
Integrating Logic Programming with Description Logic Reasoning

and Sensor Observation Management for Mobile Devices

by

Dustin Troy Cline

(Under the Direction of Frederick W. Maier)

Abstract

The ubiquity of mobile devices has opened new research opportunities for knowledge-based

systems. The purpose of this work is to integrate logic programming with description logic

reasoning and sensor observation management for mobile devices. Two Prolog libraries were

developed, each facilitating access to a different form of external information. One library

leverages the OWL API and specialized reasoners to compute inferences from ontologies

expressed in the Web Ontology Language while the other automatically acquires, stores, and

manages sensor observations reported by on-board sensors of Android-powered devices. The

libraries are developed independently of one another and are designed to function in isolation.

However, they are also compatible. A physical activity recognition task demonstrates their

collaborative use.

Index words: Logic programming, Prolog, description logics, Web Ontology
Language, sensors, mobile devices



Integrating Logic Programming with Description Logic Reasoning

and Sensor Observation Management for Mobile Devices

by

Dustin Troy Cline

B.S., Valdosta State University, 2012

A Thesis Submitted to the Graduate Faculty

of The University of Georgia in Partial Fulfillment

of the

Requirements for the Degree

Master of Science

Athens, Georgia

2015



c©2015

Dustin Troy Cline

All Rights Reserved



Integrating Logic Programming with Description Logic Reasoning

and Sensor Observation Management for Mobile Devices

by

Dustin Troy Cline

Approved:

Major Professor: Frederick W. Maier

Committee: Walter D. Potter
William Hollingsworth

Electronic Version Approved:

Julie Coffield
Interim Dean of the Graduate School
The University of Georgia
May 2015



Acknowledgments

I would like to extend many thanks to my major professer Dr. Maier who helped me greatly

over the course of completing this thesis. I would like to thank Drs. Potter and Hollingsworth

for serving as members of my committee.

I would also like to thank Sai Balakavi with whom I shared an office space. It was through

discussions with him and his discovery and sharing of a particular dataset that I was able

to wrap everything up nicely.

I would like to thank Kelly Storm for insisting that I finish this degree before pursuing

a career. Who knows if I would have finished in a timely manner (if at all) had I done

otherwise.

And of course, I would like to thank my family – my parents for their financial and

emotional support throughout my academic career as well as my grandmother for her support

and delicious baked goods.

Lastly, I would like to thank Amelia Rhodes. Without your suggestion that I consider

pursuing higher education, I would have never started this degree. Without your loving

support and encouragement, I might not have ever finished it. Thank you for everything.

iv



Contents

Acknowledgements iv

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Integrating Prolog with OWL for Android devices . . . . . . . . . . . . . . . 2

1.3 Integrating Prolog with Android sensors . . . . . . . . . . . . . . . . . . . . 3

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Outline of later chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background and Related Work 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Android and Android sensors . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Logic programming, Prolog, and JPR . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Description logics and OWL . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Works related to OwlLib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Works related to SensorLib . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

v



3 OwlLib – A Prolog library for OWL 26

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Structure of OwlLib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Ontology and reasoner management . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Representing OWL in Prolog . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Querying OWL reasoners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6 Bi-directional flow of knowledge . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.7 Ontology manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.8 Handling issues of integrating Prolog with OWL . . . . . . . . . . . . . . . . 41

3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 SensorLib – A Prolog library for accessing Android sensors 46

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Receiving sensor observations with the Android SDK . . . . . . . . . . . . . 47

4.3 Structure of SensorLib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Observation managers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5 Window clones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.6 Built-in statistical operations . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.7 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Activity recognition using OwlLib and SensorLib 61

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 The data set and training instances . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Detecting activities using Prolog rules . . . . . . . . . . . . . . . . . . . . . . 63

5.4 Collecting sensor observations using SensorLib . . . . . . . . . . . . . . . . . 66

5.5 Logging activities using OwlLib . . . . . . . . . . . . . . . . . . . . . . . . . 68

vi



5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6 Conclusions and Future Work 72

Appendices 74

A Listing of OwlLib predicates 75

A.1 Ontology management predicates . . . . . . . . . . . . . . . . . . . . . . . . 75

A.2 Reasoner management predicates . . . . . . . . . . . . . . . . . . . . . . . . 76

A.3 Entity terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A.4 Expression terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A.5 Axiom predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.6 Query predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.7 Ontology manipulation predicates . . . . . . . . . . . . . . . . . . . . . . . . 83

B Listing of SensorLib predicates 84

B.1 Sensor type atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

B.2 Available sensor predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

B.3 Observation manager predicates . . . . . . . . . . . . . . . . . . . . . . . . . 85

B.4 Window clone predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

B.5 Statistical operation predicates . . . . . . . . . . . . . . . . . . . . . . . . . 87

B.6 Observation predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

vii



List of Figures

2.1 Android sensor coordinate system . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 The relationship between OwlLib and third-party tools . . . . . . . . . . . . 28

3.2 Active ontologies and reasoners . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Query delegation in OwlLib . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 The structure of SensorLib . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Observation manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1 Decision tree configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Decision tree for physical activity recognition . . . . . . . . . . . . . . . . . . 65

5.3 Prolog rules for physical activity recognition . . . . . . . . . . . . . . . . . . 66

5.4 Ontology for logging activity recognition windows . . . . . . . . . . . . . . . 70

5.5 Semantic log of activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

viii



List of Tables

2.1 Android sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 OWL functional-style syntax vs. DL syntax . . . . . . . . . . . . . . . . . . 18

3.1 Ontology and reasoner management predicates . . . . . . . . . . . . . . . . . 29

3.2 Class expression terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Axiom predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Query predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Ontology manipulation predicates . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 Sensor type atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Observation manager predicates . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Window clone predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Built-in statistical operation predicates . . . . . . . . . . . . . . . . . . . . . 57

4.5 Observation predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

ix



Chapter 1

Introduction

1.1 Overview

Mobile devices are becoming more prevalent in the daily lives of people. Their increasing

popularity can be attributed to a combination of portability and versatility. They are also

becoming more powerful allowing them to replace desk-bound workstations and cumbersome

laptops for many tasks. Additionally, most mobile devices are equipped with a variety of

sensors such as accelerometers, GPS, and thermometers that report observations regarding

the current state of the device and its environment. Currently, Android is the most popular

platform for mobile devices based on reports of world-wide sales [1]. Due to their popularity,

portability, and versatility, mobile devices open a new venue to explore knowledge-based

systems.

The purpose of this work is to develop a framework integraging logic programming (LP)

with description logic (DL) reasoning and sensor observation management for mobile devices.

Two Prolog libraries have been developed for an Android-compatible Prolog environment,

one for each task. One library leverages preexisting tools and specialized reasoners to com-

pute inferences from ontologies expressed in the Web Ontology Language (OWL) [2], a now

1



standard DL-based formalism for expressing ontologies. The other library automatically

aquires and manages sensor observations reported by on-board sensors of Android-powered

devices. Both libraries are developed independently of one another and are designed to func-

tion in isolation. However, they are designed to be compatible and can be used together

with ease.

1.2 Integrating Prolog with OWL for Android devices

Two of the most prominant formalisms for knowledge representation and reasoning (KRR)

are rule-based systems, exemplified by logic programming (LP) [3], and description logics

(DLs) [4]. Logic programming has been thoroughly researched since the 1970s. Though DLs

are newer to appear, they have also been extensively researched for the past few decades,

beginning in the early 1990s. The two formalisms have different characteristics, in some cases

making one more suitable for a given application than the other. They have different syntax

and semantics, making integration difficult. Nevertheless, integration would be beneficial,

and there is a large body of work dedicated to the pursuit [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15].

Much of this interest is due to the plan to integrate the two formalisms to enhance the KRR

capabilities of the Semantic Web [16]. It was proven early on that a naive combination leads

to undecidability [6]. While there are syntactic differences, the more fundamental problem

is that the two formalisms possess very different semantics, as discussed in [12].

Among the most significant differences between the two formalisms is that LP is non-

monotonic while DLs are monotonic. The addition of a new fact into the knowledge base

of a logic program may decrease the number of derivable consequences. On the other hand,

the monotonicity of DLs means that the addition of a new axiom into a DL ontology cannot

decrease the number of derivable consequences (though it may cause the ontology to become

inconsistent).

2



Additionally, both formalisms make opposing assumptions regarding unknown knowledge.

LP makes the closed-world assumption (CWA), which means that a statement is assumed

to be false by default if it cannot be proven true. Conversely, DLs make the open-world

assumption (OWA). If a statement cannot be proven true it is not considered to be false (or

true). Similarly, if it cannot be proven false it is not considered to be true (or false).

Furthermore, LP makes the unique name assumption (UNA), meaning that syntactically

different terms are interpreted to denote different entities in the domain. DLs, however, do

not make the unique name assumption. The same entity can be referenced using different

identifiers and axioms regarding the equality or inequality of entities must be explicitly

asserted into the ontology.

OwlLib is an Android-compatible Prolog library developed during the course of this

thesis that integrates logic programming with description logic reasoning regarding OWL

ontologies. It maintains the OWL ontologies separately from the Prolog knowledge base

and leverages external reasoners to compute inferences regarding the knowledge expressed

in the ontologies while the Prolog inference engine is used to perform reasoning over the

Prolog knowledge base. The inferences computed by the reasoners are made available to the

Prolog program by the OwlLib predicates that query the reasoners. OwlLib also provides

predicates and terms for representing OWL constructs and manipulating ontologies by adding

and removing axioms from them.

1.3 Integrating Prolog with Android sensors

Most Android devices are equipped with an array of sensors that report observations regard-

ing the current physical state of the device and its environment. The observations are rich

with information regarding what the user is doing at a given time. The data associated with

the observations provide context [17] which can be used to create context-aware systems [18],

3



the latter constituting a relatively recent research field.

SensorLib is an Android-compatible Prolog library that has been developed during the

course of this thesis to aquire and manage sensor observations and make them available to

Prolog programs. SensorLib mitigates the low-level requirements of obtaining sensor ob-

servations through the implementation of an automated mechanism for acquiring, storing,

and managing sensor observations in the form of observation managers (OMs). OMs imple-

ment the sliding window technique popular with data stream management systems [19] in

which only a limited amount of the most recently received observations are maintained. The

functionality provided by SensorLib facilitates the implementation of context-aware systems.

Android does not permit for sensors to be directly polled for their observations. Instead,

the process of aquiring sensor observations involves defining “listener” objects that must be

registered with particular sensors in order to receive observations when they are reported.

Also, sensor observations are reported one at a time and there is no built-in funtionality

for handling them once they arrive. Furthermore sensors can report observations rapidly,

producing a steady stream of data. These factors make the utilization of sensor observations

in Prolog challenging. SensorLib is designed to overcome them.

1.4 Contributions

The contributions of this thesis are as follows.

OwlLib, an Android-compatible Prolog library for working with OWL ontolo-

gies and reasoners, is developed and presented. OwlLib provides a number of Prolog

predicates and terms for performing a range of tasks such as managing OWL ontologies and

reasoners, querying OWL reasoners, and manipulating OWL ontologies. OwlLib leverages

Java-based Android-compatible tools to implement these predicates and terms, specifically

the OWL API [20] for working with ontologies and reasoners as well as the popular JFact

4



[21] and ELK reasoners [22] for computing inferences regarding ontologies.

OwlLib allows for OWL reasoners to be queried from within a Prolog program in a variety

of ways. OwlLib also allows for the consequences of a Prolog program to be added to an

OWL ontology to make them accessible by OWL reasoners. In other words, knowledge flow

is bi-directional rather than unidirectional. This functionality is inspired by related work

that integrates logic programming with DLs called dl-programs [11, 14, 15].

OwlLib ensures that the opposing semantics of both formalisms are maintained by keeping

the knowledge expressed in an ontology separate from that in the Prolog knowledge base as

well as leveraging specialized reasoners to compute inferences regarding the ontology.

SensorLib, an Android-compatible Prolog library for working with Android

sensors, is developed and presented. SensorLib abstracts away from the low-level re-

quirements of obtaining sensor observations from Android sensors. It supplies observation

managers (OMs) for the automated acquisition, storage, and management of reported sensor

observations using the proven sliding window technique common in data stream manage-

ment systems [19]. SensorLib provides access to the maintained observations from Prolog.

Predicates are supplied for obtaining a copy (or clone) of a window of an OM so that the

observations it maintains can be inspected. SensorLib also implements operations that com-

pute statistical summaries (min, max, mean, etc.) of the observation values within a cloned

window.

1.5 Outline of later chapters

The remainder of this thesis is organized as follows. Chapter 2 provides background infor-

mation and related works. Details regarding the development of applications for Android are

presented followed by descriptions of the types of sensors that can be found on an Android

device. Logic programming, Prolog, and JPR (an Android-compatible Prolog environment

5



developed at the Institute for Artificial Intelligence at the University of Georgia) are dis-

cussed in detail, followed by DLs and OWL. Works related to OwlLib and SensorLib are also

presented.

OwlLib is outlined and presented in chapter 3. The structure of the library is discussed,

illustrating how it relates to JPR, the OWL API, and external reasoners. The ontology and

reasoner management functionality of OwlLib are discussed followed by an explanation of the

manner in which OWL entities and constructs are represented in OwlLib. The various ways of

querying OWL reasoners are discussed in detail, including implementation details regarding

of the bi-directional knowledge flow between a Prolog program and an OWL ontology. Lastly,

issues regarding the integration of Prolog and OWL are discussed.

