation during the design phase of a real robot is ensuring

that results from simulation will carry over to the real world. In particular, the accurate mod-

eling and simulation of mechatronic systems is always problematic due to non-linear device

characteristics, sensor noise, limited resolution and stochastic errors. We suggest a method-

ology, dubbed the “Simulated Behaviors Approach”, for circumventing these problems in the

domain of behavior based robots

Chapter 2 proposes the Simulated Behaviors Approach for using simulation to investigate

the structure and function of control architectures for behavior based mobile robots. The

philosophical basis of the approach is discussed and a set of guiding principles are suggested.

Finally, progress is outlined and further lines of research are identified.

1
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Chapter 3 describes the Simulated Behaviors Approach in detail. A methodology is sug-

gested for specifying and simulating robot behaviors independently of any particular physical

implementation. Finally, a robot design problem against which to evaluate the approach is

described, and our ongoing research is reported.

1.2 Learning

At any point in time, given its current sensor readings and any internal state or representation

it might have, a robot must select its next action with respect to some goal. These goals and

the associated optimal behavior policy may be explicitly represented in the robot’s software,

or they may be implicit in the robot’s control architecture, but in both cases they have been

provided by the robot’s human creators. An alternative approach is to design the robot’s

control architecture such that it may learn the optimal behavior policy by trial and error

in response to rewards that it receives from its environment or from some reinforcement

program. One machine learning paradigm that is well suited to reinforcement learning is the

Learning Classifier System.

Learning Classifier Systems (LCS), introduced by John Holland [3], are complex adap-

tive systems designed for machine learning. A typical LCS employs reinforcement learning

and evolutionary computation to learn a set of rules (classifiers) from online experience that

represent some target concept or behavior policy. For a current overview of LCS, see [1].

Examples of LCS applications include control systems in engineering applications [5], mod-

eling and optimization [4], data mining [9] and the control of artificial animals in simulated

environments [6]. In [2] Dorigo and Colombetti apply their own version of the Holland style

LCS, dubbed ALECSYS, to controlling several simulated and real robots. It is worth noting

however, that ALECSYS still employed an input alphabet of zero, one and don’t care {0, 1,

#}.
Holland’s original model, while still inspiring, is known to be difficult to implement effec-

tively due to its complexity. Furthermore, its {0, 1, #} input alphabet limits the type of
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inputs it can learn from. In [2], Dorigo and Colombetti concluded that they had exhausted

the potential of such systems for learning in robot control problems. In [7] Wilson intro-

duced XCS which is a simplified, modified version of the original LCS model. XCS has been

successfully implemented by a number of researchers and has been shown to learn min-

imal representations of optimal solutions in some problems [7], making it the first generally

competent Michigan style LCS. Some variants of XCS have even learned successfully in

classification problems with integer and real valued inputs [9], [8]. Since a mobile robot is

embodied in the real world, its sensors typically detect real quantities that have real values.

Hence we are encouraged to believe that a real-valued LCS which departs from Holland’s

original design might have greater potential for learning in robot control problems than the

LCS used by Dorigo and Colombetti.

Admittedly, a classification problem is typically an easier problem than controlling a

mobile robot. However, even simple classification problems with real-valued inputs still rep-

resent a challenge for the LCS paradigm, particularly when the training data that constitute

the system’s experience are distributed non-uniformly, and when different classes cover dif-

ferent proportions of the input space. Such non-uniform distribution of experience is likely

to be encountered in the learning problems faced by any mobile robot operating in a real

environment. Hence it is of paramount importance that any LCS for robot control should be

able to deal with the imbalance effectively. This is the problem we address in Chapter 4 with

the development of a new real-valued LCS, called ALCSR. In order to focus on real valued

inputs and non-uniform experience distributions, other aspects of ALCSR are simplified: we

restrict its first incarnation to single-step classification problems in which there are only two

possible classes, i.e. binary classification. ALCSR stands for Artificial Life Classifier System

for Real valued inputs. The term Artificial Life is used here to refer to aspects of ALCSR’s

internal design which are guided by an abstract model of how a population of artificial

organisms might evolve usefully within the reinforcement learning setting. The results of our

initial experiments are presented and discussed, and future research directions are outlined.
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Chapter 2

Towards Developing Behavior Based Control Architectures for Mobile

Robots Using Simulated Behaviors

2.1 Introduction

This chapter1 is concerned with the design, development and investigation of control archi-

tectures for behavior based mobile robots [2] through the use of simulations. The use of

simulation has the potential to save time and money in the robot development process,

bring more resources to bear against the project objectives, facilitate research and lead to

improved designs. While this paper is motivated by the development of control architectures

by hand, other applications of simulation include robot design by the techniques of evolu-

tionary computing [8], and research into embodied cognitive science [9]. Space prohibits a

general discussion of the merits of robot simulation here, but one can be found in [5].

This paper will take the term ‘behavior’ to mean, an observable and repeated pattern in

the relationships among spatio-temporal events associated with an agent and its environment.

An agent will be taken as anything that has the ability to ascertain and cause events in its

environment. These terms are intended to apply equally well to robots, animals, people, and

even computer programs such as virtual organisms and soft-bots [4].

A discussion of emergent behavior is provided by [15], and a more concise description is

given in [13]. In this paper the term emergent is used to refer to a behavior, the existence of

which depends upon specific interactions between other behaviors of the same agent and/or

1Bishop, J.N., Potter, W.D. (2004) “Towards Developing Behavior Based Control Architectures
for Mobile Robots Using Simulated Behaviors”, In: Arabnia, H.R. (ed.) Proceedings of The Inter-
national Conference on Artificial Intelligence IC-AI’04 Volume II, Las Vegas, Nevada, 2004, pp.
575-581. Reprinted here with permission of publisher.

6
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other agents. It is implied therefore, that there must be some behaviors that can exist

independently of other behaviors. Mataric coined the term “basis behavior” to refer to such

behaviors, and used robots with behavior based control architectures to study the use of

basis behaviors as building blocks for synthesizing and analyzing complex group behavior in

multi-agent systems [14][13]. In this paper, the same idea is employed only the means has

become the ends: we suggest the use of simulated behaviors at a lower functional granularity

to study control architectures on a single agent. In order to separate this unproven approach

from the work by Mataric, we use the term “base behavior” rather than basis behavior.

2.2 Philosophical Issues

It is worth remaining circumspect and asking whether there are any fundamental obstacles

to the success of efforts to simulate behavior based mobile robots that should be kept in

mind from the outset.

In [6], and also partly in [3] and [7], Brooks describes the key ideas of situatedness,

embodiment, physical grounding and emergent behavior as important characteristics of a

behavior-based mobile robot. The field of behavior based robotics is further described in

[12], and [16]. Before attempting to simulate such robots it should be asked whether it is

even possible for these key characteristics to be honored by a simulation. Essentially, this is

the same as asking if it is possible for these characteristics to be honored by a software or

‘virtual’ agent.

2.2.1 Situatedness

The situatedness of behavior based robots has been characterized as referring to all of the

following ideas: “The robots are situated in the real world - they do not deal with abstract

descriptions, but the here and now of the environment which directly influences the behavior

of the system.” [6][10]. “...predictability and stability of environment have a direct impact

on the complexity of the agent that must exist in it” [1]. “A situated agent must respond
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in a timely fashion to its inputs” [6]. “The world is its own best model an agent uses its

perceptions of the world instead of an objective world model” [6]. “(The world) is always

exactly up to date. It always contains every detail there is to be known.” [7].

Apart from existing “in the real world”, there is nothing in the preceding paragraph that

cannot be equally true of a virtual agent, and this position is well argued by Etzioni in [4].

Further evidence of this viewpoint can be found in [17]. The significance of the real world

to situatedness would seem to be that an agent in the real world, such as a mobile robot, is

inevitably subject to all of the above conditions2, whereas a virtual agent may be subject to

only some subset of them depending on the particular implementation of that agent and its

environment. The important point here for efforts at simulation is that care must be taken

to ensure that these conditions are indeed met by our particular implementation.