SensorLib is outlined in chapter 4. Details regarding the aquisition of sensor observations

using the Android Software Development Kit (SDK) [23] are presented and the structure

of SensorLib is discussed. The observation managers provided to aquire, store, and manage

sensor observations are discussed in detail. The methods for accessing the observations from

a Prolog program are discussed as well as the manner in which observations are represented

in SensorLib. The built-in operations for computing statistical summaries of windows of

observations are presented.

Chapter 5 demonstrates how both libraries can be used collaboratively along with Prolog

rules to perform tasks related to physical activity recognition on an Android device. The

data set of sensor observations of physical activities and the training instances derived from

it are discussed. The creation of a decision tree capable of performing physical activity

detection is outlined along with the technique used to produce a comparable tree of much

smaller size. The transformation of the tree into equivalent Prolog rules is discussed. The

use of SensorLib to aquire sensor observations and compute statistical summaries of them is

presented. The use of OwlLib to create a “semantic log” of detected activities is discussed.

Chapter 6 provides a summary and outlines possible directions for future work.

6



Chapter 2

Background and Related Work

2.1 Introduction

This chapter provides background information regarding Android, Android sensors, logic

programming, Prolog, JPR, description logics, and OWL, necessary for the presentation of

OwlLib and SensorLib later in the thesis. Works related to OwlLib and SensorLib are also

presented. Details regarding the Android platform and Android application development are

presented in section 2.2.1 and section 2.2.2 discusses Android sensors. Section 2.3.1 briefly

describes logic programming and Prolog and section 2.3.2 presents some details regarding

JPR, the Android-compatible Java-based Prolog interpreter for which OwlLib and Sensor-

Lib are developed. Description logics (DLs) and the Web Ontology Language (OWL) are

outlined in section 2.4. Section 2.5 describes preexisting work related to the integration of

logic programs with DL reasoning. Section 2.6 outlines work related to the use of sensor

observations for activity recognition.

7



2.2 Android and Android sensors

2.2.1 Developing applications for the Android platform

The Android [24] operating system (OS) is a Linux-based system common on many mobile

devices. Android applications are written using the Java [25] programming language. Each

Android application runs as a seperate process [26] on the device to isolate it from other

applications. The two main types of application components are Activities and Services. An

Activity is a visible screen of an application with which the user interacts using widgets. A

Service is intended for performing long running tasks in the background and therefore does

not have a user interface. Activies are implemented by the Activity Java class and Services

are implemented by the Service class, both of which extend the Context class in order

to obtain global information regarding an application environment as well as gain access to

system level services.

When an Android application is started, a single “main” thread of execution is started.

The user interface (UI) runs on the main thread (sometimes referred to as the UI thread).

All Java code executed from within an Activity or Service also runs on the main thread by

default. Typically, computationally intensive tasks are performed on a separate thread to

prevent hindering the responsiveness of the UI [26].

Android applications are written using the Java programming language. However, the

Java libraries provided by Android Software Development Kit (SDK) [23] do not include a

full implementation of the standard Java libraries provided by the Java Development Kit

[25] which many third-party Java libraries leverage. This makes reusing existing third-party

Java libraries difficult because any code that leverages any of the unsupported standard Java

libraries are incompatible with Android.

8



2.2.2 Android sensors

The sensors on an Android device can be organized into categories based on the type of

observations they report. Motion sensors monitor the movement of a device and measure

acceleration and rotation forces. Position sensors monitor the orientation of a device and

its proximity to other objects. Environmental sensors monitor the environment external to

a device and can measure light exposure, temperature, and barometric pressure. Some of

the sensors are implemented using hardware while others are implemented in software and

derive their data using other sensors. A list of some of the various sensor types along with

what they measure is provided in table 2.1

Table 2.1: Android sensors

Sensor (type) Measures
Accelerometer (motion) Acceleration force (including

gravity) along the x, y, and z
axes in m/s2

Gyroscope (motion) Rate of rotation around the x,
y, and z axes in rad/s

Magnetic field (position) Geomagnetic field strength
along the x, y, and z axes in
µT

Proximity(position) Distance from object in cm
Ambient temperature (environmental) Ambient air temperature in ◦C
Light (environemental) Illuminance in lx

Different sensor types use coordinate systems with different frames of reference. Ac-

celerometers, gravity sensors, gyroscopes, linear acceleration sensors, and magnetic field

sensors use a device-oriented frame of reference as illustrated in figure 2.1. Other sensors use

a world-oriented frame of reference. The X axis of the rotation vector sensor is tangential

to the groud and points East, while the Y axis points towards magnetic north tangential to

the ground, and the Z axis points upwards perpendicular to the ground. The geomagnetic

rotation vector sensor uses the same coordinate system as the rotation vector sensor but will

never rely on a gyroscope. The game rotation vector sensor does not rely on the geomagnetic

9



field at all and the Y axis does not point north but some other unspecified reference.

Figure 2.1: Android sensor coordinate system1

Android differentiates the sensors that detect motion, position, and the environment

around a device from the “location providers” that detect the geographic location of a device.

The geographical location can be provided by GPS or network location providers using cell

towers and WiFi access points. While GPS location recognition is much more accurate, it is

generally slower to aquire a location fix. Also, GPS does not work well indoors as it requires

a view of the sky. Location providers are not part of the sensors framework though they

are able to report changes in location in the same manner that the other types of sensors

report their observations. It can be argued that since these location providers can detect the

geographical location of a device, they can also be considered sensors.

The sensors on an Android device cannot be directly polled for their observations. In-

stead, each observation is delivered to listener objects through callback methods. A listener

must be registered with a particular sensor in order to receive the observations reported by

the sensor. A single listener can be registered for different sensors or multiple listeners can be

registered for the same sensor. Upon listener registration, the developer is allowed to request

the rate at which sensors report their observations, though this request may be disregarded
1http://developer.android.com/reference/android/hardware/SensorEvent.html

10



by the sensor. The majority of sensor types report observations repeatedly while others only

report when the values they measure change2. When a sensor reports a new observation, the

data regarding the observation is passed to each listener registered with that sensor. Regis-

tered listeners can be unregistered from their corresponding sensors in which case they will

no longer receive reported observations. A standard practice is to unregister listeners when

they are no longer needed or when an application loses focus in order to conserve device

resources [27].

2.3 Logic programming, Prolog, and JPR

2.3.1 Logic programming and Prolog

Logic programming (LP) is a rule-based formalism that is commonly used for knowledge

representation in artificial intelligence [3]. Knowledge is expressed in a logic program using

if-then rules and queries to the program are solved using logical deduction. The account

given here is based on definitions from [28] and [3].

A logic program is a set of rules represented as clauses of the form:

h :- b1, ..., bm, not bm+1, ..., not bn.

where 1 ≤ m ≤ n, h and each bi are literals (atoms or their negations), and not is negation-

as-failure (NAF; also called default negation). h is called the head (or consequent) and the

conjunction of bis is called the body (or antecedant). The rule above can be read declaratively

as “If b1 and . . . and bm and not bm+1 and ... and not bn, then h”. Variable are allowed to

appear in atoms. Variables appearing in the head of a rule are univerally quantified while

those appearing in the body but not the head are existentially quantified.
2The light, proximity, humidity, and ambient temperature sensors only report observations when the

values they measure change.

11



A definite logic program consists of rules containing no forms of negation (not and

negative literals are not allowed). Definite logic programs can be interpreted under the

classical semantics in which the unique minimal Herbrand model MP of a definite program

P contains all the atomic formulas entailed by P [28]. Logic programs containing negation

require additional consideration.

A normal logic program consists of rules that may contain not but do not contain negative

literals. An extended logic program allows both not and negative literals. The answer

set semantics (also called the stable model semantics) [29] and the well-founded semantics

[30] are popular approaches to handling the negations found in normal and extended logic

programs.

Prolog is the earliest programming language designed for logic programs. A Prolog

program consists of an ordered set of rules and facts (rules with no bodies) that constitute

a knowledge base (KB).

human(bob). % a fact
organism(X) :- human(X). % a rule

A Prolog interpreter is an inference engine that answers queries regarding the knowledge

stored in the KB. The basic inference procedure implemented by Prolog interpreters is a

backward-chaining depth-first search called SLDNF-resolution. A query Q is an ordered

conjunction of goals g1, ..., gn. To solve Q, the inference engine searches the KB in a top-

down fashion while attempting to resolve each goal gi by unifing it with the head of each

rule. When unification succeeds, the current goal gi is replaced with the body of the rule (if

it exists) and then resolution continues. If multiple rules resolve with the current goal, then

a backtrack point is recorded. If a goal is preceeded by not, then it succeeds only if it cannot

be resolved with a rule. If the inference engine is unable to resolve a goal, it backtracks to

the most recently recorded backtrack point and tries again. If every gi is able to be resolved,

then Q succeeds. Otherwise, Q fails.

12



Prolog is not logically pure and has many procedural aspects that prevent it from being

a fully declarative language. The depth-first search performed by resolution can get stuck

in loops, as illustrated by the following rule:

a :- b, c, a.

and the query ?- a. Resolution will attempt to solve a by first solving b, then solving

c, and then solving a again. Furthermore, negation-as-failure is not equivalent to classical

negation, and the built-in cut operator (!/0) allows for recorded backtrack points to be

discarded, thereby affecting the evaluation of queries.

Nevertheless, Prolog is a Turing-complete language. In many practical applications, pro-

cedural operations such as reading input and writing output and performing mathematical

calculations (which Prolog provides) are very much needed. Therefore, the failure of Pro-

log to be completely declarative is arguably not a drawback but rather an advantage and

necessary in some cases.

2.3.2 JPR – Java PRolog

JPR3 is a Java-based Prolog environment currently under development at the Institute for

Artificial Intelligence of the University of Georgia. The motivation for the development of

JPR is to provide an Android-compatible Prolog inference engine that is capable of inter-

acting with Java. Both OwlLib and SensorLib are designed for use with JPR.

JPR defines Java classes representing Prolog terms, clauses, knowledge bases, and in-

ference engines. JPR can be used from within Java program by creating an instance of an

inference engine implemented by the class InferenceEngine. A query can be placed to

the inference engine by calling its solve(String, List<Variable>) method in which the

query is represented by a Java String object and the variables that are bound while the
3http://www.ai.uga.edu/jpr

13



query is being solved are placed in the Java List of JPR Variables. The solve method

evaluates to true if the query succeeds and false otherwise. The following code snippet

demonstrates how to instantiate a JPR inference engine and submit a query to the inference

engine:

// create a new JPR inference engine
InferenceEngine jpr = new InferenceEngine();
// create an empty list of variables
List<Variable> vars = new ArrayList<Variable>();
// submit a query to the inference engine, which binds
// variables during the evaluation
boolean result = jpr.solve("human(X). ", vars);

Predicates that perform some action or otherwise require special handling (e.g., write/1)

are defined in JPR via their own Java classes. When the JPR inference engine evaluates an

instance of a Java-based predicate, rather than performing resolution, code in the implemen-

tation of the Java class that defines the predicate is executed. A JPR library is a collection

of Java classes defining custom predicates and object factories used to create instances of

the predicates at runtime. A library can be loaded into JPR in the following way:

InferenceEngine jpr = new InferenceEngine();
MyLibrary mylib = new MyLibrary();
jpr.termFactory().loadLibrary(mylib);

JPR allows references to instances of Java objects to be maintained by special terms

called reference terms. Reference terms implement the ReferenceTerm Java interface and

are treated as regular Prolog terms by JPR. The utility of reference terms comes from the

the ability of Java-based predicates to access the Java object maintained by a reference term

when it is received as an argument. A Java-based predicate can also “wrap” a Java object in

a reference term and bind the term to an argument for use as output. Thus reference terms

allow Java objects to be passed as terms in a rule or query.

14



2.4 Description logics and OWL

2.4.1 Description logics

Description logics (DLs) are a family of logic-based knowledge representation languages that

are commonly used to express domain knowledge in the form of ontologies. A DL ontology is

a knowledge base consisting of a set of axioms defined using symbols representing concepts

(essentially, unary predicates of first-order logic), roles (binary predicates), and individuals

(constants). The axioms are divided into a TBox (“terminological box”) consisting of ax-

ioms defining subsumption relationships between concepts and an ABox (“assertional box”)

consisting of axioms defining assertions regarding specific individuals. There are a number

of different DLs that can be obtained by permitting or restricting certain features. Below,

the syntax and semantics of the basic DL ALC [31] are defined, based on material presented

in [4] and [32].

A concept description describes a set of individuals. Complex descriptions can be built

inductively with atomic concepts and atomic roles using concept constructors. For instance,

the atomic classes Human and Female can be used to describe individuals who are a human

and female using Human u Female while individuals who are a human and not female can

be described using Human u¬Female. Similarly, individuals who are not female and have

a child who is also a human can be described using Human u¬Female u∃hasChild.Human.

Concept descriptions can be combined and nested in this fashion to construct increasingly

complex concept descriptions.

Definition. ([32]) Let NC be a set of concept names and NR be a set of role names. The
set of concept ALC descriptions is the smallest set C such that

C ::= > | ⊥ | A | ¬C | C u D | C t D | ∀r.C | ∃r.C

where A ∈ NC and r ∈ NR.

A TBox contains general concept inclusion (GCI) axioms such as Human v Organism. A

15



symmetrical pair of GCIs (C v D and D v C) is indicative of concept equivalence. That is

to say, they describe the same individuals. The equivalence relationship between concepts

can be represented using the abbreviation C ≡ D. For instance, Man ≡ Human u¬Female

means that individuals described by the complex concept description can also be described

by the concept Man.

Definition. ([32]) A general concept inclusion (GCI) is of the form C v D where C, D are
concepts. A finite set of GCIs is called a TBox.

An ABox can contain two types of axioms. Concept assertions assert that an individual is

an instance of a given concept. Role assertions assert that a pair of individuals are connected

by a given role name.

Definition. ([32]) An assertional axiom is of the form x : C or (x, y) : r, where C is a
concept, r is a role name, and x and y are individual names. A finite set of assertional
axioms is called an ABox.

DLs are a fragment of first-order logic (FOL). Therefore, their semantics are that of FOL

and they are interpreted under a model-theoretic semantics given in terms of interpretations.

Definition. ([32]) An interpretation I = (∆I, ·I) consists of a non-empty set ∆I, called
the domain of I, and a function ·I that maps every concept to a subset of ∆I, and every
role name to a subset of ∆I ×∆I such that, for all concepts C, D and all role names r,

>I = ∆I, ⊥I = ∅,
(C uD)I = CI ∩DI, (C tD)I = CI ∪DI, ¬CI = ∆I \CI,
(∃r.C)I = {x ∈ ∆I | ∃y : 〈x, y〉 ∈ rIand y ∈ CI},
(∀r.C)I = {x ∈ ∆I | ∀y : 〈x, y〉 ∈ rIimplies y ∈ CI}

where CI (rI) is the extension of the concept C (role name r) in the interpretation I and if
x ∈ C then x is an instance of C in I.

Definition. ([32]) An interpretation I satisfies (is a model of) a general concept inclusion
C v D if CI ⊆ DI; I satisfies a TBox T if it satisfies every GCI in T . An interpretation I
satisfies an assertional axiom x : C if xI ∈ CI, and I satisfies an assertional axiom (x, y) : r
if 〈xI , yI〉 ∈ rI; I satisfies an ABox A if it satisfies every axiom in A.

16



There are a number of inference problems that are common with DLs. Consistency check-

ing involves determining whether an ontology is consistent. Satisfiability checking involves

determining if a concept is satisfiable, meaning that it is not contradictory. Subsumption

checking involves determining if all the individuals belonging to one concept also belong to

another concept. Concept equivalence (resp. disjointness) checking involves determining if

two concepts contain only the same (resp. none of the same) individuals. Membership check-

ing involves determining if an individual belongs to a given concept. Relationship checking

involves determining if two individuals are connected by a given role.

2.4.2 The Web Ontology Language

The Web Ontology Language (OWL) is a suite of knowledge representation languages for

developing ontologies that is standardized by the World Wide Web Consortium (W3C). The

most recent version of OWL, referred to as OWL 2, was adopted in 2009. Any future use of

“OWL” in this document will refer to OWL 2 unless otherwise specified. The original purpose

of OWL was to comprise the ontology layer of the Semantic Web [16] so that web resources

could be annotated with semantic markup allowing machines that store, retrieve, and process

the data to “understand” the intended meaning of the information. OWL has been used to

express many ontologies in a wide range of fields. For example, the Semantic Sensor Network

(SSN) ontology [33] is an ontology for describing sensors and their observations and OWL-

Time [34] is an ontology for describing time using instants and intervals based on Allen’s

interval algebra [35]. OWL is chosen as the DL specification of focus for this thesis due to

its expressiveness and acceptance along with the availability of tool support.

In OWL, concepts are referred to as classes and concept descriptions are referred to as

class expressions. Roles are referred to as properties. OWL differentiates between properties

that connect individuals to individuals (object properties) from properties that connect in-

dividuals to literal values (data properties). An individual is uniquely referenced in an OWL

17



ontology using an international resource identifier (IRI) [36].

An OWL ontology can be represented using several different syntaxes. Since OWL is in-

tended for use with the Semantic Web, most of these syntaxes are designed to be easily parsed

by machines rather than to be read by humans. Table 2.2 compares the human-readable

functional-style syntax of OWL [37] to the DL syntax commonly used in the literature.

Table 2.2: OWL functional-style syntax [37] vs. DL syntax. CE denotes class expressions,
OPE denotes object property expressions, and I denotes individuals.

OWL syntax DL syntax
ObjectIntersectionOf(CE1 ... CEn) C uD
ObjectComplementOf(CE) ¬C
ObjectSomeValuesFrom(OPE CE) ∃r.C
SubClassOf(CE1 CE2) C v D
EquivalentClasses(CE1 ... CEn) C ≡ D
ClassAssertion(CE I) a : C
ObjectPropertyAssertion(OPE I1 I2) (a, b) : C

An OWL ontology can be interpreted under a “direct” semantics [38] that aligns with the

very expressive, yet still decidable, DL SROIQ [39] which extendsALC with transitive roles,

a role hierarchy, nominals, inverse roles, and qualified cardinality restrictions. Inferences

regarding an ontology can be computed using reasoners that employ tableau algorithms.

Aside from the full language, there are also several profiles [40] of OWL that are es-

sentially sublanguages. Each profile restricts the use of some features in order to increase

the tractibility of reasoning at the expense of expressivity. OWL EL is intended for ontolo-

gies that contain very large numbers of classes and/or properties. OWL QL is intended for

ontologies use large volumes of instance data. OWL RL is a rule subset of OWL.

18



2.5 Works related to OwlLib

The task of integrating logic programs with DL reasoning is not original to this thesis. There

has been great interest in producing useful integrations of rules and DLs. Much of the work

is dedicated to producing an integration that retains decidability. While decidability is a

desirable property, all existing attempts have required some restriction on expressivity to

maintain it.

This section outlines important related works on integrating rules (sometimes more specif-

ically LP) with DLs. The works listed here sorted in increasing order based on relavance

and likeness to the approach taken by OwlLib. Section 2.5.1 and section 2.5.2 describe inte-

grations that merge rules and DLs into a single formalism. These are introduced to contrast

them with the approaches described in section 2.5.3, section 2.5.4, and section 2.5.5 which

keep the DL ontology separate from the rule base, much like OwlLib, but do so with lim-

ited rule formalisms that are different from Prolog. The work outlined in section 2.5.5 is of

particular interest due to a useful feature (the bi-directional flow of knowledge between the

rules and ontology components). The works described in section 2.5.6 and section 2.5.7 both

integrate Prolog with OWL (rather than some other DL). The work described in section 2.5.8

uses an approach very much like that of OwlLib, but possess subtle differences, one of which

is its incompatibility with Android.

2.5.1 Description logic programs

Description logic programs (DLP) [7] are defined by the intersection of DLs and LP. In

particular, the intersection is defined by the fragment of first-order logic that is encompassd

by both DLs and LP called def-Horn, which is definite equality free Horn logic. The focus

on the intersection allows for rules to be translated to axioms and axioms to be translated

into rules.

19



2.5.2 Semantic Web Rule Language

The Semantic Web Rules Language (SWRL) [8, 9] is based on a combination of OWL with

the Rule Markup Language (RuleML) [41] that extends the set of OWL axioms to include

Horn-like rules. A SWRL rule consists of an antecedant and a consequent, each composed

of a conjunction of atoms of the form C(X), P(x, y), sameAx(x, y), differentFrom(x, y),

where C is an OWL description, P is an OWL property, and x, y are either variables, OWL

individuals, or OWL data values. SWRL is known to be undecidable.

2.5.3 AL-log

AL-log [5] is a knowledge representation system based on the integration of the the DL ALC

[31] and Datalog. Knowledge in AL-log is maintained in two different subsystems called the

structural subsystem and the relational subsystem. The structural subsystem is an ALC

ontology consisting of a TBox and an ABox that only contains concept assertions, but AL-

log makes the unique name assumption regarding individuals. The relationional subsystem

consists of constrained Datalog rules in which constraints are terms representing concept

assertions from the structural subsystem. Query-answering for AL-log is decidable [5].

2.5.4 CARIN

CARIN [6] combines function-free Horn rules with an ALCNR (ALC with unqualified car-

dinality restrictions and a role hierarchy) ontology. Rules in CARIN can contain concept

assertions like AL-log but also allows role assertions. CARIN also makes the unique name

assumption for both components. Sound and complete reasoning procedures for CARIN-

ALCNR are provided in [6]. The authors show that reasoning is decidable for non-recursive

Horn rules. Unrestricted recursive Horn rules in CARIN-ALCNR knowledge bases lead to

undecidability. This can be remedied by requiring that the rules be role safe, which requires

20



at least one variable from every role atom appearing in the body to also appear in an atom

of a base predicate in the body.

2.5.5 dl-programs

dl-programs [11, 14, 15] provide an interface between a DL ontology and an extended logic

program interpreted under the answer-set semantics [29]. It allows queries to be made to a

DL ontology using a dl-query which can be a concept inclusion axiom (or its negation), a

positive or negative concept assertion, or a positive or negative role assertion. A dl-atom is

a structure of the form DL[S1 op1 p1, ..., Si, opi, pi; Q](t), where each Si is a concept or

a role, each opi is one of ] or 	. Si ] pi indicates that results from the query pi should be

included in the ontology as instances of Si when answering the query Q. Inversely, Si 	 pi

indicates that results from the query pi should be included in the ontology as instances of

¬Si when answering the query Q.

HEX-programs [42] are a generalization of dl-programs that also permit access to external

data sources other than DL ontologies. As with many other attempts to integrate DLs with

logic programs, dl-programs aim to increase the expressivity of DLs by integrating them with

rule formalisms such as logic programming and focus on maintaining decidability of the two

formalisms by using Datalog as the logic programming formalism.

The feature of dl-programs that is of most interest to this thesis is the bi-directional flow

of knowledge between a DL ontology and a logic program. Most related works mentioned

thus far allow for knowledge expressed in ontologies to be accessed from rules but dl-programs

allow for the knowledge expressed in a logic program to also contribute to the consequences

of an ontology.

21



2.5.6 DR-Prolog

DR-Prolog [43] is a Prolog system for defeasible reasoning with rules and OWL ontologies.

It is based on a translation of defeasible logic [44] into logic programs under the well-founded

semantics [30]. It facilitates reasoning of OWL ontologies by translating OWL axioms into

rules. Its implementation requires XSB4 (used as the reasoning engine for the system) and

SWI-Prolog5 (used for translating OWL axioms into rules), neither of which are compatible

with Android.

The authors of [43] argue that the advantage of coupling a non-monotonic formalism

such as Prolog with a monotonic formalism such as OWL is that the non-monotonic for-

malism would be capable of representing dynamic knowledge that changed frequently while

the monotonic formalism would be better suited for representing static truths that rarely

changed. This view further motivates the integration of Prolog programs and OWL ontolo-

gies.

2.5.7 Thea

Thea [45] is a Prolog library for managing OWL 2 ontologies. It leverages the SWI-Prolog

semweb6 module to read and parse the ontologies. It uses an “axiom-oriented” representation

in which predicates look like OWL constructs in the OWL 2 functional-style syntax [37] as

opposed to the triple-based representation used by the SWI-Prolog semweb library.

Reasoning in Thea is performed by either rewriting the ontology as a logic program

(based on DLP [7]) or by using the OWL RL [40] reasoning rules. The documentation hints

at a plain Prolog reasoner that uses backward-chaining rules, but it appears to be removed

from the public source code repository7. Thea is able to access external reasoners through
4http://xsb.sourceforge.net/
5http://www.swi-prolog.org/
6http://www.swi-prolog.org/pldoc/doc_for\?object=section\%28\%27packages/semweb.html\

%27\%29
7The “Reasoning_using_Thea.txt” file in source code repository at https://github.com/vangelisv/

22



the OWL API but uses SWI-Prolog’s bidirectional Prolog/Java JPL8 module to do so, and

thus is incompatible with Android.

The authors of [45] state that Prolog offers many advantages as a host programming

language for working with ontologies due to its declarative features and pattern-matching

styles of programming. The feature of Thea that is of most interest to this thesis is the

decision to use Prolog predicates and terms that correspond to the functional-style syntax of

OWL. This allows for the predicates to look much like their equivalent OWL constructs so

that placing a query to an OWL reasoner or representing a complex class expression looks

and feels natural. OwlLib adopts this same syntax for predicates that place queries to OWL

reasoners.

2.5.8 Ontological Logic Programming

Ontological Logic Programming (OLP) [46] combines Prolog with DL reasoning by enabling

the use of entities from an OWL ontology, such as individuals, classes, and properties, from

within a Prolog program. The interpretation of terms from the ontology is delegated to

an external ontology reasoner during the interpretation of the program. A simple meta-

interpreter is used to invoke an OWL reasoner (Pellet [47]) when an ontological predicate,

such as ex:’Person’(X), is encountered. OLP keeps the OWL ontology completely seperate

from the Prolog rule base. The implementation9 of OLP leverages many libraries that are

not compatible with Android.

The authors of [46] cite several advantages of OLP. Of these advantages, the two of most

interest to this thesis are (1) the transparent use of DL reasoning from within logic programs

and (2) the reuse of domain knowledge specified in ontologies. Knowledge defined in DL

ontologies is intended to be interpreted in a certain fashion. The delegation of ontological

thea mentions a file called “owl2_basic_reasoner.pl” that implements these rules, but it is not present.
8http://www.swi-prolog.org/packages/jpl/
9http://sourceforge.net/projects/olp-api/

23



queries to external reasoners allows them to be answered in a decidable and pragmatic

manner. Furthermore, the reuse of domain knowledge specified in ontologies can allow logic

programs with access to DL reasoning to collaborate with other systems that make the same

ontological commitments by leveraging the same ontologies. Like OLP, OwlLib also employs

external OWL reasoners in order to offer these same advantages. However, OwlLib is fully

compatible with Android and uses a different syntax.

2.6 Works related to SensorLib

Context-aware systems adapt their operations without explicit user intervention by taking

context into account [18]. One of the initial requirements for context-awareness is a mech-

anism for obtaining context [48]. SensorLib is a Prolog library purposed for the aquisition

of sensor observations, which constitute context, and making them available to Prolog pro-

grams. Once the necessary low-level information is aquired, it can be used at a higher level

to perform tasks such as physical activity recognition.