2.2.2 Embodiment

Embodiment refers to the significance of an agent having a body. How this significance

should be understood is a matter of ongoing discussion. One position already considers it

possible for a virtual agent to be embodied: “Embodiment is a type of situatedness having

a physical body and thus interacting with the environment through the constraints of that

body Physical robots are embodied, as are simulations whose behavior is constrained and

affected by (models of) physical laws.” [1]. Several different types of embodiment, and the

extent to which they apply to robots and virtual agents are defined and discussed in [18], [19]

and [20], which provide a good overview of the ideas involved. An ontologically independent

definition of embodiment is suggested in [11], which emphasizes the importance of structural

coupling between a system and its environment.

In the context of a behavior based mobile robot, structural coupling is well expressed as

follows: “The robots have bodies and experience the world directly - their actions are part

of a dynamic with the world, and their actions have immediate feedback on the robots’ own

2This is unsurprising since the idea of situatedness was originally derived by considering agents
in the real world.
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sensations.” [6]. This structural coupling will be taken as the aspect of embodiment that must

be honored in simulation. It is interesting to note that while Brooks was actually advocating

the importance of a physical body in the real world, neither of these words appear in the

quotation just cited, which, it is felt here, applies equally well to virtual worlds and bodies

as to real ones (with the substitution of ‘agent’ for ‘robot’). Support for this position can be

found in [4] and [11].

2.2.3 Physical Grounding

Having conveniently side-stepped the issue of having a real physical body in the contexts of

situatedness and embodiment, it must now be met head on. One of the key reasons Brooks

advocates the importance of physical embodiment is expressed in his Physical Grounding

Hypothesis: “ to build a system that is intelligent it is necessary to have its representations

grounded in the physical world.” [7]. With regards to physical embodiment Brooks explains:

“Only through a physical grounding can any internal symbolic or other system find a place

to bottom out, and give ‘meaning’ to the processing going on within the system. The world

grounds (the) regress (of meaning giving)” [6]. As to how this grounding is performed for a

mobile robot, Brooks says “it is necessary to connect it to the world via a set of sensors and

actuators.” [7].

There is an implication in the Physical Grounding Hypothesis that the information a real

robot gleans from its environment through its sensors is somehow more meaningful than the

information a virtual agent could glean from its virtual environment through virtual sensors.

This implication is disputed here. Any sensor, be it real or virtual, produces an abstraction

of some aspect of the environment. How such abstractions are ultimately represented and

operated against within the agent is beside the point when it comes to evaluating the meaning

of the abstraction itself. While we agree that the only meaningful abstractions for a real robot

are those made from its real environment using its own real sensors, we further suggest

that the only meaningful abstractions for a virtual agent are those made from its virtual
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environment using its own virtual sensors. As such, both the real robot and virtual agent

may be equally well “grounded” in their own real and virtual realities respectively. Again,

this position is very similar to that of Etzioni in [4].

2.2.4 Validity of Simulation

While it is claimed here that there is no reason in principle why a virtual or simulated agent

cannot be every bit as situated, embodied and grounded in its world as a real robot, it is not

implied that this is an easy thing to achieve. Nor is this claim intended to dismiss concerns

about the validity of simulating real robots. However, it is felt that such concerns are really

getting at something different. Specifically, when it is claimed that a virtual environment in

which a virtual agent is situated, embodied and grounded, is such a good model of a real

environment in which a real robot is situated, embodied and grounded, that experimental

results in the virtual system should be expected to carry over to the real system.

It should be asked whether such a good model is even possible. Fortunately, as described

in [11], the field of evolutionary robotics has already provided an answer in the affirmative.

Quick goes on to suggest the following axiom: “Where behavior emerges from the interplay

between system and environment, if exactly the same system-environment relationship is

instantiated in two cases then the same characteristic behaviors are seen to emerge”. This

axiom corresponds to preserving the spatio-temporal relationships between an agent and its

environment.

Of course there is also plenty of anecdotal evidence about attempts to simulate real robots

that have failed to be useful, which may have fueled the idea that such attempts are futile

and led researchers to postulate reasons why: the simulated robot cannot be embodied, for

example. Why then do some attempts succeed and others fail? This is surely an important

question to ask before embarking on any such attempt. Moreover, the modeling process bears

closer examination.
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2.2.5 Making The Right Abstractions

In order to design a virtual environment and an inhabiting agent that models an existing

real environment and robot, it is necessary to make a great many abstractions about the real

system. Clearly, the real system contains a far greater complexity of information and physical

laws than could ever be entirely reproduced in a computer simulation. So, it is necessary

to identify all aspects of the real system that are relevant to the subset of that system’s

behaviors which will be modeled by the virtual system. Key questions include - what are the

behaviors of interest? what must happen in the real system in order that those behaviors

are seen to emerge? and in particular, on what abstractions of the real environment is the

agent operating? This first step is exactly the same as the first step that must have been

performed when the robot itself was designed. The robot may exist in a world that “always

contains every detail there is to be known”, but it is only ever privy to the tiny fraction of that

information that its designers deemed necessary when they selected its sensors. Although the

robot engineer does not have to build the environment, and the simulation engineer does,

both must make the same set of abstractions about that environment first. Consequently,

designing a robot is subject to the same problem of making the right abstractions as arises

when building a simulation of that robot.

However, the consequences of mistakes in this process are different for simulation than

for the real robot. For the real robot, erroneous or incomplete abstractions on the part of its

designer lead to a failure to achieve the desired behaviors i.e. the robot doesn’t work, or if it

does, it may not be for quite the same reasons its designers anticipated. In contrast, since the

simulation is a simplification of reality, it may still appear to achieve the desired behaviors,

but the results obtained do not transfer to the real system i.e. the simulation is not useful.

It would seem unfair to criticize simulation on the grounds that some simulations are not

useful, when some robots do not work for much the same reasons. Moreover, any comparison

of these different consequences should be on the basis of the cost to remedy them.
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In either case, there is no formal systematic way to ensure correctness from the outset

and it comes down to the individual insight and aptitude of the researcher to make the right

abstractions. Taken together with the fact that not all simulation problems are of equal

difficulty, this readily answers the question of why some attempts succeed and others fail.

Of course, actually building a robot and building a simulation do require different skill sets,

and this further complicates the picture.

2.2.6 Evaluating the Model

So when results do transfer successfully from simulation to reality, does this mean that the

model is perfect? No, merely that it is good enough for the purposes at hand in that at

least a bare minimum of abstractions have been correctly made and well implemented by

the simulation designers. Moreover, for other purposes the model may fail completely, but

whether or not anyone should care about this is a matter of perspective.

An obvious question is: if the only way to validate a simulation is to compare its behavior

with the real system being modeled, which requires that the real system be built, why spend

time developing the simulation? The answer is that some experiments may still be faster

and cheaper to perform on a validated simulation, or, as is the case with some examples

of evolutionary robotics, impossible to perform with real robot hardware. In section 3, an

approach to robot simulation is proposed that does not depend on the simulation being

validated against a real system.

2.3 The Simulated Behaviors Approach

It was noted in the previous section that in order to prove the accuracy of a simulation it is

necessary to compare its behavior to that of the real system being modeled. On what basis

is this comparison made? Is there some formal systematic way in which the behavior of any

two systems can be independently described so that no doubt remains in the evaluation of

whether or not they are the same? We are not aware of such a methodology at this time,
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and in general it will be down to the each researcher to determine a means of behavioral

comparison that is appropriate for the particular problem at hand. For an example see

[14]. The idea of developing a general approach to behavioral specification is intriguing, but

unfortunately it cannot be addressed within the bounds of this paper.

The same questions regarding behavioral specification should be asked of endeavors to

build behavior based robots even if no simulation will be attempted. Ultimately, it is just

such a specification of what the robot is supposed to do that determines the design decisions.