Physical activity recognition is the process of detecting the activity a person is currently

performing, such as standing, walking, or jogging. Various approaches have been applied,

from mining observation data reported by body-worn sensors [49] and sensors attached to

objects in the environment [50] to video recognition of activities [51]. Body-worn sensors

can be obtrusive as they require sensors to be physically attached to body of the subject

while object sensors can be expensive to deploy. An alternative to the above approaches is

to use the on-board sensors available on mobile devices. In addition to being equipped with

a number of sensors capable of measuring a myriad of physical properties, smartphones and

other pocket-sized mobile devices make good platforms for activity recognition due to their

ubiquity and low/none installation cost [52]. Mobile devices have successfully been used to

perform activity recogntion for various purposes such as detecting the transportation mode

24



of a user (walking, biking, driving, etc.) [53, 54], estimation of energy expenditure [55], and

detecting falls suffered by elderly people [56].

25



Chapter 3

OwlLib – A Prolog library for OWL

3.1 Introduction

OwlLib is a Prolog library for querying and manipulating OWL ontologies from within

Prolog programs on Android devices. It provides terms for representing OWL constructs

and predicates for managing OWL ontologies and OWL reasoners, executing low-level and

high-level queries of the ontologies using the reasoners, and manipulating OWL ontologies.

It is designed specifically for the JPR Prolog interpreter due to JPR’s compatibility with

Android. Some of the predicates of OwlLib are implemented entirely in Java while the

implementation of others is split between Java and Prolog source code.

OwlLib leverages the OWL API [20] to load, parse, and provide a low-level representation

of OWL ontologies and constructs. The OWL API also provides a common interface for

accessing various implementations of OWL reasoners. Android-compatible reasoners that

implement the interface are queried by OwlLib predicates to compute inferences regarding

OWL ontologies. The use of the OWL API could potentially be replaced with another

OWL framework such as Jena [57], though this would require significant retooling of certain

components of the library. Though it primarily targets the Android platform, OwlLib is

26



intended to be compatible with any platform that possesses adequate memory to support

a Java Virtual Machine and the data contained in the Prolog knowledge base and OWL

ontologies loaded by the library.

This chapter discusses the design and implementation of OwlLib and is organized as

follows. Section 3.2 presents the structure of OwlLib and describes the interaction of its

components. The ontology and reasoner management functionality of OwlLib is outlined

in section 3.3. Details regarding the Prolog representation of OWL entities are discussed

section 3.4 as well as the manner is which complex descriptions can be created from them.

Section 3.5 is dedicated to explaining how OWL reasoners are queried using OwlLib pred-

icates and how the results of the queries are made available to a Prolog program. The

implementation of a special predicate that allows for the bi-directional flow of knowledge

between an OWL ontology and a Prolog program is outlined in section 3.6. The facilities

provided by OwlLib for manipulating an ontology are outlined in section 3.7. Lastly, sec-

tion 3.8 discusses how the issues regarding the orthogonal semantics of Prolog and OWL

are handled in OwlLib. A full listing of the predicates provided by OwlLib can be found in

appendix A.

3.2 Structure of OwlLib

OwlLib is developed for the JPR Prolog environment and consists of many terms and pred-

icates for working with OWL ontologies and reasoners. While some functionality of the

library is implemented in Prolog, the majority is implemented in Java to interact with Java-

based tools, namely the OWL API and the external OWL reasoners. The general structure

of OwlLib is illustrated in figure 3.1.

27



Figure 3.1: The relationship between OwlLib and third-party tools. The Java implementa-
tions of OwlLib predicates and terms interact with the OWL API and external ontologies
and reasoners through an instance of the OwlLibManager Java class.

The OWL API [20] is an Application Programming Interface (API) for working with

OWL ontologies in Java. It provides an in-memory Java representation of OWL ontologies

and provides functionality for loading and parsing of OWL ontologies. The OWL API takes

an “axiom-centric” view of ontologies in which an ontology is treated as a set of axioms.

The OWL API also provides a Java representation of OWL constructs such as entities,

expressions, and axioms. In addition, the OWL API defines the Java interface OWLReasoner

for accessing OWL reasoners in a uniform way from Java.

The Java class OwlLibManager provides backend functionality by acting as a bridge

between OwlLib predicates and terms and the OWL API. It stores and manages loaded

ontologies and the reasoners associated with them. It also provides functionality for obtaining

28



the Java representations of OWL constructs provided by the OWL API. There is only one

instance of OwlLibManager that is created when OwlLib is loaded into JPR. A reference to

this instance is provided to each instance of each Java-based OwlLib predicate and term as

a means to access the reasoners.

Each predicate and term of OwlLib (with the exception of dl/2, discussed in section 3.6,

and part of the axiom predicates that accept unbound arguments, discussed in section 3.5)

is implemented in Java in order to access the functionality provided by OwlLibManager.

The Prolog implementations of the predicate dl/2 and the rules defining the functionality of

axiom predicates that accept unbound arguments reside in a Prolog file named owllib.pl.

3.3 Ontology and reasoner management

The ontology management predicates of OwlLib provide functionality for the loading, man-

aging, and saving of OWL ontologies while the reasoner management predicates are pro-

vided for the creation and management of OWL reasoners associated with loaded ontologies.

Loaded ontologies and reasoners are referenced from Prolog using atoms that serve as “han-

dles” that are defined at the time the ontology or reasoner is loaded. Some of the ontology

and reasoner management predicates of OwlLib are listed in table 3.1 while the rest are

listed in appendix A.

Table 3.1: Ontology and reasoner management predicates

Predicate Functionality
createOntology(+O) Creates an empty ontology with the handle O
loadOntology(+Path, +O) Loads an ontology with the handle O from a file on the path Path

of the file system
useOntology(+O) Sets the ontology with the handle O to be the active ontology
createReasoner(+R, +Type, +O) Creates an reasoner with the handle R of the type Type for the

ontology with the handle O
saveOntology(+Path, +O) Saves the ontology with the handle O to a file with the path Path

on the file system
unloadOntology(+O) Unloads the ontology with the handle O

29



OwlLib allows for multiple OWL ontologies to be loaded at any given time. An ontology

can be loaded from a text file or a blank ontology can be created from scratch. Of the loaded

ontologies, one is set to be the “active” ontology. Each loaded ontology can have multiple

reasoners associated with it. Of the reasoners associated with a particular ontology, one

is set to be the “active” reasoner for that ontology. The Java implementations of axiom

predicates and query predicates submit queries to the active reasoner of the active ontology

as shown in figure 3.2.

Figure 3.2: Active ontologies and reasoners. The ontology O2 is set to be the active ontology
and the reasoner R3 is set to be the active reasoner of O2, as denoted by the stars. The
Java implementations of axiom predicates and query predicates submit queries to the active
reasoner of the active ontology.

An example of how to use the ontology and reasoner management predicates is demon-

strated below.

?- loadOntology(‘/path/to/ontol1/o1.owl’, o1). % (1)
?- createReasoner(r1, jfact, o1). % (2)
?- createOntology(o2). % (3)
?- useOntology(o1). % (4)
?- classAssertion(ex:Person, ex:Bob), % (5)

assertAxiom(classAssertion(ex2:Human, ex:Bob), o2).
?- saveOntology(‘/path/to/ontol2/o2.owl’, o2). % (6)

30



Query (1) loads the ontology stored in a file named o1.owl and sets the handle o1 as the

reference for it. Query (2) creates a JFact [21] reasoner with the handle r1 for the ontology

o1. The reasoner r1 is automatically set to be the active reasoner for o1. Query (3) creates

an empty ontology with the handle o2 and query (4) manually sets the active ontology to be

o1 again. Query (5) submits a query to the active reasoner r1 regarding the entailment of an

axiom by o1 and asserts a similar axiom into ontology o2 (ex:Person, ex:Bob, ex2:Human,

and ex:Bob are all atoms, as explained in section 3.4.1). Query (6) saves ontology o2 to a

file named o2.owl.

OwlLib supports the reasoners JFact [21] (a Java port of the OWL DL reasoner FaCT++

[58]) and ELK [22] (a reasoner tailored towards EL ontologies) due to their compatibility with

Android and their implementation of the OWL API OWLReasoner interface. Efforts outlined

in [59] and [60] were made to determine what other existing OWL reasoners were compatible

with Android. The investigation found that jcel [61], an EL+ reasoner, was compatible by

default while Pellet [47], HermiT [62], and CB [63] required extensive modification in order

to function on the Android platform.

In addition to the supported reasoners, OwlLib also provides a mechanism for adding

unsupported reasoners that implement the OWLReasoner interface of the OWL API. How-

ever, this requires for the reasoner to be constructed manually in Java before supplying to

OwlLib for use.

// obtain the instance of OwlLibManager from OwlLib
OwlLibManager olm = owllib.getManager();
// obtain a reference to the active ontology from the OwlLibManager
OWLOntology o = olm.getActiveOntology();
// manually create an instance of the new reasoner using the ontology object
OWLReasoner r = new FutureReasonerFactory().createReasoner(o);
// supply OwlLib with the created reasoner to be associated
// with the active ontology using the handle "future"
olm.createReasoner("future", r, jpr.termFactory());

31



3.4 Representing OWL in Prolog

3.4.1 Representing basic entities

Classes, individuals, and properties are the most basic entities in an OWL ontology’s domain.

Since these entities are represented in OWL using IRIs, atoms corresponding to their IRIs

are used to represent them in OwlLib. For example, the atom ‘http://www.example.com/

owl/stuff#Bob’ might be used to represent an individual with the name “Bob”. Note that

atoms representing full IRIs must be quoted.

OWL allows for IRIs to be abbreviated using prefix names. Likewise, OwlLib allows for

IRI atoms to be abbreviated using the addPrefix/2 predicate. The evaluation of:

?- addPrefix(ex, ‘http://www.example.com/owl/stuff#’).

allows the prefix name ex: to be used in place of the IRI prefix ‘http://www.example.com/

owl/stuff#’. The atom ‘http://www.example.com/owl/stuff#Bob’ could then be abbre-

viated to simply ex:Bob. The abbreviated atom does not require quotes. OwlLib predicates

and terms will expand such an abbreviated atom into its full IRI when it is received as an

argument.

3.4.2 Representing complex descriptions

Expressions in OWL are used to create complex descriptions from basic entities. Expressions

are supported by OwlLib through expression terms. Each expression term corresponds in

syntax to its OWL functional-style [37] counterpart. The name and arity of each expression

term matches its counterpart, with the exception that the terms begin with a lower-case

letter. The expression terms corresponding to OWL expressions that accept a variadic

number of arguments accept a single Prolog list containing the arguments. This syntax is a

natural Prolog representation of OWL constructs and is inspired by that of Thea [45]. For

32



example, the expression term

objectIntersectionOf([ex:Parent, ex:Male])

corresponds to the OWL class expression

ObjectIntersectionOf(ex:Parent ex:Male)

representing the set of individuals belonging to the classes Parent and Male. Some of the

implemented expression terms are listed in table 3.2 while the rest are listed in appendix A.

Table 3.2: Class expression terms

Term Representation
objectIntersectionOf(+CEs) Represents the set of individuals that are instances of every

class expression in the Prolog list CEs
objectUnionOf(+CEs)) Represents the set of individuals that are instances of at least

one of the class expressions in the Prolog list CEs
objectComplementOf(+CE) Represents the set of individuals that are not instances of

the class expression CE
objectSomeValuesFrom(+OPE, +CE) Represents the set of individuals that are connected by OPE

to an individual that is an instance of CE
objectAllValuesFrom(+OPE, +CE) Represents the set of individuals that are connected by OPE

only to individuals that are instances of CE
objectMinCardinality(+N, +OPE, +CE) Represents the set of individuals that are connected by OPE

to at least N different individuals that are instances of CE
objectMaxCardinality(+N, +OPE, +CE) Represents the set of individuals that are connected by OPE

to at most N different individuals that are instances of CE

3.5 Querying OWL reasoners

3.5.1 Axiom predicates for querying OWL reasoners

Axiom predicates are the primary means of querying OWL reasoners using OwlLib. Similar

to expression terms, each axiom predicate possesses a name and arity identical to its OWL

functional-style [37] counterpart with the exceptions that its functor begins with lower-case

letter. When an axiom predicate is evalutated, a query is made to the active reasoner of the

active ontology to either determine if the axiom represented by the predicate is entailed by

33



the ontology or to bind any unbound arguments based on the consequences of the ontology.

Some of the axiom predicates of OwlLib are listed in table 3.3 while the rest are listed in

appendix A.

Table 3.3: Axiom predicates

Predicate Representation
subClassOf(?CE1, ?CE2) States CE1 is a subsumed by CE2
equivalentClasses(+CEs) States that class expressions in the Prolog list

CEs are equivalent
disjointClasses(+CEs) States that class expressions in the Prolog list

CEs are pairwise disjoint
classAssertion(?CE, ?I) States that I is an instance of CE
sameIndividual(+Is) States that individuals in Prolog list Is are

the same individual
differentIndividuals(+Is) States that individuals in Prolog list Is are

all different individuals
objectPropertyAssertion(+OPE, +I1, ?I2) States I1 is connected by OPE to I2
negativeObjectPropertyAssertion(+OPE, +I1, +I2) States I1 is not connected by OPE to I2

The type of query that an axiom predicate makes and the manner in which the query

is carried out depends on the instantiation of the predicate’s arguments. If the predicate

contains no unbound variables, the Java implementation queries the active reasoner of the

active ontology to determine if the ontology entails the represented axiom. If it does, then

the axiom predicate evaluates to true; otherwise, it evaluates to false. For example, assuming

that ex:Father and ex:Person are atoms representing the OWL classes Father and Person

respectively, the following query:

?- subClassOf(ex:Father, ex:Person).

would evaluate to true if the reasoner is able to infer that ontology entails that the class

Father is a subclass of Person. Similarly, the query:

?- classAssertion(ex:Father, ex:Bob).

would evaluate to true if the reasoner is able to infer that the ontology entails that Bob

is an instance of the class Father. This type of query is considered “low-level” as the Java

34



implementation of the predicate queries the reasoner directly, as illustrated in figure 3.3.