Regardless of the way in which a behavioral specification is expressed, an idea of the

desired behavior necessarily precedes the process of abstraction for both designing a robot

and designing a simulation of that robot. We ask here if there is any aspect of the robot that

can be investigated using a behavioral specification alone, i.e. without building the robot as

well. If the behavioral specification refers only to the overall observed behavior of the finished

robot as it operates within its environment then the answer is no. However, this is not the case

for a behavior based robot whose initial design has been specified in terms of multiple parallel

base behaviors that operate simultaneously and combine to produce emergent behaviors. For

such a robot, an additional system is required to perform ‘arbitration’, that is to coordinate

the base behaviors. Whether the form of the additional system is regarded as simply a set of

interconnections between the sub-systems responsible for the base behaviors, or an additional

behavior itself, or a higher level independent ‘executive controller’, it will be described here

as the control architecture.

The function of the control architecture is inextricably linked to the ways in which the

base behaviors can be influenced by inputs to their respective sub-systems. The ‘ways’ and

‘inputs’ can be viewed as behavior control functions or interfaces to each base behavior that

could be specified in the same terms as the base behaviors themselves. This amounts to

parametizing the behavioral specifications and providing a control input for each parameter.

The simplest example is an on/off input parameter which allows inhibition and sequencing
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of otherwise concurrent behaviors. For a behavior at quite a high level of granularity like

wall-following, an example parameter might be the distance from the wall.

The behavior interfaces can be considered as the beginnings of the control architecture.

To complete the control architecture the behaviors must be connected through their inter-

faces either to each other or via additional systems. The details of the eventual physical

implementation of the base behaviors and any connecting systems are not under consider-

ation. What is of interest here is the structure of the interconnections, the meaning of the

signals carried, and the resulting overall function performed in terms of behavior coordi-

nation. The inner workings of the base behaviors are hidden from the control architecture

(as in [14]), which, to some extent, is then desensitized to the particular abstractions of the

robot’s environment on which the base behaviors operate.

Recall now the definition of a behavior given in section 2.1: the definition implies no

distinction between a base behavior of a real robot and a base behavior of a simulated robot

as long as the important spatio-temporal relationships among events are preserved. If, in this

way, the corresponding real and simulated base behaviors adhere to a common behavioral

specification, then the required overall function of the control architecture should be the same

in both the real and simulated case. Given such a specification of the base behaviors and

the function of their control interfaces, it would seem possible to investigate the required

function of the control architecture in simulation without constructing the real robot. Of

course, this position supposes that the same behavioral specification would be rigorously

applied to the base behaviors of any real robot (constructed later) to which the findings of

the simulation were intended to be relevant. This approach has not yet been proven, but it

is the subject of ongoing work.

Even if no real robot were ever constructed, it would still seem that there is something

to be learned about control architectures by following the simulated behaviors approach.

Consider the suggestion that as a result of designing and building behavior based agent A,

insight was gained that proved helpful when designing and building behavior based agents
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B and C with the same control architecture. If agent A is a wheeled differential drive robot,

agent B is a wheeled robot capable of holonomic motion, and agent C is a robot that walks

like an insect, then the original suggestion sounds reasonable. What if agent A is actually a

faithful and fully validated simulation of the differential drive robot? Lastly, consider that

agent A is actually a simulation of the base behaviors of the same, but now hypothetical,

differential drive robot and the insights claimed are limited to the structure and function of

the control architecture only, and not the details of any physical implementation.

There are a few caveats about the simulated behavior approach that are worth stating.

1. Beware of Imitations - The definition of a behavior that has been used does require

the involvement of an agent with the ability to ascertain and cause events. Consider

a simulation of a wall-following robot in which a representation of the robot is seen

to follow a representation of the wall in observably the same way, but only because it

is following a pre-programmed path without sensing the wall. Such an imitation does

not fit the definition of a behavior and so is not a simulated behavior in the intended

sense.

2. Identical overall behavior is not required - Suggesting that the required function

of the control architecture for a real robot and for a simulation of that real robot’s

base behaviors should be the same, is not the same thing as saying that the resulting

emergent behavior should be absolutely identical in both cases. Moreover, it is generally

unlikely that any mobile robot simulation should behave identically to the system it

models, and further it is not felt that such identical overall behavior is necessary for the

simulation to be useful. It is hoped, however, that any differences in overall behavior

that do emerge would come down to a matter of scalar parameters, and not a difference

in fundamental structure, control functions or achievable behaviors.

3. Feasible and unfeasible behaviors - One advantage of using simulated base behav-

iors is that the control architecture is isolated from the inner workings of each base
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behavior. It then becomes possible to capitalize on some simplifications of reality that

would otherwise ruin simulation validity. In particular, the availability of perfect sensor

data makes it far easier to implement certain base behaviors in simulation than it is

on a real robot where issues of noise and resolution cause significant complications.

Taken far enough, this could lead to a simulated behavior that is actually unfeasible

to implement in the real world. Care must be taken to evaluate the feasibility of any

simulated base behavior by comparing it with behaviors known to have been imple-

mented successfully on real robots. If insight into control architectures on currently

realizable robots is expected, only feasible behaviors can be simulated. On the other

hand, an intriguing possibility presents itself. The investigation of control architec-

tures can be freed of the constraints imposed by limitations of current robot hardware.

Such investigations could provide motivation for directions to push sensor and actuator

technology.

In summary, the key idea of the approach is to simulate behaviors, not real robots, with

each behavior having a control interface via which it can be integrated into a behavior

control architecture. The approach rests on the condition that as long as each base behavior

is properly specified and modeled, and as long as the simulated behaviors meet the same

defining criteria for being “a behavior” as can be used for real robots, then although the

mechanisms that give rise to each base behavior are different depending on the system - be

it physical robot A, physical robot B or simulation C (or even life-form D), the function of

the control architecture required to achieve target emergent behavior should be the same, or

at least sufficiently similar such that work on it in simulation bears utility for the real world.

Obviously, such simulations tell us nothing about sensor/actuator issues because no

attempt is being made to model real ones. Essentially, this is an attempt to take advan-

tage of the oft criticized fact that simulation can side step numerous real world issues at the

sensor/actuator level, by purposefully side-stepping said issues (saving a lot of time in the

process) in such a way that it does not matter for the objectives of the simulation. These
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simulations will not try to provide a development platform for code that can be reused on

real robots. Instead they will try to gain insight into the function and logical design of control

architectures in a way that is independent of their eventual physical implementation in the

real world, which could be anything: hard-wired solid-state logic circuits, single processor

embedded micro-controller, parallel multi-processors, and analogue circuits to name a few.

2.4 Principles for Validity

These principles do not represent an exhaustive list: they are the ideas distilled from an

ongoing piece of work. For a general discussion of principles for implementing robot simula-

tors see [5].

1. Space should be represented and managed such that

(a) Dimensions are to scale with the real world.

(b) The continuous nature of space is preserved or approximated at an arbitrary level

of resolution that should be chosen to be very much smaller than any distances

of interest.

(c) No point in space may be occupied by more than one thing simultaneously.

(d) Agents can be embodied in the sense of structural coupling as discussed in section

2.2.2

(e) Agents can be situated as discussed in section 2.2.1

(f) Agents are all equally subject to a set of physical laws regardless of processing

load on the simulation.

(g) Behaviors can be observed in the same way (visually) as they could be in the real

environment.

(h) Agents can be grounded in that all information on which a behavior operates

internally is an abstraction of some aspect of the representation of the environment
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(including the agent’s representation), or derives from such abstractions via other

behaviors.

2. Time should be represented and managed such that

(a) Simulated time proceeds independently of any behavior.

(b) The continuous nature of time is preserved or approximated at an arbitrary level

of resolution that should be chosen to be much smaller than any time intervals of

interest.

(c) Relationships in simulated time are preserved independently of the amount of real

time taken by the simulation to perform its processing.

(d) Any number of behaviors may be active simultaneously without causing a distor-

tion of spatio-temporal relationships due to processing load on the simulation.