Figure 3.3: Query delegation in OwlLib. The Java implementations of axiom predicates
query the reasoners directly while the axiom predicate rules do so using query predicates.

The treatment of an axiom predicate that contains an unbound variable is handled using

a Prolog rule (these rules are discussed in section 3.5.2 in relation to query predicates also

defined in the section). When an axiom predicate containing an unbound variable is evalu-

ated, OwlLib queries the reasoner. However, since the axiom represented by the predicate

is not fully formed (it contains a variable), instead of quering for axiom entailment, a query

for all the entities that satisfy the axiom is made. The query returns a set of results. Each

result is bound, in turn, to the variable. For example, the following query is not checking

axiom entailment but rather is ascertaining all the individuals inferred to be instances of

Person:

?- classAssertion(ex:Person, X).
X = ex:Bob ;
X = ex:Mary ;
...

As demonstrated by this example, X can be repeatedly bound to different results from the

query. A query of this type is considered “high-level” as it is implemented by a Prolog rule

35



that leverages a query predicate (discussed in section 3.5.2) that accesses a reasoner at a

“low-level” in Java, as illustrated in figure 3.3.

3.5.2 Query predicates for low-level querying of OWL reasoners

In order to implement the queries issued by axiom predicates that contain unbound variables,

OwlLib leverages a number of low-level query predicates that are used to submit particular

queries to the OWL reasoner. All of the query predicates are implemented entirely in Java

and each is responsible for a single query. A query predicate expects one or more input

arguments to use as parameters for the query and an unbound variable to as the last argument

to be used for output. Some of the query predicates of OwlLib are listed in table 3.4 while

the rest are listed in appendix A.

Table 3.4: Query predicates

Predicate Functionality
getSubClasses(+CE, -Iter) Gets set of named subclasses of class expression CE and

binds iterator of set to Iter
getSuperClasses(+CE, -Iter) Gets set of named superclasses of class expression CE

and binds iterator of set to Iter
getEquivalentClasses(+CE, -Iter) Gets set of named equivalent classes of class expression

CE and binds iterator of set to Iter
getDisjointClasses(+CE, -Iter) Gets set of named disjoint classes of class expression

CE and binds iterator of set to Iter
getSameIndividuals(+I, -Iter) Gets set of individuals that are the same as I and binds

iterator of set to Iter
getDifferentIndividuals(+I, -Iter) Gets set of individuals that are different than I and

binds iterator of set to Iter
getTypes(+I, -Iter) Gets set of named classes of which I belongs and binds

iterator of set to Iter
getInstances(+CE, -Iter) Gets set of individuals that are instances of class ex-

pression CE and binds iterator of set to Iter
getObjectPropertyValues(+I, +OPE, -Iter) Gets set of individuals that are connected to I by OPE

and binds iterator of set to Iter

As demonstrated in section 3.5.1, the axiom predicate classAssertion/2 can be used

to obtain all the instances of a given class. The high-level is implemented by the following

rule:

36



classAssertion(CE, I) :-
% if a class expression is given and an instance is expected,
nonvar(CE), var(I),
% then get the set of instances from the reasoner...
getInstances(CE, Iter),
% ...and bind the first (if any) to I
next(Iter, R), owlObjToTerm(R, I).

The predicate getInstances/2 is used to obtain all of the instances of a given class ex-

pression as inferred by the reasoner. The reasoner returns the instances as result set and

the query predicate binds its output argument Iter to a JPR ReferenceTerm containing

an iterator to the set. The iterator can then be used to access every element in the set via

next/2, described in section 3.5.3.

3.5.3 Recursion and backtracking with iterators

The evaluation of a query predicate submits a query to the active reasoner which returns a

result set. The query predicate then binds a JPR ReferenceTerm that contains an iterator

to the set to its output argument. The predicate next/2 can then be used to access each

element of the set.

Every time that next/2 is evaluated, it obtains the next element of the iterator and

places it in a ReferenceTerm that is then bound to its second argument as output. Thus it

is possible to access all the elements in the result set by repeatedly passing the same iterator

to next/2. In the case of OwlLib, the elements are entities of an OWL ontology represented

in Java by classes of the OWL API and can be converted to a Prolog representation using

owlObjToTerm/2:

?- getInstances(CE, Iter),
next(Iter, R), % bind the next element to R using a reference term
owlObjToTerm(R, I). % convert the reference term R to a Prolog atom I

The evaluation of next/2 also creates a backtrack point if the iterator has not accessed all

the elements in the result set. Upon backtracking, the next element of the iterator is bound

37



and another backtrack point is created if the iterator still has more elements to visit. This

process continues until the iterator has visited all of the elements in the result set. For ex-

ample, reconsider the following rule defining part of the functionality of classAssertion/2:

classAssertion(CE, I) :-
nonvar(CE), var(I),
getInstances(CE, Iter),
next(Iter, R), % backtrack point created if Iter has more elements
owlObjToTerm(R, I).

When classAssertion/2 is evaluated, only a single query to the reasoner is made when

getInstances/2 is evaluated. However, multiple backtrack points may be created depending

on the number of elements still unvisisted by the iterator of the result set.

3.6 Bi-directional flow of knowledge

The axiom predicates and query predicates of OwlLib allow for queries to an OWL reasoner

to be made from within a Prolog program. However, both types of predicates only allow

knowledge to flow in one direction, from the ontology to the program. OwlLib also provides

a special predicate dl/2 to allow the consequences of a Prolog program to be added to the

knowledge expressed by an OWL ontology and thus possibly be a part of the inferences

computed by an OWL reasoner. dl/2 is inspired by the work of Eiter et al. on dl-programs

[11, 14, 15].

The syntax of dl/2 is

dl([E1 op1 p1/N, ..., En opn pn/N], Axiom)

where each combination Ei opi pi/N is called an “increaser” and Axiom is a term correspond-

ing to class assertion or object property assertion. An increaser contains a class expression

or object property expression Ei, an indicator operator opi (either += or -=), and the name

of a unary or binary predicate and the value of its arity pi/N .

38



When an instance of dl/2 is evaluated, the knowledge derived from consequences of a

Prolog program is first temporarily added to the active ontology. The query expressed by the

axiom predicate argument is then submitted to the active reasoner. Lastly, the temporary

knowledge is removed, returning the ontology to its previous state.

An increaser containing a class expression E and the indicator operator += causes the

results from calling the unary predicate with functor p to be temporarily added to the

OWL ontology as instances of the class expression. When the reasoner answers the query

represented by Axiom, it can take the new temporary knowledge into consideration when

computing inferences. For example, consider an ontology containing only the following axiom

stating that every Father is also a Parent and Male:

# every Father is also a Parent and Male
SubClassOf(Father ObjectIntersectionOf(Parent Male))

and a Prolog program only containing the following fact stating that bob is a father:

% bob is a father
father(bob).

Note that since the ontology and Prolog knowledge base are kept separate by OwlLib, the

ontology does not imply that bob is a Father nor does the program imply that bob is a Parent

or Male. However, the following use of dl/2 evaluates to true because every consequent of

father/1 is temporarily asserted to be an instance of Father before querying the reasoner

to ascertain if bob would be classified as a Parent by the ontology:

% If every father from the program is also a Father in the ontology,
% then is ’bob’ from the program also classified as a Parent
% by the ontology?
?- dl([’Father’ += father/1], classAssertion(’Parent’, bob)).
true.

Conversely, if the indicator operator -= is used, then the results are temporarily added

as instances of the complement of the class expression:

39



% fact from program stating "’fido’ is a animal"
animal(fido).

% If every animal from the program is not a Person in the ontology,
% then is ’fido’ from the program classified as a Person
% by the ontology?
?- dl([’Person’ -= dog/1], classAssertion(’Person’, fido)).
false.

Similarly, if the += indicator operator is used with a property expression then the re-

sults from calling the supplied binary predicate are temporarily added to the ontology as

being connected by the property expression and if -= is used they are temporarily added as

explicitly not being connected.

In order to achieve this functionality, dl/2 first collects the results of calling the predicate

associated with each increaser. Axioms corresponding to the results are then asserted into

the ontology. Next, the active reasoner is used to determine if the ontology is still consistent.

If the ontology is found to be inconsistent, the added axioms are removed and dl/2 fails. If

the ontology remains consistent, the corresponding axiom predicate is evaluated, placing a

query to the reasoner as usual. After the evaluation of the axiom predicate completes, the

axioms that were temporarily added to the ontology are removed.

3.7 Ontology manipulation

In addition to allowing OWL reasoners to be queried, OwlLib also provides ontology manip-

ulation predicates for manipulating OWL ontologies from Prolog programs. The ontology

manipulation predicates are listed in table 3.5.

Table 3.5: Ontology manipulation predicates

Predicate Functionality
assertAxiom(+A, +O) Adds the axiom represented by A into the ontology with handle O
retractAxiom(+A, +O) Removes the axiom represented by A from the ontology with handle O
isConsistent(+O) Determines if the ontology with handle O is consistent

40



Axioms can be added to an ontology using assertAxiom/2. It should be noted that

OwlLib does not prevent contradictory axioms from being added to an ontology. If contra-

dictory axioms are added to an ontology, the ontology will become inconsistent. When an

ontology is inconsistent, its reasoners will not answer any queries regarding the ontology but

will throw an exception instead. The predicate isConsistent/1 can be used to determine

whether an ontology is consistent after an axiom has been added to it. If the addition of an

axiom does lead to an ontology inconsistency, it can be removed using retractAxiom/2 to

return the ontology to a consistent state.

% assert that ’bob’ is a Person
?- assertAxiom(classAssertion(ex:Person, bob)).
true.

% assert that ’bob’ is not a Person only if it does not
% make the ontology inconsistent
?- assertAxiom(classAssertion(objectComplementOf(ex:Person), bob)),

\+ isConsistent(ontol1),
retractAxiom(classAssertion(objectComplementOf(ex:Person), bob)).

true.

3.8 Handling issues of integrating Prolog with OWL

The semantics of Prolog and OWL are not readily compatible with one another. Prolog

is non-monotonic and makes the closed-world assumption (CWA) and the unique name

assumption (UNA) while OWL is monotonic and makes the open-world assumption (OWA)

but does not make the unique name assumption. OwlLib keeps the knowledge expressed an

OWL ontology separate from that expressed in a Prolog program and leverages an OWL

reasoner to compute the inferences regarding an ontology when axiom predicates and query

predicates are evaluated by the JPR inference engine. OwlLib is true to the semantics of

each component when each is considered in isolation though no unifying global semantics are

given. However, it is arguable whether such a unifying global semantics would be beneficial

41



in most practical applications. In the following sections, relevant differences between Prolog

and OWL are addressed and issues that they might cause in applications are highlighted.

3.8.1 Non-monotonicity vs. monotonicity

In OwlLib, an OWL reasoner computes inferences based on the contents of an OWL ontology.

It has no access to the Prolog KB so the contents of the Prolog KB have no effect on the

results obtained by the reasoner. Furthermore, axioms asserted into an OWL ontology

cannot reduce the inferences computed by an OWL reasoner (however they can cause the

ontology to become inconsistent). Therefore, monotonicity is preserved on the OWL side of

things in OwlLib, in the sense that one may query and manipulate the OWL ontology in the

usual OWL way.

Non-monotonicity is preserved within the Prolog knowledge base as it always is, through

negation-as-failure. Considering the following canonical example, assuming that the KB

contains no guilty(bob) facts, bob is considered innocent:

innocent(X) :- \+ guilty(X).

?- innocent(bob). % true until guilty(bob) is asserted

The above rule can be replaced with the following one that ascertains the innocence of an

individual based on consequences of the ontology.

innocent(X) :- \+ classAssertion(ex:Guilty, X).

?- innocent(bob). % true until the axiom ClassAssertion(Guilty bob)
becomes a consequence of the ontology

Therefore, OwlLib enables open-world reasoning in Prolog by delegating the computation

of inferences of the ontology to dedicated OWL reasoners.

42



3.8.2 Closed-world assumption vs. open-world assumption

The reasoning performed by the OWL reasoners is performed only over knowledge expressed

in the ontology and in isolation from the Prolog program. Therefore, the OWA is able to be

employed during the extent of the reasoning.

On the Prolog side of things, the inference engine can leverage the CWA as usual. Con-

sider the following query ascertaining if bob is an instance of Person:

?- classAssertion(ex:Parent, bob).

If the represented class assertion axiom is entailed by the ontology, the query would return

true. Otherwise, it would evaluate to false. However by the OWA, if it cannot be determined

if bob is an instance of Person or an instance of the complement of Person, the membership

of bob in the class Person is “unknown”. The following query will evaluate to true if it is

unknown whether or not bob is an instance of Person:

?- \+ classAssertion(ex:Person, bob),
\+ classAssertion(objectComplementOf(ex:Person), bob).

Thus by submitting leveraging negation-as-failure while submitting both positive and

negative queries to the reasoner, it can be determined whether certain consequences regarding

an ontology are “unknown”. For convenience, such queries could be defined as rules:

unknown(classAssertion(CE, I)) :-
\+ classAssertion(CE, I),
\+ classAssertion(objectComplementOf(CE), I).

3.8.3 The unique name assumption

Prolog makes the unique name assumption (UNA) which means that any terms that are not

syntactically identical are considered to be different and thus not equal. For instance, the

atoms bob and bobby are treated as different when compared:

43



?- bob == bobby.
false.

On the other hand, OWL does not make the unique name assumption. The same entity

can be referenced using two different IRIs. The reasoning performed by the OWL reasoners

take the equivalence of entities into consideration. If bob and bobby are asserted to be

the same individual and bob is asserted to be a member of Person, then bobby will also be

inferred as belonging to Person. Such is the case for any queries regarding any consequences

derivable regarding bob will also be true of bobby. Thus OwlLib does not impose the UNA

on the OWL ontology.

To align with Prolog’s treatment of syntactically different atoms, both bob and bobby

are returned for the query asking for all the instances of Person.

?- classAssertion(ex:Person, X).
X = bob ;
X = bobby ;
...

Therefore, any atoms used to represent entities from the ontology should be compared using

the appropriate axiom predicate for testing (in)equality (such as sameIndividuals/1) rather

than the Prolog comparison operators.

?- sameIndividuals([bob, bobby]).
true.

3.9 Conclusion

OwlLib is an integration of logic programming with description logic reasoning for mobile

devices. It provides predicates and terms for working with OWL ontologies and reasoners.

External tools are leveraged by OwlLib in order to ensure that the knowledge expressed in

OWL ontologies is interpreted in manner in which it was intended. The OWL API is lever-

aged to load and parse OWL ontologies as well as provide an in-memory Java representation

44



of them and other OWL constructs. The OWLReasoner interface of the OWL API is used to

provide uniform access for querying OWL reasoners that compute inferences regarding OWL

ontologies. Though another Java OWL framework could potentially be used in place of the

OWL API, it would have to provide an interface by which to access OWL reasoners. The

separation of the Prolog and OWL reasoning systems allows for the two formalisms which

possess different semantics to be used together in the same system.

45



Chapter 4

SensorLib – A Prolog library for

accessing Android sensors

4.1 Introduction

Most Android devices come equipped with on-board sensors such as accelerometers, gyro-

scopes, light sensors, GPS, and sometimes even thermometers capable of observing a variety

of events regarding the device’s current state and the state of the environment around the

device. The Android Software Development Kit (SDK) [23] provides a low-level framework

consisting of several Java classes and interfaces for accessing the sensors and obtaining the

observations they report. The SDK imposes some responsibilities on the developer such as

the need to manually register and unregister the listeners that receive observations from

sensors.

SensorLib is a Prolog library developed for the JPR Prolog environment that facilitates

access to observations reported by sensors on Android devices from within Prolog programs.

SensorLib handles the reported observations in an efficient and customizable manner using

observation managers (OMs). An OM automatically receives, stores, and manages sensor

46



observations that are reported by an on-board Android sensor. An OM can be set to store

only a set number of sensor events or all the sensor events that occur over a specified time

duration. Observations are stored chronologically in a sliding window. When a window

reaches its capacity, old observations are removed as new observations are added in a first-in

first-out fashion. A clone, or snapshot, of the collection of observations managed by an OM

can be obtained at any time. The observations stored in the clone can each be accessed in

turn using an iterator. SensorLib is only compatible with Android 4.2 (API Level 17) and

higher due to certain features of the SDK that it leverages.

This chapter discusses the design and implementation of SensorLib and is organized as

follows. Section 4.2 discusses how sensor observations are obtained using the Android SDK.

The structure of SensorLib is illustrated in section 4.3. Observations managers and the

predicates provided for working with them are outlined in section 4.4. Section 4.5 details

how to obtain a clone of the active window of observations maintained by an observation

manager. Common statistical operations that are included with SensorLib are outlined in

section 4.6. Lastly, section 4.7 provides details regarding the representation of observations in

SensorLib. A full listing of the predicates provided by SensorLib can be found in appendix B.

4.2 Receiving sensor observations with the Android

SDK

The Android SDK does not allow for a sensor to be polled directly for its most recent

observation. Instead, the newest observation is delivered to listener objects whenever a sen-

sor reports a new observation. The interface SensorEventListener declares the callback

method onSensorChanged(SensorEvent) and is used to define listeners to receive obser-

vations reported by motion, position, and environmental sensors. When a sensor reports

a new observation, the onSensorChanged(SensorEvent) method of all listeners registered

47



with that particular sensor is called. The SensorEvent object received as an argument con-

tains the values of the observation, a timestamp indicating when the observation occurred,

the estimated accuracy of the observation, and a reference to the sensor that reported the

observation.

Similarly, the interface LocationListener declares the callback method onLocation-

Changed(Location) and is used to define listeners to receive observations reported by the

GPS and network location providers regarding the current geographical location of a device.

The Location object contains information similar to that of SensorEvent objects (the

latitude and longitude of the observation, the time of the observation, etc.).

Though the Android SDK delineates between sensors and location providers, SensorLib

provides a uniform view, classifying both as sensors that report observations.

4.3 Structure of SensorLib

SensorLib is developed for the JPR Prolog interpreter to facilitate access to observations

reported by sensors on Android devices from within Prolog programs. As a Prolog library,

SensorLib provides a number of predicates for checking the availability of sensor types,

creating and managing observation managers, cloning windows of obervations, and accessing

the obervation data stored in those windows. Each of the predicates is developed entirely in

Java due to the low-level nature of the tasks performed. The general structure of SensorLib

is illustrated in figure 4.1.

48



Figure 4.1: The structure of SensorLib

SensorLib provides observation managers (OMs) to automatically handle the acquisition,

storage, and management of sensor observations. An OM is registered with a particular

sensor and stores observations received from that sensor in a sliding window of size-based or

time-based capacity. The window can be cloned and the observations stored in the cloned

window can be obtained by iterating over the clone.

The class SensorLibManager is responsible for managing OMs. When the application

loses focus (a new application is opened or the user navigates back to the device’s home

screen), SensorLibManager unregisters all OMs that have not been manually unregistered.

When the application regains focus, all of the OMs are reregistered with their respective

sensors automatically (unless they were unregistered manually). The automatic unregistering

and reregistering of OMs relieves the developer from the burden of doing so manually. This

default behaviour can be disabled if a developer wishes to leave the OMs registered so that

they may receive observations even when an application is not in focus.

The library is loaded into JPR in the usual way except an Android Context is passed to

the constructor:

49



InferenceEngine jpr = new InferenceEngine();
// ‘‘this’’ refers to the current Activity (which is a valid Context)
SensorLib sensorlib = new SensorLib(this);
jpr.termFactory().loadLibrary(sensorlib);

The Context is used by the instance of SensorLibManager in order to (1) obtain the

system service managers for accessing sensors and location providers and (2) register callback

methods that automatically register/unregister OMs when an application gains and loses

focus.

By default, all code for an Android applications runs on the main UI thread. Time-

intensive tasks need to be performed on different threads as to not block the UI thread.

Most sensors are capable of reporting observations rapidly causing an OM to constantly

ensure the capacity of its window is maintained. Therefore, SensorLibManager creates a

background thread called the OM thread on which sensors report their observations to OMs.

The use of the OM thread prevents the processes of rapidly receiving and storing observations

and enforcing window capacity from blocking the UI thread.

Not all Android devices possess the same types of sensors. Therefore, SensorLib pro-

vides two predicates for determining what sensors are available on a device. The predicate

getSensorTypes(-Types) provides a list of all available sensors while hasSensor(+Type)

indicates if a particular sensor type is present:

?- getSensorTypes(Sensors).
Sensors = [accelerometer, gyroscope, lightSensor, ...]

?- hasSensor(acceleromter).
true.

Sensor types are represented by using the sensor type atoms listed in table 4.1.

50



Table 4.1: Sensor type atoms

accelerometer gameRotationVectorSensor
Accelerometer Game rotation vector
gravitySensor geomagneticRotationVectorSensor
Gravity Geomagnetic rotation vector
gyroscope magneticFieldSensor
Gyroscope Magnetic field
linearAccelerationSensor proximitySensor
Linear acceleration Proximity
rotationVectorSensor
Rotation vector
ambientTemperatureSensor gps
Ambient temperature GPS
lightSensor networkLocationSensor
Light Network location
pressureSensor
Pressure
relativeHumiditySensor
Relative humidity

4.4 Observation managers

Sensors report a stream of observations, therefore it is impractical and inefficient to attempt

to store every observation reported. A popular technique in data stream management sys-

tems is to store a sliding window of data in which old data is neglected once new data

becomes available. The advantage of such an approach is that recent data is emphasized

over older data [19]. SensorLib supplies observation managers (OMs) to implement the

sliding window technique for maintaining sensor observations. OMs provide the additional

advantage of low memory consumption because only a limited number of observations are

maintained in memory at a given time. The predicates for interacting with OMs and their

related functionality can be found in table 4.2.

51



Table 4.2: Observation manager predicates

Predicate Functionality
createObsMgr(+H, +Type, +Rate) Creates an OM with handle H and registers it with sensor of

type Type with requested sampling rate Rate
setCapacity(+H, +CapType, +CapVal) Sets the capacity type of OM with handle H to CapType (either

size or time); capacity set to value CapVal (either floating
point number representing time or integer representing size)

destroyObsMgr(+H) Unregisters OM with handle H and discards it completely
unregisterObsMgr(+H) Unregisters OM with handle H
registerObsMgr(+H) Reregisters OM with handle H with its corresponding sensor
lastObservation(+H, -O) Binds the last (most recent) observation stored in the window

of OM with handle H to O
firstObservation(+H, -O) Binds the first (oldest) observation stored in the window of

OM with handle H to O

An OM either implements the SensorEventListener interface or the LocationListener

interface, depending on if observations are to be collected from a motion, position, or en-

vironmental sensor or from a location provider. OMs store new observations when they

are received in an chronologically-ordered collection called a window. Each window has a

capacity that is either size-based or time-based. A window with a size-based capacity only

maintains a certain number of observations while one with a time-based capacity only main-

tains the observations that occur during a particular duration. The duration is the difference

in time between the most recently received observation and the oldest observation currently

maintained in the window. When an OM receives a new observation and its window is at

capacity, the OM adds the new observation to the window but removes old observations until

the window is once again at the proper capacity, as illustrated in figure 4.2.

Figure 4.2: Observation manager

52



An OM can be created using the predicate createObsMgr(+H, +Type, +Rate) where

H is the handle to refer to the OM once it has been created, Type is the type of sensor

with which to register the OM, and Rate is the requested sampling rate of the sensor. For

example, the following query will create an OM called accelOM for the accelerometer and

request that observations are reported every 0.02 seconds (50 Hz):

?- createObsMgr(accelOM, accelerometer, 0.02).

The requested sampling rate for motion, position, and environmental sensors can be specified

using an enumerated constant value or an absolute value. The available constant values in

order from slowest to fastest are: normal (∼5 Hz), ui (∼17 Hz), game (∼50 Hz), fastest

(uncapped; as fast as possible). A specific sampling rate can be requested by passing a

positive floating point number representing the delay in seconds in place of the constant1.

The requested sampling rate for location sensors, however, can only be specified using a

positive floating point number representing the delay in seconds2. It is important to note

that the requested sampling rate is only a suggestion. Sensors may ignore the request

and report observations at a rate that is different from the requested rate. When an OM

is created using createObsMgr/3, SensorLib handles the registeration of the sensor event

listener automatically. The created OM will begin immediately storing observations in the

sliding window it maintains as they are received.

By default, an OM is created with a window with a size-based capacity of 100 observa-

tions. A window’s size starts at zero and grows to its set capacity as new sensor observations

are reported. The predicate setCapacity(+H, +CapType, +CapVal) can be used to mod-

ify the capacity type and capacity of the window of an OM at runtime. For example, the

following query sets the capacity of the OM accelOM created above to a duration of two
1The smallest allowed value is 0.000004 because this corresponds to 4 microseconds. Smaller values

would conflict with the integer values used by the Android SDK to represent the enumerated constants.
2The Android SDK treats location providers differently than sensors and does not provide sampling rate

constant values for location providers.

53



seconds:

?- setCapacity(accelOM, time, 2.0).

The new capacity type of the window is specified by an enumerated constant. The constant

size indicates the capacity should be size-based and the constant time indicates the capacity

should be time-based. The new capacity of the window is specified using an absolute value.

If the new capacity of a window is smaller than the previous capacity, the window is shrunk

to the size or duration of the new capacity.

Direct access to arbitrary observations stored in a window that is actively receiving new

observations is not permitted by SensorLib because they could be removed from the window

at any time. However, SensorLib does allow direct access to the most recent and oldest

observations stored in a window. The predicate lastObservation(+H, -O) retrieves the

last, or most recent, observation received by an OM:

?- lastObservation(accelOM, O).

The observation is stored in a JPR ReferenceTerm which is bound to the output argument O.

Likewise, the predicate firstObservation(+H, -O) stores the first, or oldest, observation

in the window of an OM in a JPR ReferenceTerm which is bound to the output argument

O. Predicates for working with observations are outlined in section 4.7

4.5 Window clones

SensorLib provides OMs to acquire, store, and manage the observations reported by on-board

sensors in a window of certain capacity. The contents of a window are constantly changing

as the observations arrive in a continuous stream. SensorLib does not permit direct access

to arbitrary observations in an active window (except for the first and last observations) as

they could be removed from the window at any time by the OM. Instead, predicates are

54



provided for obtaining a clone, or a copy, of the window which can then be iterated over

to access each observation chronologically. The predicates for cloning windows and working

with window clones can be found in table 4.3.