(e) The opportunity to interact with the environment afforded to a behavior is pro-

portional to its response time and not the time taken for the simulation to perform

processing associated with the environment.

(f) The response time of a behavior may be treated as being different from the time

taken for the simulation to perform processing on behalf of that behavior.

(g) The relative orders of magnitude of the time taken for an agent to move a per-

centage of its body length, and the response times of the behaviors involved, are

the same in simulated time as they are in the real world.

2.5 Ongoing Work

A crude but working prototype of a 2D mobile robot simulator has been developed and used

as a test-bed to investigate techniques for implementing the principles for validity outlined in

section 2.4. The principles associated with space (1 a - h) were all implemented with varying

degrees of success. However, the prototype exhibited no success with all but the first of the
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principles associated with time (1 a). Consequently, the prototype is not felt to be up to the

task of investigating control architectures, and only single, serial behaviors at a coarse level

of granularity have been implemented and tested.

Despite these shortcomings, a number of simulated agents equipped with only a simple

‘bump’ detection capability did exhibit some interesting emergent behavior. Specifically,

despite having sufficient maneuverability to cover the whole environment, a rectangular agent

with a differential drive steering geometry was seen to get stuck against a wall from time

to time in areas where its ‘back up and turn’ behavior was too simple to reliably cope with

its surroundings. Another agent, circular in shape and capable of holonomic movement, was

seen to effectively explore the entire environment without ever getting stuck while executing

only a ‘move at random’ behavior. While watching these agents, the similarity between their

behavior and that which would reasonably be expected of their real counterparts was quite

striking, and provides a source of encouragement.

Multiple lines of work would be beneficial to this project:

1. Research into more rigorous and systematic approaches for

(a) Making the right abstractions when modeling a behavior based robot and its

environment.

(b) Specifying behaviors and behavior control interfaces.

2. Find or build a simulator that meets the principles for validity outlined in section 2.4.

3. The simulator should be used to model a number of base behaviors at a low level

of granularity for a single agent so that control architectures can be investigated in

simulation.

4. An attempt should be made to transfer a control architecture developed in simulation

to a real robot that implements the base behaviors as they were specified for the

simulation.
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2.6 Conclusions

This project has only just begun and certainly has a long way to go before any of the hopes

and claims made here about the simulated behavior approach can be substantiated. In this

paper, the motivation, philosophical position and direction of the project have been set out.

Initial prototyping and experiments have provided some encouragement along with insight

into the technical challenges that lie ahead, and multiple lines of work have been suggested.
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Chapter 3

The Simulated Behaviors Approach to Developing Robot Control

Architectures

3.1 Introduction

The main problem for the use of simulation during the design phase of a real robot is

ensuring that results from simulation will carry over to the real world. In particular, the

accurate modeling and simulation of mechatronic systems is always problematic due to non-

linear device characteristics, sensor noise, limited resolution and stochastic errors. In [1] we

suggested a methodology, dubbed the “Simulated Behaviors Approach”, for circumventing

these problems in the domain of behavior based robots. Previously, we focused on a discussion

of philosophical issues and general principles. In this paper we present the practical details

of the approach and consider its potential usefulness and limitations.

The basic tenet of the Simulated Behaviors Approach is that if a robot’s elementary

behaviors, dubbed “base behaviors”, are specified in a manner that is independent of any par-

ticular implementation, then a simulation of those base behaviors can provide useful insight

into how a control architecture must coordinate them in order to produce the desired overall

emergent behavior. We use the term “base behaviors” to separate our work from Mataric’s

“basis behaviors” which are used as higher level building blocks for complex group behavior

in multi-agent systems [6][7]. We consider any behavior that results from the interactions of

base behaviors to be emergent. For discussions of the term see [7][8][9].

Key to our approach is finding a suitable formalism for writing the behavior specifications

to which both the simulated and real base behaviors must adhere. Note that no consideration

of real device characteristics is required or advisable for behavior specification and simulation

23
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that is to be implementation independent. Clearly, such simulations are not intended to

inform us about how to construct the mechatronics of each base behavior system on the real

robot. Instead, by defining a behavior control interface as part of the specification of each

base behavior, we aim to use the simulator to investigate the function of those interfaces and

the architecture of the connecting and controlling systems with respect to resulting emergent

behavior. In this way, the simulation can give us experimental freedom that would be far

more costly and time consuming to pursue on the real robot. The output of the simulation

(apart from seeing it run) is implementation independent specifications that set modular

targets for robot construction.

3.2 The Simulated Behaviors Approach

The Simulated Behaviors Approach can be broken down into 6 stages, each of which will be

discussed in turn.

1. Specification, by hand, of the base behaviors and their control interfaces.

2. Simulation of the base behaviors and their control interfaces.

3. Development (in simulation) of a control architecture that results in the desired overall

behavior emerging in the simulator.

4. Generation, by the simulator, of a complete set of behavior specifications for all the

base behaviors and the control architecture.

5. Construction of the real robot with parallel behavior systems, each one implementing

one of the base behaviors according to its specification.

6. Implementation on the real robot of a control architecture according to the specifica-

tions generated by the simulator.
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3.2.1 Specifying Behaviors

The dynamical systems approach [2][3][4] to robotics can provide us with just the formalism

we require to specify behaviors independently of any implementation. Behaviors are defined

in terms of state variables each of which represents some measurable quantity or aspect of

the robot and/or its environment. Examples include the velocity of a particular point on

the robot, position measures relative to something in the environment, and the angles and

positions of any moveable parts of the robot. A behavior is represented by an n-dimensional

phase space diagram where n is the number of state variables. Of particular interest is the

topology of the phase space in terms of attractors, repellors, saddle points and separatrices.

A good overview of these concepts is presented in [3]. By itself, the phase diagram contains

no information about time, so a vector field is defined across the space which specifies the

direction and rate of the behavior’s evolution from any point within the space. Figure 3.1

presents an example of a behavior phase diagram. For a discrete-time system, the vector

field becomes a description of where the system will be on the next time step.

While these concepts are very helpful for visualizing the dynamics of a behavior, there

is more than one way to apply them to robotic systems. In [3], Beer allows total freedom in

selecting the state variables from all quantities that relate an agent1 to its environment, and

all quantities internal to either the agent or the environment. He also defines the boundary

between agent and environment to be wherever it is most usefully drawn for each particular

analysis. He then couples parameters affecting the vector field of the environment’s phase

space, with state variables of the agent’s phase space, and also vice versa. While this affords

considerable predictive and explanatory power, it does not seem appropriate for our approach

here, as it delves too deeply into the inner workings of each behavior system to avoid being

forced to consider real device characteristics, which is one of our main objectives.

In [4], Schner constructs mathematical equations to describe a behavior’s desired phase

space, and then relies on solutions of those equations to generate the desired behavioral

1An agent is anything that can sense and act. A robot is an agent, and so is a simulated robot.
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Figure 3.1: The phase space for a ‘patrolling’ behavior involving moving backwards and
forwards following a line. The origin represents the midpoint of the line, and x represents the
distance moved along the line from the midpoint. For clarity, transient behavior is not shown.
The periodic attractor represents the long term behavior of moving at constant velocity until
at a distance of x1 or x2, and then changing direction. The arrows indicate the direction of
the vector field on the attractor. Again for clarity, the magnitude of the vector field is not
indicated. Obvious candidates for behavior control parameters are x1, x2, v1, and v2.

dynamics on a real robot. We prefer not to say anything about how the dynamics are gen-

erated, and prefer to make our approach accessible without the need for equation solving.

For the Simulated Behaviors Approach we will specify our base behaviors using the

following guidelines:

• We acknowledge that a real robot has a clear physical boundary delimiting it from

its environment, and we permit no freedom to consider the boundary to be otherwise

located.

• We restrict our state variables to those that relate the agent to its environment

according to the boundary just defined. More specifically:
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– Our state variables must require consideration of both agent and environment in

order to define them.

– No internal access to the agent should be required in order to measure the value

of any state variable.

• State variables may be a mixed bag of continuous and discrete quantities.

• We consider a behavior control interface to consist of:

– One or more control parameters. The vector field on the behavior’s phase space has

a functional dependence on the values of the control parameters, the definition of

which is part of the behavior’s specification. The values of the control parameters

are set externally to the behavior and may be set independently of each other and

independently of other state variables.

– One or more output parameters. Each output parameter has a functional depen-

dence on the behavior’s state variables, the definition of which is part of the

behavior specification.

• We develop our behavior specifications graphically, by hand, either on paper and/or

aided by facilities in our simulator.

The most trivial example of a behavior control interface consists of a single two-valued

parameter that is used to inhibit (switch off) the behavior. This idea is used extensively

(although not expressed in these terms) in the Subsumption architecture by Brooks [5]. In

terms of our specifications, inhibition would be represented by setting the magnitude of all

vectors in the field of the behavior’s state space to zero, so that the behavior no longer makes

any contribution to the values of any state variables.

Clearly these methods become unwieldy for behaviors of high dimensionality. So an impor-

tant design consideration for the Simulated Behaviors Approach is to try to keep the dimen-

sionality of each base behavior as low as possible. Where a behavior appears to be of high
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dimensionality, efforts should be made to decompose it into many behaviors of fewer dimen-

sions, which could possibly be coordinated via appropriate control interfaces such that the

more complex behavior is seen to emerge.

3.2.2 Simulating Behaviors

The state variables of a behavior can be categorized as either sensed, driven, or both. A

behavior’s specification tells us how it causes the driven state variables to evolve, but only in

the absence of influences external to the systems that implement the behavior. In the presence

of external influences on a driven state variable, it falls to the simulator to resolve any conflicts

and determine how the driven variables may be perturbed from the values indicated by the

behavior specification. When such influences arise due to aspects of the environment not

accounted for in the state variables, the simulator must model the environmental physics

sufficiently well to realistically resolve conflicts.

There is another potential source of conflict that depends on the base behaviors that have

been specified. To be consistent with the behavior based paradigm [10][11][12], all behaviors

should have the potential to run simultaneously. If a particular state variable is driven by

more than one behavior simultaneously then again it falls to the simulator to resolve the

conflict, but now the situation is potentially more difficult. The separate specifications of

two base behaviors which have a driven state variable in common will not generally provide

sufficient information by themselves to determine the specification of the two behaviors

operating simultaneously. If the superposition of the two behaviors would occur naturally

in the environment under physics, then the simulator’s physics may be enough to resolve

the conflict. However, if the superposition of behaviors would take place internally to the

robot, as may be the case when two behaviors have a common actuator, then simulated

environment physics cannot help. This is a limitation of our approach, and the price to

be paid for abstracting away the inner details of each behavior. The significance of this

limitation is discussed in section 3.3.
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Figure 3.2: Logical view of three parallel base behaviors

There are three ways to address the problem of internal behavior superposition and still

maintain the validity of the simulation:

• Treat the simultaneous operation of the conflicting behaviors as a separate behavior

with its own specification. (There may be little point if that specification was the

subject of the investigation.)

• If the function by which internal behavior superposition takes place is precisely known

and considered part of the robot’s logical design, then it may be worth bending our

own rules and coding the function into the simulator.

• Redesign so that the conflicting behaviors are never active simultaneously.

Figure 3.2 depicts a logical view of three parallel base behaviors and their control inter-

faces. Each base behavior can be simulated using two possible approaches:

• Behavior specifications are sketched by hand. The simulator allows behavior code mod-

ules to be added, and provides facilities to run each behavior module individually and
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output plots of the behavior’s phase space vector field. The code for each behavior can

be adjusted until it produces plots that adhere to all the main features of the sketched

specifications. Hence it is not necessary to fully specify the entire vector field initially,

as the code for the simulated behavior effectively fills in the blanks.

• The simulator provides graphical tools for the user to develop the behavior phase space

specifications on-screen. Since the behavior specifications are entered directly into the

simulator, it can use them as a lookup array when running, and the user need not write

any code module for the behavior. The simulator can use curve fitting to interpolate

between points in the array if required. This approach places greater demands on the

simulator but should result in more rapid prototyping of behavior specifications by the

simulator users.

As pointed out in [1], care must be taken not to specify behaviors and control interfaces

that are unfeasible to implement on a real robot, (although the freedom to do just that does

allow for simulations of robots with purely hypothetical behaviors).

3.2.3 Developing the Control Architecture

With the base behaviors simulated, the simulator should allow total freedom to add one or

more code modules that implement a control architecture of any paradigm. Examples include

top-down hierarchical, subsumption, and dynamical systems. The control architecture mod-

ules operate against the control interfaces of the base behaviors, as shown in Figures 3.2 and

3.3. Each control module would be simulated as another process in parallel with the base

behaviors.

It is possible to view each control module as a sort of pseudo-behavior, only at a higher

level of abstraction, and apply the same approach to their design and specification as used

for the base behaviors. Figure 3.3 illustrates an example of such a scheme. In general, each

additional level of abstraction should cause a reduction in the number of control parameters.
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Figure 3.3: An example control architecture

3.2.4 Generation of Complete Specifications

When the desired overall behavior is achieved in the simulation, the simulator can plot a

complete set of phase space specifications for every module (base behaviors and control

architecture). These specifications are independent of any particular implementation and

hence can be reused for more than one implementation. Furthermore, such specifications

provide modular targets during robot development, and help the robot designers make the

right abstractions about the robot and its environment when determining what sensors and

actuators are required.

The use of specifications generated by a discrete time simulation to guide the development

of real robot systems does rest upon a hitherto unstated assumption. Specifically, that if the

duration of each time step in simulation is much smaller than any timescales of interest

on the real robot, then the continuous time dynamics will be closely approximated by the

discrete time dynamics.
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3.2.5 Constructing the Real Robot

The specifications generated from the simulator say nothing about how to construct robotic

systems that adhere to them, which remains a difficult engineering problem. In order to

determine whether or not a base-behavior system on a real robot adheres to its specifi-

cations, it is necessary to measure the performance of that system on the real robot and

compare the results with the specifications. This comparison may prompt adjustment of the

robot’s systems until the specifications are met. Alternatively, it may be easier to adjust the

simulated version of the behavior to match what the robot is doing, in which case stages

2 through 5 may become iterative. As long as compensatory adjustments in the simulated

control architecture can maintain the desired overall behavior then such iterations should

not cause any problems.

Stage 6 is similar to stage 5, except that it begins after the base-behaviors have been

implemented according to specification on the real robot, and focuses on building the control

architecture.

3.3 Evaluating the Approach

In section 3.2.2 a limitation of the Simulated Behaviors Approach was identified. Specifically,

when the superposition of parallel behaviors occurs internally to a robot’s actuator systems,

we have no obvious way to determine the results for those actuators. Some workarounds are

suggested, and although none of them are ideal, designing our base behaviors so that such

problematic situations do not arise seems to be the best solution. In fact, on many behavior

based robots the control architecture performs arbitration specifically to avoid such internal

superpositions as the results are unpredictable. Consequently, this limitation is not felt to

be of great significance.

The Simulated Behaviors Approach does incur some overhead during construction of

the real robot, as it is necessary to measure the performance of each behavior system and
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produce behavior phase space diagrams for the real robot. This requirement should be kept

in mind from the outset of any project that will follow our approach.

In order to thoroughly evaluate the Simulated Behaviors Approach, we should identify a

task that would demonstrate the approach to be of value and then undertake that task. An

appropriate task would be the application of stages 1 through 6 to a robot design problem

in which the target overall behavior is non-trivial and unlikely to be immediately apparent

from the specification of its base behaviors. In order that our problem is amenable to 2D

simulation, we will formulate it in terms of movement on a level surface.