Table 4.3: Window clone predicates

Predicate Functionality
cloneWindow(+H, -W) Clones the window of OM with handle H and binds the

clone to W as a ReferenceTerm
cloneWindowNoOverlap(+H, +PrevW, -NewW) Clones the window of OM with handle H that has

no overlapping observations with PrevW and binds the
clone to NewW as a ReferenceTerm

getDuration(+W, -Dur) Binds the duration (time of most recently stored ob-
servation minus time of oldest stored observation) in
seconds of the window clone in the ReferenceTerm W to
Dur

getSize(+W, -Size) Binds the size (number of observations) of the window
clone in the ReferenceTerm W to Size

getIterator(+W, -Iter) Binds an iterator of the window clone in the
ReferenceTerm W to Iter as a ReferenceTerm

The predicate cloneWindow(+H, -W) can be used to obtain a clone of the window of

an OM. The window clone is stored in a JPR ReferenceTerm and bound to the output

argument W. The window clone is a “shallow” copy of the active window meaning that

the object references in the clone point to the same Java observation objects in the active

window. As SensorLib only provides read access to observations stored in a window clone,

there is no danger of accidental modification of the observations stored in the active window

of the OM. Cloning a window consecutively can yield nearly identical clones depending on

the rate at which observations are reported. Therefore, SensorLib provides the predicate

cloneWindowNoOverlap(+H, +PrevW, -NewW) that produces a window clone NewW that

contains no observations that are within the window clone PrevW3.

An OM that maintains a window with size-based capacity ensures that the window will

not contain more observations than specified by the capacity. Likewise, a window with a

time-based capacity is ensured to only store observations that are bounded by a specific
3Non-overlapping windows are referred to as “tumbling windows” in the literature [64].

55



duration. The predicate getDuration(+W, -Dur) can be used to obtain the duration of a

cloned window and the predicate getSize(+W, -Size) can be used to obtain its size. Dur

is bound to a floating point number representing the duration of the window in seconds

and Size is bound to an integer representing the number of observations contained in the

window. The sampling delay of a particular sensor can easily be determined using these

predicates together:

?- cloneWindow(accelOM, W),
getDuration(W, Dur),
getSize(W, Size),
Delay is Dur / Size.

SensorLib provides access to observations stored in window clones through iterators.

The predicate getIterator(+W, -Iter) binds an iterator of a window clone to Iter as a

ReferenceTerm. The iterator can then be used in conjunction with the next/2 predicate

to access each observation stored in the window clone. For example, the following rules

compute the mean of values in a window clone:

% computes mean values of observations in window clone W
mean(W, [X, Y, Z]) :-

getIterator(W, Iter),
sum(Iter, [0, 0, 0], [Sx, Sy, Sz]),
getSize(W, Size),
X is Sx / Size, Y is Sy / Size, Z is Sz / Size.

% sums values of observations visited by iterator Iter
sum(Iter, [Px, Py, Pz], [Sx, Sy, Sz]) :-

next(Iter, Obs),
getValues(Obs, [X, Y, Z]),
Tx is Px + X, Ty is Py + Y, Tz is Pz + Z,
sum(Iter, [Tx, Ty, Tz], [Sx, Sy, Sz].

% base case; iterator has no more observations to visit
sum(_, Vals, Vals) :- !.

SensorLib does not allow for iterators to the active window to be obtained. If such an iterator

were to be provided, the observation it pointed to could be removed from the active window.

All the observations between the current iterator observation and the oldest observation

56



maintained in the active window would remain in memory thus negating the low-memory

advantage of the OM.

4.6 Built-in statistical operations

For convenience, SensorLib provides a number of predicates for performing common statis-

tical operations on window clones. The built-in statistical operations are all implemented

in Java for efficiency. Table 4.4 lists the built-in statistical operations that operate on the

values of observations.

Table 4.4: Built-in statistical operation predicates

Predicate Functionality
minValues(+W, [-V1, ..., -Vn]) Binds minimum values of all observations in window clone W

to unbound variables V1 to Vn in the Prolog list
maxValues(+W, [-V1, ..., -Vn]) Binds maximum values of all observations in window clone

W to unbound variables V1 to Vn in the Prolog list
medianValues(+W, [-V1, ..., -Vn]) Binds median values of all observations in window clone W

to unbound variables V1 to Vn in the Prolog list
meanValues(+W, [-V1, ..., -Vn]) Binds mean of values of all observations in window clone W

to unbound variables V1 to Vn in the Prolog list
varianceValues(+W, [-V1, ..., -Vn]) Binds variance of values of all observations in window clone

W to unbound variables V1 to Vn in the Prolog list
stddevValues(+W, [-V1, ..., -Vn]) Binds minimum value all observations in window clone W to

unbound variables V1 to Vn in the Prolog list

In addition to operations on values, SensorLib provides predicates that perform similar

operations on the magnitude of observation value vectors (listed in appendix B). These

magnitude operations are useful for motion and position sensors because as the orientation

of a device changes, the coordinate system of the sensors that use a device-oriented frame

of reference rotates accordingly and the values of the observations along the three axes will

also change. However, the magnitude of a sensor’s observation value vector indicates the

quantity of the measurement and has no directions, therefore is orientation-dependent [65].

57



4.7 Observations

The Android SDK treats motion, position, and environmental sensors differently than the

GPS and network location providers. In particular, the underlying Java objects used to

represent observations of the two types of sensors are different which means that the data

associated with the two types of observations is represented differently. SensorLib however

provides a uniform view of sensors and location providers and thus provides a uniform view

of their reported observations. Each observation possesses the values of the observation, the

time at which the observation was made, the accuracy of the observation, and the sensor

that reported the observation. The predicates for retreiving data stored in an observation

can be found in table 4.5.

Table 4.5: Observation predicates

Predicate Functionality
getValues(+O, [-V1, ..., -Vn]) Binds each value of the observation in the ReferenceTerm O to

unbound variables V1 to Vn in the Prolog list
getTime(+O, -Time) Binds the timestamp of the observation in the ReferenceTerm O

to Time
getAccuracy(+O, -Accy) Binds the accuracy of the observation in the ReferenceTerm O
getSensor(+O, -S) Binds the type of the sensor that reported the observation in the

ReferenceTerm O to S as a sensor type atom

Different sensors deliver a different number of values with each reported observation. For

example, an accelerometer measures the current acceleration of the device along its x, y, and

z axes therefore delivers three values with each observation. A light sensor, on the other

hand, only measures illuminance so it only reports one value per observation. SensorLib

provides uniform access to the values of the observations with the predicate getValues(+O,

[-V1, ..., -Vn]). The length of the output argument list is dependent on the type of

sensor that reported the observation:

getValues(AccelObs, [X, Y, Z])
getValues(LightObs, [Illum])
getValues(GpsObs, [Lat, Long])

58



The predicate getTime(+O, -Time) binds the time in nanoseconds of an observation to

Time. The times of two different observations can be compared using the standard Prolog

comparison operators:

getTime(O1, T1),
getTime(O2, T2),
T1 < T2, % true if O1 occurred before O2
...

As the specifications do not indicate what reference point the motion, position, and environ-

ment sensors use to indicate time, only observations reported by the same sensor should be

compared. However, the time associated with the observations reported by location providers

is defined as the number of nanoseconds since the device was last booted4.

The predicate getAccuracy(+O, -Accy) is provided for extracting the accuracy as-

sociated with an observation. If the observation was reported by a motion, position, or

environmental sensor, Accy will be bound to one of high (sensor is reporting observations

with maximum accuracy), medium (sensor is reporting observations with an average level of

accuracy), low (sensor is reporting observations with low accuracy), or unreliable (values

of the observations reported by the sensor cannot be trusted) depending on the reported

accuracy of the observation. If instead the observation was reported by a location provider,

Accy will be bound to a floating point number indicating the accuracy in meters of the 68%

confidence radius.

The value representing the accuracy of an observation maps directly to a similar constant

value defined by the Android SDK. Unfortunately, the Android SDK documentation gives no

indication of how to interpret these values. Furthermore, it seems as if this accuracy value

is not entirely trustworthy. For instance, the accelerometer of the device used in testing

(an HTC One Remix) always reported an “unreliable” accuracy though the accelerometer

properly reported the force of gravity while the device remained at rest. This suggests that
4The reason behind SensorLib’s version require of Android 4.2 (API level 17) is due to the use of a

method for obtaining the time of a reported Location that is not compatible with earlier versions.

59



it is not the case that the accuracy of the accelerometer readings was “unreliable” but rather

that the reported accuracy was incorrect. The accuracy of observations reported by location

providers do not suffer from these problems.

4.8 Summary

SensorLib is a Prolog library that facilitates the aquisition of observations reported by sensors

on Android devices. Observation managers (OMs) are registered with sensors and automati-

cally store observations when they are reported. The sliding window technique implemented

by OMs emphasizes that recent data is more relevant than old data [19] while using only

enough memory required to store the desired observations. The observations are accessible

by iterating over a clone of the active window managed by an OM, though SensorLib also

provides built-in operations for computing statistical summaries of the clones.

60



Chapter 5

Activity recognition using OwlLib and

SensorLib

5.1 Introduction

This thesis has produced two Prolog libraries capable of accessing two external sources of

information. OwlLib provides access to OWL ontologies while SensorLib provides access to

sensor observations reported by on-board sensors of Android-powered mobile devices. Both

libraries were developed independently and they perform seperate functions. Nevertheless,

they can be used together and this chapter presents demonstrations of the collaborative use

of OwlLib and SensorLib along with Prolog rules to perform useful tasks related to physical

activity recognition. The examples presented in this chapter are not meant to constitute

a full and complete Android application but rather to demonstrate the usefulness of the

products of this thesis.

The demonstrations in this chapter discuss how SensorLib is used to continuously aquire

sensor observations reported by on-board sensors over a small time window. The raw sensor

values associated with the observations are processed into more useful information using

61



the built-in statistical operations provided by SensorLib. The processed observation data is

passed to Prolog rules that determine the user’s current physical activity, such as standing,

walking, jogging, or ascending and descending stairs. The Prolog rules are derived from a

decision tree that is created offline using a publically available data set [66, 67]. OwlLib

is used to create a “semantic” log of the occurence of activities by extending two popular

ontologies, one for describing sensors and their observations and the other for describing

time based on intervals.

This chapter is organized as follows. Section 5.2 describes the data set that is used to

derive the training instances used to create a decision tree for performing activity recognition.

Details regarding the creation of the decision tree and its conversion into Prolog rules are

outlined in section 5.3. The use of SensorLib to aquire sensor observations and compute

statistical summaries regarding them is discussed in section 5.4. The ontology for describing

sensors and their observations and the ontology for describing time based on intervals are

introduced in section 5.5, as well as the the ontology that extends these ontologies and the

use of the ontology to qualitatively relate detected activities and store them in a “semantic”

log.

5.2 The data set and training instances

Shoaib et al. [67] recently investigated to what extent sensors that are commonly available on

mobile devices are capable of detecting various physical activities. In particular, they were

interested in comparing how the accelerometer and the gyroscope performed when used in

isolation and when used together. The seven activities that were investigated were standing,

walking, ascending stairs, descending stairs, jogging, bicycling, and sitting. Several Android-

powered devices were positioned at various common carrying positions and data was collected

at a rate of 50 Hz from the observations reported by the accelerometers and gyroscopes. The

62



raw values of the sensor observations were made publically available online [66]. For this

demonstration, the data set was used to derive training instances to create a decision tree

that will be converted into Prolog rules for activity recognition. The activities considered

for this demonstration are standing, walking, jogging, and ascending and descending stairs

when measured by an Android device carried in the front right pocket.

The raw data values of the sensor observations were partitioned into two-second time

windows. This choice of window duration is supported by the results of similar work [68]

that compared window durations of one, two, five, and ten seconds for detecting cyclic activ-

ities and concluded that windows with two second durations yielded the best classification

performance. A training instance was created based on statistical summaries of each window

yielding 16 features, namely the means and standard deviations of the values of the x, y,

and z axes and the magnitudes of the value vectors for the accelerometer and the gyroscope.

When partitioned in this manner, there were 810 training instances per activity, totalling

4050 training instances for all five activities.

5.3 Detecting activities using Prolog rules

In order to derive Prolog rules capable of performing activity recognition, a decision tree was

created in the WEKA machine learning suite [69] using the training instances described in

section 5.2. Based on the learned tree, a Prolog rule can be created from each path from the

root node to a leaf node. The default settings of the J48 decision tree algorithm included

with WEKA produced a decision tree with an overall accuracy of 97% for classifying all five

activities. However, it consisted of 61 leaves. Since each leaf corresponds to a Prolog rule,

the translation of this tree into a rule set yields a set of Prolog rules that is arguably too

specific.

Experiments were conducted in order to minimize the number of leaves in the learned

63



tree while still maintaining acceptable overall accuracy. The default settings of J48 include

the specification of assigning a minimum of two training instances per leaf. To produce

trees with less leaves, various values of the minimum-instances-per-leaf parameter were used

ranging from 100 to 800. The graph in figure 5.1 illustrates how the overall accuracy and

number of leaves are affected by modifying the minimum number of instances assigned to

each leaf.

Figure 5.1: Decision tree configurations. This graph illustrates the overall accuracy and
number of leaves vs. minimum number of instances per leaf. Note that the increase of
assigning 400 instances per leaf as opposed to 300 instance per leaf decreased the number of
required rules from eight to six with only about a 3% drop in accuracy. When 500 instances
per leaf were used, there was another 3% drop in accuracy without the corresponding decrease
in the number of rules required to represent the tree.

Ultimately, the tree with a minimum of 400 instances per leaf yielded the greatest per-

centage of accuracy per rule and was chosen as the candidate for translation to Prolog rules.