The problem is as follows. An everyday flat surface, such as the floor of an office or lab, is

cluttered with lightweight objects of various sizes and shapes except that they are all 6 to 8

inches tall. Objects with a variety of colors and reflectivity are used, and some of them may

even be translucent. Some of the objects are fixed to the floor and others are not. A number

of constant light sources are placed in this environment, all of which emit light at a height

of about 6 to 7 inches. Some light sources emit in all directions (like a bulb), and others

emit only in certain directions (like a flashlight). Some of the light sources are suspended

from above such that they have a minimum ground clearance of about 6 inches. Other light

sources are free standing, and some of these are battery powered and not fixed to the floor.

A small mobile robot, limited in height such that it may pass directly beneath a suspended

light source without hitting it, is to move through the environment and shunt the unfixed

objects around with the goal of maximizing darkness. Generally it may accomplish this

by walling off the light sources with light blocking objects. Sometimes there may not be

enough light blocking objects to go around and it may be necessary to move an unfixed

light source over to another light source so that they may be walled in together. When the

robot determines that it has done all it can, it should find the darkest spot available, and

sit in it. The robot may not be provided with any prior maps, although an ontology of the

environment will be implicit in its design, systems and programs.
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The problem described above is felt to be rather challenging, not least because when the

robot is shunting an object it will not generally be able to ‘see’ past it. Furthermore, any

movement of objects within the environment changes the patterns of light and shadow. There

are a number of obvious ways to simplify the problem if necessary. In particular, making all

the moveable objects the same size and shape, like uniform blocks, and enabling the robot to

carry one without significantly obstructing its sensors’ lines of sight, would greatly simplify

the problem. Such simplifications are to be resisted if at all possible.

It is not immediately apparent how best to solve this design problem, and we feel that

the ability to do all the experimentation in simulation and then generate working behavior

specifications before beginning robot construction will show the value of our approach.

3.4 Ongoing Work

As described in [1], an initial prototype of a 2D simulator was found to be inadequate.

However, the reasons for its inadequacy have been identified and a new simulator is under

development. This paper has identified several features that will be required of our simulator.

When developed, the simulator will be used to tackle the robot design problem described in

section 3.3.

3.5 Conclusions

Practical considerations for the Simulated Behaviors Approach have been discussed at some

length, and the potential usefulness and limitations of the approach have been identified. In

particular a specific example has been set out in terms of a mobile robot problem against

which to test the approach.

While research following the Simulated Behaviors Approach is ongoing in the context

of 2D simulation of single mobile robots, the ideas presented should scale up naturally to

multi-agent simulation, and 3D simulation.
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Chapter 4

An Artificial Life Classifier System for Real-Valued Inputs

4.1 Introduction

Classification problems with real-valued inputs still represent a challenge for Learning Clas-

sifier Systems (LCS), particularly when the training data is distributed non-uniformly or

different classes cover different proportions of the input space. This motivates the design of

a new LCS following an Artificial Life model.

This chapter
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4.2 System Development Goals

1. Problem: The first version of ALCSR (presented here) should handle noise-free single-

step classification problems with discrete fixed reward levels P over the space of con-

tinuous input values X and discrete actions A.

2. Extensions: The system should be extensible to handle noisy problems and also multi-

step problems with delayed rewards.

3. Model: ALCSR should learn a complete map (X × A ⇒ P) of the reward levels that

is independent of any exploitation policy (like an accuracy-based system such as XCS).

4. Performance: In the absence of noise, ALCSR should achieve stable perfect perfor-

mance using a simple exploitation policy (at least in single-step classification problems).

5. Niching: All niches in the input space should be discovered and populated regardless

of their relative sizes, or the relative frequencies with which representative inputs occur.

In other words, if a niche exists, ALCSR should learn accurate rules to cover it even if

it is small and surrounded by much larger niches of different types.

6. Optimality: The population should continually evolve toward the minimal set of max-

imally general rules that could solve the problem without becoming stalled on a sub-

optimal population.

7. Currency: Each rule in the population should have its own reservoir of currency (like a

strength-based system) so that ALCSR could be extended to investigate ways in which

transactions between rules might improve the systems capabilities and performance.

8. EA Scope: ALCSR is intended to serve as a platform for broadening the scope of

the evolutionary algorithm within an LCS. It would be interesting to extend the rules

genetic representation to facilitate the evolution of new features. This agenda will
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include the evolution of condition morphologies and cooperative interactions between

rules.

4.3 System Description

4.3.1 Natural Problem Topography

A-Life Model: Each data-point/training example experienced by ALCSR is a vector X of

n real values, and is taken to represent a single unit of food welling up from the ground. The

n real values locate the unit of food on an n-dimensional landscape in the space of possible

system inputs. If the system has c potential actions, then c completely separate landscapes

are considered to exist, one for each action. The type of food is not determined until ALCSR

has executed an action and a non-zero reward has been returned to it. The reward level

identifies the type of food; the quantity is always 1 unit.

Each landscape is to be colonized by a population of organisms that cannot move around

once established. Organisms on different landscapes are considered to be completely different

major species and are never permitted to interact in any way. Within each landscape, organ-

isms may be adapted to eating just one type of food. Organisms that are adapted to eating

different types of food are considered to be different sub-species. In order to survive, each

organism must maintain positive strength by feeding on the appropriate food-type for its

sub-species.

Each organism has a body which covers a region of the landscape within which it can

feed. The size of an organism is defined as the n-dimensional hyper-volume it covers on the

landscape. Multiple organisms can cover the same region of landscape.

Rule Implementation: A rule is completely described by {Condition, Action, Predic-

tion, Strength, Experience, Mature, Starved, CanBreed, Damaged}. Condition is the con-

junction of n half-open intervals [li, ui), each represented as an ordered pair of bounds, which

is satisfied if li ≤ xi < ui. The entire condition describes a hyper-rectangle in the space of

possible inputs. The generality of a rule is the hyper-volume of its condition. Hyper-volumes
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are maintained in normalized form such that a volume of 1 covers the entire known land-

scape. Action is actually implied by a rules containing population where it is represented as

an integer code. Prediction is a real number representing the expected reward level should

Action be executed. Strength is a real number representing the rules state of health. Expe-

rience is an integer representing how many times the rule has been in the action set. The

remaining four attributes are Boolean flags.

Table 4.1: Analogy key 1

A-Life term LCS Analogue

Landscape Map of reward levels over the space of system inputs for a single action
Organism Rule / Classifier
Body Rule / Classifier condition
Size Rule generality
Food, 1 unit Data-point / training example
Food-type Reward level
Major species Rules predicting for the same action
Population Set of all rules predicting for the same action
Sub-species Rules predicting same reward for the same action

4.3.2 Performance System

Implementation: For each population, all rules whose condition is satisfied by the input

vector are added to a potential action set; there is a separate potential action set for each

possible action. If any of the potential action sets are empty, one of the corresponding actions

is selected at random for exploration. If no potential action set is empty then with probability

P(explore) an action is chosen at random for exploration. With probability 1−P(explore) this

operating cycle is treated as a test problem and the rules in each potential action set take a

weighted vote on what the reward level will be if their corresponding action is executed. The

weight for each rule is calculated as its strength per unit hyper-volume of its condition. A

rule that is not mature is allowed to vote, but the weight of its vote is reduced by a factor of

10. The action with the highest predicted reward level is selected. This exploitation scheme is
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based on the prediction array used in XCS but with strength per unit hyper-volume replacing

fitness. ALCSR presents its selected action to its environment which returns one of a finite

set of real-valued reward levels. All experiments so far have used {+1000, -1000}. In test

problems, this is the end of the operating cycle.

4.3.3 Accuracy Pressure

A-Life Model: Each single unit of food is evenly split m ways between all m organisms

covering the location of the food on the landscape corresponding to the action just executed

by the system. Whether or not the consuming organisms benefit from this food depends

upon how well adapted they are to metabolizing food of that type. The gain in strength

to each organism is offset by a fixed cost of metabolism and the potentially fatal loss of

strength that occurs if an organism is poisoned by food of a type it is not well adapted for.

The less well adapted the more loss occurs. An organism whose strength becomes negative

is considered to have died. This is the death pressure against mal-adaptation. The fixed cost

of metabolism introduces an additional pressure against overcrowding.

Table 4.2: Analogy key 2

A-Life term LCS Analogue

Feeding organisms Rules in the action set
Number of times fed Action set experience
Degree of adaptation Accuracy of reward prediction
Poisoned by food Inaccurate reward prediction
Starved rl.Strength ≤ 0
Damaged rl.Error > 0.01
Organism dies Rule removed from population

Reinforcement Implementation: The strength of each rule rl in the action set is

updated using: rl.Strength += (1 − rl.Error · ErrorCost)/m −MetabolismCost

rl.Error is the rules prediction error as a fraction of the reward actually returned; Error-

Cost is the damage that would occur for a 100% error; m is the number of rules in the action
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set; MetabolismCost is a flat cost set to 1/50. If the action set contains more than 49 rules,

then they cannot gain in strength even if they all make zero error, and it is possible for the

weaker rules to starve to death due to overcrowding. ErrorCost is set to 2000 to provide

a very strong death pressure against inaccurate rules; it is insensitive to relative accuracy

(differing from XCS).

4.3.4 Genetic Generalization Pressure

Creating More General Rules

A-Life Model: A breeding pool is formed by an organism and its kb-nearest neighbors on

the landscape any time a sufficient proportion of them satisfy breeding criteria (currently

half or more). Breeding criteria are that all organisms that will participate in a breeding pool

must be of the same sub-species and must have their strength and experience above fixed

thresholds per unit hyper-volume of their bodies. Setting these thresholds per unit hyper-

volume is intended to result in all organisms being fairly evaluated for breeding. Furthermore,

if food is uniformly distributed over the landscape then the breeding rate should be about

the same in all niches regardless of their size. Requiring that a certain proportion of an

organisms kb-nearest neighbors satisfy breeding criteria should focus breeding within niches

rather than between them. In our experiments kb = 12.

Once a breeding pool is formed, breeding events occur in it until the breeding criteria are

no longer satisfied by enough of its members. A breeding event consists of two distinct parents

randomly selected (but not removed) from the breeding pool producing a single offspring of

the same sub-species by crossover, mutation and strength transfer. Crossover provides the

genetic pressure toward the production of increasingly large organisms, i.e. offspring tend

to be larger than their parents. If the resulting offsprings body precisely duplicates that of

another organism then small mutations are applied until the offspring is unique.

Implementation: MatureLevel = 500. Crossover: the condition of the offspring is formed

such that with probability 2/3 in each dimension, it will be a generalization of its parents.
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With probability 1/3 in each dimension, the offsprings condition will be a copy of one of

its parents, picked randomly as in uniform crossover. Mutation: with probability 1/12 each

condition bound is independently mutated by a random amount, at most 1% of the corre-

sponding inputs value range. Strength Transfer: the strength each parent transfers to the

offspring is calculated as:

P1.Transfer = stf · BreedLevel · Min(P1.Gen, O.Gen · P1.RelSize)

P2.Transfer = stf · BreedLevel · Min(P2.Gen, O.Gen · P2.RelSize)

P1 and P2 denote the parents; O denotes the offspring; Gen denotes generality which is a

normalized hyper-volume; stf denotes StrengthTransferFraction = 0.43; BreedLevel = 376;

and:

Px.RelSize = Px.Gen / (P1.Gen + P2.Gen)

The offsprings experience is set to zero and all its flags are set to False.

Table 4.3: Analogy key 3

A-Life term LCS Analogue

Distance between organisms: Euclidean distance between geometric centers of rule conditions
Mature rl.Experience > MatureLevel · Generality
CanBreed rl.Strength ≥ BreedLevel · Generality

Removing Less General Rules

A-Life Model: Organisms of the same sub-species that cover the same region of the land-

scape are in competition for the same units of food, and so the larger organisms constantly

initiate combat with the smaller ones, attempting to kill and eat them. However, such attacks

are only made by mature organisms against other mature organisms, and are only successful

if the aggressor has greater strength than its intended victim. Conveniently, the cost to

the aggressor of killing another organism is equal to that organisms strength and therefore

precisely replenished by eating its dead body. A further constraint on successful attacks is



44

that the aggressor must fully engulf (logically subsume) its victim. (This could be relaxed

to investigate fuzzy subsumption schemes and a stochastic combat model.) In the present

model, all constraints are enforced and all possible fights are always played out among the

feeding organisms on each system cycle. This is the death pressure against needlessly small

organisms (over specific rules).

4.3.5 Covering Pressure for Specificity

A-Life Model: When an organism dies due to eating too much of the wrong type of food

its corpse remains inactive on the landscape, and those parts of its body that caused it to

die are wizened and infertile. However, any part of the organisms body that had allowed it

to gain strength from feeding is considered to have the potential to sprout new organisms of

the same sub-species. Such sprouting only occurs in the absence of other rules of that sub-

species on that part of the landscape. Sprouting is intended to produce new organisms with

at least one surface of their body likely to be in the region of the boundary between different

food-types on the landscape. This is the pressure toward the production of organisms that

are small enough to eat only a single type of food (rules that are specific enough to make no

prediction errors). Additionally, sprouting should increase the chance of introducing useful

alleles into the sub-species’ gene pool as new organisms are created progressively closer to

the food-type boundaries the sub-species cannot cross.

When ALCSR is initiated there are no organisms and the landscapes are completely

undiscovered so a seeding process is required to get the populations started. Seeding is

stopped when there are enough corpses for sprouting to take over.

Table 4.4: Analogy key 4

A-Life term LCS Analogue

Seeding Traditional random covering
Sprouting ALCSR Adaptive covering
Food-type boundary Concept decision surface
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Implementation: This step is only performed if the system has just explored the action

corresponding to an empty potential action set. A new rule is created with zero strength, zero

experience and all flags set to False. Its prediction is set to the reward level just returned.

Defining the new rules condition is more complicated. Each population has associated with

it a set, termed mausoleum, for storing rules that have died due to making inaccurate pre-

dictions. The new rules condition bounds are randomly generated as:

li = xi −Rnd[0, LowerCoverFractioni · ri) and

ui = xi + Rnd[0, UpperCoverFractioni · ri) where ri is input i ’s range

If there are fewer than 20 rules in the relevant mausoleum, then all CoverFractions are

set to 0.5. If there are 20 or more rules in the relevant mausoleum then the CoverFractions

are set by adaptive covering. This is the most challenging part of the artificial life model to

implement because it requires the rules in the mausoleum to know in which regions of their

conditions their predictions were accurate or inaccurate, which must be estimated.

Each dimension i of a rules condition has four attributes: StrengthCenteri, WeaknessCenteri,

LowerCoverFractioni and UpperCoverFractioni. StrengthCenteri and WeaknessCenteri are

maintained as the average ordinate value in each dimension i of all correct and incorrect

predictions respectively. When a rule dies with Damaged set to True, it is added to the

appropriate mausoleum and its CoverFractions are set to represent its size in each dimen-

sion as fractions of each full attribute range. The dimension in which StrengthCenter and

WeaknessCenter are furthest apart is guessed as being most likely to span a decision surface,

and one of the rules CoverFractions in that dimension is reduced accordingly by a factor of

2. If the StrengthCenter has a lower value than the WeaknessCenter then the UpperCover-

Fraction is chosen as the one to be reduced, otherwise the LowerCoverFraction is reduced.

The CoverFractions of the dead rules kc-nearest neighbors in the mausoleum are updated

to reflect this new information using a Widrow-Hoff update in which the learning rate is

inversely proportional to the distance of the neighbor.
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When adaptive covering creates a new rule, the kc corpses in the mausoleum nearest to

the input vector X take an inverse-distance weighted vote on what values should be assigned

to the new rules CoverFractions, which are then used to generate the condition bounds. If

a condition lower or upper bound is generated that lies outside the range of values that

ALCSR has experienced in that dimension, the bound is set to the minimum or maximum

value experienced respectively. Note that this increases the probability of generating a bound

equal to the range limit as discussed in [5]. In our experiments kc = 5.

4.4 Initial Experiments

In [7], Wilson presented the results of two experiments in which XCSR learned a real-valued

version of the Boolean 6-multiplexer function. Instead of 6 binary values, the input vector

consists of 6 real values 0.0 ≤ xi < 1.0, generated randomly with uniform distribution.

In each dimension i a decision threshold is used to interpret the component value as 0

or 1 so that the multiplexer can be applied. In order to present our initial results in an

established context, Wilsons experiments have been repeated using the implementation of

ALCSR described in Section 4.3, run for 300,000 system cycles with P(Explore) = 0.9. As in

[7], each experiment was run five times. Results with ALCSR were found to vary very little

between runs, so the figures below present results from single representative runs.

In the following results percentage performance is the classification rate over the previous

50 test problems. Where 50 test problems do not provide sufficient precision to report results,

other measures are stated specifically. System error is calculated as a moving average, also

over the previous 50 test problems, and is presented as a fraction of the reward range (2000)

in these experiments.

Experiment 1: All decision thresholds are set to 0.5. In [7] Wilson reports that XCSR

achieves a maximum performance of approximately 98% after about 15,000 explore problems.

Figure 4.1 presents typical performance and system error for ALCSR. In 15,000 explore prob-

lems ALCSR achieves a lower performance of approximately 95%, but continues to improve
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Figure 4.1: ALCSR Performance and System Error in Experiment 1

reaching 98% after about 35,000 explore problems. For the last 10,000 test problems in a run

(after about 180,000 explore problems), ALCSR typically provides the correct classification

for more than 9,970.

Figure 4.2 shows how the population size varies during a typical run, and also the number

of births and deaths. The total rule count peaks around 2,000 after about 20,000 explore

problems and then falls to around 535 by the end of the experiment, although this varies

more than the performance results: the smallest final population was 452, and the largest

was 607.

Experiment 2: The decision thresholds are set at 0.25 and 0.75 in alternate dimensions

which skews the probability of generating example points in the different niches. In [7]
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Figure 4.2: ALCSR Population Dynamics in Experiment 1

Wilson reports that XCSR achieves a maximum performance of approximately 93% after

about 10,000 explore problems. Figure 4.3 presents typical performance and system error

for ALCSR. In 10,000 explore problems ALCSR also achieves 93% performance, but again,

continually improves thereafter, reaching 98% after about 50,000 explore problems. Over the

last 10,000 test problems in a run, ALCSRs performance is the same as in Experiment 1.

Figure 4.4 shows how the population size varies during a typical run, and also the number

of births and deaths. The total rule count peaks around 2,100 after about 27,000 explore

problems and then falls to around 950 by the end of the experiment. The smallest final

population was 859, and the largest was 1112.
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Figure 4.3: ALCSR Performance and System Error in Experiment 2
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Figure 4.4: ALCSR Population Dynamics in Experiment 2
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4.5 Discussion

The version of XCSR used in [7] employed a center-spread representation for its condition

bounds, while ALCSR uses ordered bounds. In [5], Stone and Bull investigate these repre-

sentations for XCSR and also an unordered bounds representation, providing many useful

insights. They found system performance for the real-valued 6-multiplexor consistent with

Wilsons results in [7] and affected very little by the choice of representation (although other

measures were affected as was performance on other problems).

The fact that ALCSRs best reached classification performance in Experiment 2 is as good

as Experiment 1 is encouraging with respect to the Niching goal (5). However, Experiment

2 does cause ALCSR to learn at a slower rate than in Experiment 1, and produce slightly

larger populations.

Compared to XCSR, ALCSR learns much more slowly but eventually improves beyond

XCSRs maximum performance achieving 99.7% measured over 10,000 test problems, which

is encouraging with respect to the Performance goal (4). An analysis of why ALCSR still

makes any mistakes at all would be of interest.

Examinations of the final populations from both experiments have identified very good

representatives of all niches, even the smallest, which is encouraging with respect to the

Model goal (3). However, the majority of the rules in the final populations are very spe-

cific rules clustered around the decision surfaces in the input space. The adaptive covering

scheme was designed to have this effect so that increasingly useful condition bounds (alleles)

would continue to be discovered throughout the run. However, in its current implementation

adaptive covering appears to be too aggressive for the system to achieve the Optimality goal

(6), unnecessarily bloating the population. About half the rules in each final population are

so specific that they very rarely participate in system operation and are mostly a drain on

computing resources. If the persistence of these rules could be avoided, the Optimality goal

(6) would be within reach.
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4.6 Conclusions and Ongoing Work

ALCSR has a number of features that make it unusual among learning classifier systems.

Specifically: ALCSR identifies individuals suitable for breeding by the use of speciation and

by exploiting the natural topography of the problem; ALCSR employs an endogenous fitness

scheme; GA timing and population size are emergently controlled; ALCSR uses adaptive

covering which continues throughout training to provide the GA with increasingly useful

alleles so mutation is not relied upon for allele discovery and is just used to avoid duplicate

conditions; Since there are no duplicate rules, numerosity is obviated.

Although some of the goals set out in Section 4.2 have not yet been addressed, inroads

have been made towards goals 1, 3, 4, 5, 6 and 7, and Section 4.2 represents an agenda for

ongoing research. Additionally, a minimal set of necessary system parameters for ALCSR

needs to be identified, and self-adaptive parameter schemes investigated.

The immediate priority for ALCSR is an analysis of the current implementations popu-

lation dynamics in order to understand and correct undesirable characteristics such as slow

learning and over specialization at the decision surfaces. Such analysis will probably result

in modifications to the implementation and possibly to the artificial life model as well. The

modified ALCSR should also be tested against a wider range of problems such as more

challenging multiplexers and the Checkerboard problem described in [5].

4.7 Acknowledgements

I am grateful to Alwyn Barry, Stewart Wilson, Khaled Rasheed, Don Potter, Brian Smith

and Daniel Tuohy for helpful comments and discussions about this work and/or related

issues.



53

4.8 References

[1] Booker, L.B. (2000) “Do We Really Need to Estimate Rule Utilities in Classifier

Systems?” Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) Learning Classifier

Systems: From Foundations to Applications, volume 1813 of LNAI, Springer-

Verlag, Berlin, pp 125-141, 2000.

[2] Booker, L.B. (2001) “Classifier systems, endogenous fitness, and delayed rewards:

A preliminary investigation” In Spector, L., Goodman, E.D., Wu, A., Langdon,

W.B., Voigt, H.-M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H.,

Burke, E., eds., Proceedings of the Genetic and Evolutionary Computation Con-

ference (GECCO-2001), pages 921-926, San Francisco, California, USA, 7-11 July

2001.

[3] Butz, V.B., Wilson, S.W. (2001) “An algorithmic Description of XCS”, In: Lanzi,

P.L., Stolzmann, W., Wilson, S.W. (eds.) Advances in Learning Classifier Sys-

tems, pp 253-272

[4] Holland, J.H. (1995) “Hidden Order: How Adaptation Builds Complexity” Helix

Books.

[5] Stone, C., Bull, L. (2003) “For Real! XCS with Continuous-Valued Inputs” Evo-

lutionary Computation 11(3): 299-336

[6] Wilson, S.W. (1995) “Classifier Fitness Based on Accuracy” Evolutionary Com-

putation 3(2): 149-175

[7] Wilson, S.W. (2000) “Get Real! XCS with Continuous-Valued Inputs”. Lanzi,

P.L., Stolzmann, W., Wilson, S.W. (eds.) Learning Classifier Systems: From Foun-

dations to Applications, volume 1813 of LNAI, Springer-Verlag, Berlin, pp 209-219