A textual representation of the learned decision tree is listed in figure 5.2.

64



sdAmag <= 1.307411: standing
sdAmag > 1.307411
| sdAy <= 5.868613
| | meanAz <= -1.473581
| | | meanGmag <= 1.829171: downstairs
| | | meanGmag > 1.829171: upstairs
| | meanAz > -1.473581
| | | sdAmag <= 3.943164: upstairs
| | | sdAmag > 3.943164: walking
| sdAy > 5.868613: jogging

Figure 5.2: Decision tree for physical activity recognition

Note that of the 16 features included with each training instance, only four were used to

create the tree: the standard deviation of the accelerometer vector magnitude (sdAmag), the

standard deviation of the y-axis acceleromter value (sdAy), the mean of the z-axis accelerom-

eter value (meanAz), and the mean of the gyroscope vector magnitude (meanGmag). Based

on the features that were used, the accelerometer contributed more to activity recognition

than did the gyroscope, but the gyroscope did assist in differentiating between ascending

and descending stairs which aligns with the results presented in [67].

65



detect(SdAmag, _, _, _, standing) :-
SdAmag =< 1.307411.

detect(SdAmag, SdAy, MeanAz, MeanGMag, downstairs) :-
SdAmag > 1.307411, SdAy =< 5.868613, MeanAz =< -1.473581, MeanGmag =< 1.829171.

detect(SdAmag, SdAy, MeanAz, MeanGMag, upstairs) :-
SdAmag > 1.307411, SdAy =< 5.868613, MeanAz =< -1.473581, MeanGmag > 1.829171.

detect(SdAmag, SdAy, MeanAz, MeanGMag, upstairs) :-
SdAmag > 1.307411, SdAy =< 5.868613, MeanAz > -1.473581, SdAmag =< 3.943164.

detect(SdAmag, SdAy, MeanAz, MeanGMag, walking) :-
SdAmag > 1.307411, SdAy =< 5.868613, MeanAz > -1.473581, SdAmag > 3.943164.

detect(SdAmag, SdAy, _, _, jogging) :-
SdAmag > 1.307411, SdAy > 5.868613.

Figure 5.3: Prolog rules for physical activity recognition

Since the learned decision tree contains six leaves, it can be converted to Prolog using

the six rules as shown in figure 5.3. Each path from the root of the decision tree to a leaf

corresponds to a Prolog rule which can be read naturally as numerical comparisons of the

input parameters. For example, the second rule in figure 5.3 reads: “If the standard deviation

of the magnitudes of the accelerometer (SdAmag) is greater than 1.307411 and the standard

deviation of the y-axis values of the accelerometer (SdAy) is less than or equal to 5.868613

and the mean of the z-axis values of the accelerometer (MeanAz) is less than or equal to

-1.473581 and the mean of the magnitudes of the gyroscope (MeanGmag) is less than or equal

to 1.829171, then the current activity is descending stairs (downstairs)”.

5.4 Collecting sensor observations using SensorLib

The Prolog rules in figure 5.3 are capable of classifying the most recent physical activity per-

formed by an individual using the accelerometer and gyroscope of a mobile device located

66



in the right front pants pocket. However, the rules require certain statistical summaries

regarding the last two seconds of observations reported by the sensors to perform the clas-

sification. SensorLib can be used to aquire the necessary observations and compute the

required statistical summaries.

The following two queries first verify the presence of an accelerometer and gyroscope,

then create an observation manager for each sensor and requesting that each sensor report

a value every 0.02 seconds (equivalent to 50 Hz), and lastly set the window capacity to a

duraton of two seconds.

?- hasSensor(accelerometer),
createObsMgr(accelOM, accelerometer, 0.02),
setCapacity(accelOM, time, 2.0).

?- hasSensor(gyroscope),
createObsMgr(gyroOM, gyroscope, 0.02),
setCapacity(gyroOM, time, 2.0).

These settings correspond to the training instances used to create the decision tree. If a

device lacks a gyroscope, the rules from figure 5.3 requiring statistics regarding gyroscope

observations can be modified or omitted as desired (then the second query need not be made

at all). With the observation managers created and properly configured, the last two seconds

of observations reported by the sensors will be received, stored, and managed in memory.

SensorLib provides the required operations for computing the required statistical sum-

maries from the stored observation data “out-of-the-box”. The query below clones the win-

dows managed by the observation managers, computes the statistical summary values, and

passes the values to the activity recognition rules from figure 5.3. Ultimately, the variable

Activity is bound to the classified activity. If the device lacks a gyroscope, the predicates

involving the gyroscope could be omitted from the query. The query can be called repeatedly

every two seconds to provide continuous activity recognition.

67



?- cloneWindow(accelOM, Wa),
cloneWindow(gyroOM, Wg),
stddevMagnitude(Wa, SdAmag),
stddevValues(Wa, [_, SdAy, _]),
meanValues(Wa, [_, _, MeanAz]),
meanMagnitude(Wg, MeanGmag),
detect(SdAmag, SdAy, MeanAz, MeanGmag, Activity).

5.5 Logging activities using OwlLib

While SensorLib along with the activity recognition rules can be used to detect a user’s

current activity at a particular time or continuously monitor a user’s activity, it would be

useful to maintain a record or log of detected activities. Such a log could be analyzed to

infer further information that is not immediately apparent when processing the two-second

windows at the time they are obtained. OwlLib can be used to create a “semantic” log in

which records of a user’s activity are not simply recorded but are also qualitatively related

to one another. The method outlined here will be to assert axioms that express details

regarding the windows of observations into an ontology that extends two popular ontologies,

one for describing sensors and their observations and the other for describing time based on

intervals.

The Semantic Sensor Network (SSN) ontology [33] developed by the W3C Semantic

Sensor Network Incubator Group is an OWL ontology for describing sensors and their ob-

servations. It defines a Sensor generically as anything that implements some sensing and

thus observes some Property of a FeatureOfInterest. While the accelerometer and gyroscope

are obviously sensors, the combination of the activity recognition rules and SensorLib can

itself be defined as a sensor that observes the current activity of the user based on statistical

summaries of a two-second window of observations.

The OWL-Time ontology [34, 70] is a working draft of an OWL ontology published by

the W3C for describing instants and intervals of time. It defines a ProperInterval as a Tempo-

68



ralEntity with extent (therefore, not an single point in time). It also defines object properties

for describing the relationships of ProperIntervals to one another based on Allen’s interval al-

gebra [35]. For instance, intervalAfter relates one ProperInterval as occurring completely after

another with no overlap and intervalDuring relates one ProperInterval as occurring completely

during another with no overlap.

The two-second windows of observations can be classified as ProperIntervals and each can

be connected to another by a before-after relationship forming a linked list of intervals. At

a higher level, multiple consecutive atomic windows indicative of the same activity can be

viewed collectively as a single larger compound window that is also a ProperInterval. Each

of the individual atomic windows can be connected to the compound window by a during-

contains relationship. Also, the first atomic window can be connected to the compound

window by a starts-startedBy relationship while the last atomic window can be connected to

it by a finishes-finishedBy relationship. Furthermore, compound windows can also be con-

nected to one another by a before-after relationship, forming another linked list of intervals

containing intervals.

Based on the above observations, the ontology illustrated in figure 5.4 was defined using

the SSN ontology and OWL-Time. Standing, walking, jogging, etc. are instances of Activity

that is a subclass of Property of the SSN ontology and thereby are observable by the activity

recognition rules which are classified together as a Sensor as discussed above. Every Window

(atomic or compound) indicates one of the activities. Also, since each Window is also a

ProperInterval, they can be related to each other by the listed qualitative properties.

69



Figure 5.4: Ontology for logging activity recognition windows

A graphical representation of a log that can be created using the ontology is illustrated in

figure 5.5. As each two-second window is collected and processed by SensorLib and classified

by the activity recognition rules, it can be asserted into the ontology as being indicative of

the classified activity and related as occurring after the previous atomic window. As long as

the rules detect the same activity repeatedly, each atomic window can be related as occurring

during the current compound window. When the activities change, the current compound

window is finished by the previous atomic window and a new compound window indicative

of the new activity is started by the new atomic window. The log in the figure represents

an interval of standing followed by an interval of walking. The compound window cw459

indicates standing because the atomic windows aw1381 and aw1382, which both occur during

it, indicate standing. Similarly, the compound window cw460 indicates walking because the

atomic windows that comprise it indicate walking.

70



Figure 5.5: Semantic log of activities

5.6 Conclusion

This chapter demonstrated how SensorLib and OwlLib could be used along with Prolog rules

to detect the current activity being performed by an individual with a mobile device placed

in a pants pocket. SensorLib was used to aquire and process sensor observations, Prolog rules

were used to detect the user’s activity based on the processed observations, and OwlLib was

used to create a “semantic” log of the activities. Applications of physical activity recognition

of this kind include fitness tracking, health monitoring, and self-managing systems, among

others [71]. Though these demonstrations do not encompass the extent that OwlLib and

SensorLib can be used in conjunction with Prolog rules nor they intended to be robust

enough to be used in practice, they do demonstrate how easy it is to use both together

effectively.

71



Chapter 6

Conclusions and Future Work

This thesis has produced two Prolog libraries, OwlLib and SensorLib. Each library is de-

signed for integrating a different form of external information with logic programs. As both

libraries are designed for an Android-compatible Prolog environment, they open many doors

for creating knowledge-based systems that can take advantage of the ubiquity of mobile

devices. OwlLib provides access to computable inferences of OWL ontologies through the

use of external reasoners thus enabling the reuse of knowledge expressed in ontologies from

within Prolog programs. SensorLib provides access to observations reported by the on-board

sensors of mobile devices thus enabling the creation of context-aware applications.

It has been shown how OwlLib and SensorLib can be used in conjunction with Prolog

rules to perform useful tasks. Demonstrative examples of how the two libraries could be

used along with Prolog rules to detect the current activity being performed by an individual

with a mobile device have been provided. SensorLib was used to aquire and process sensor

observations, Prolog rules were used to detect the user’s activity based on the processed

observations, and OwlLib was used to create a “semantic” log of the activities. Possible

future applications of using the libraries to perform tasks of this kind related to physical

activity recognition include fitness tracking, health monitoring, and self-managing systems,

72



among others [71].

Possible future works related to OwlLib include a complete abstraction from the depen-

dencies on the OWL API and possibly even OWL itself. While it is possible to replace the

OWL API with another framework for working with OWL ontologies and reasoners, such a

venture would require extensive rewriting. It would be beneficial to decouple OwlLib from

the OWL API in such a way that the use of the framework is completely transparent. This

venture would also involve another solution for uniformly accessing external reasoners that is

not dependent on the interface supplied by the OWL API. Another interesting generalization

would be the modification and rebranding of OwlLib to work with DL ontologies at a higher

level that is free of specifics of OWL. Alternatively, this generalization could be realized by

another library for JPR named something along the lines of DlLib or something similar. Yet

another abstraction would be a library for JPR that provided a uniform way to access other

external data sources, much like HEX-programs [42].

Possible future works related to SensorLib involve the inclusion other apparatus com-

mon on Android devices such as cameras and microphones. Cameras are able to capture

still images and video. The processing of these two types of media fall under the fields of

image processing and computer vision. The observations reported by cameras can be used

Microphones are able to capture streams of auditory signals. Such observations are useful in

fields such as speech analysis. The introduction of cameras and microphones might require

an alternative mechanism for accessing their reported observations as the data values may

be highly dimensional. A picture captured by a camera for instance is representable by an

image consisting of hundreds of pixels. The current mechanism provided by SensorLib for

obtaining the values of an observation almost certainly would not suffice.

73



Appendices

74



Appendix A

Listing of OwlLib predicates

A.1 Ontology management predicates

createOntology(+O)
Creates an empty ontology with the handle O

loadOntology(+Path, +O)
Loads an ontology with the handle O from a file on the path Path of the file system

useOntology(+O)
Sets the ontology with the handle O to be the active ontology

ontologyLoaded(+O)
Determines if an ontology with the handle O has been loaded

activeOntology(-O)
Binds O to the handle of the active ontology

loadedOntologies(-Os)
Binds Os to a Prolog list containing the handles of all loaded ontologies

saveOntology(+Path, +O)
Saves the ontology with the handle O to a file with the path Path on the file system

unloadOntology(+O)
Unloads the ontology with the handle O

75



A.2 Reasoner management predicates

createReasoner(+R, +Type, +O)
Creates an reasoner with the handle R of the type Type for the ontology with the handle O

useReasoner(+R, +O)
Sets the reasoner with the handle R to be the active reasoner for the ontology with the handle
O

activeReasoner(+O, -R)
Binds R with the handle of the active reasoner of the ontolog with the handle O

loadedReasoners(+O, -Rs)
Binds Rs to a Prolog list containing the handles of all the loaded reasoners for the ontology
with the handle O

removeReasoner(+R, +O)
Removes the reasoner with the handle R from the ontology with the handle O

A.3 Entity terms

namedIndividual(+IRI)
Indicates the entity represented by IRI is a named individual

class(IRI)
Indicates the entity represented by IRI is an atomic class

objectProperty(IRI)
Indicates the entity represented by IRI is an object property

A.4 Expression terms

A.4.1 Class expression terms

objectIntersectionOf(+CEs)

76



Represents the set of individuals that are instances of every class expression in the Prolog
list CEs

objectUnionOf(+CEs))
Represents the set of individuals that are instances of at least one of the class expressions in
the Prolog list CEs

objectComplementOf(+CE)
Represents the set of individuals that are not instances of the class expression CE

objectOneOf(+Is)
Represents the set of individuals in the Prolog list Is

objectSomeValuesFrom(+OPE, +CE)
Represents the set of individuals that are connected by OPE to an individual that is an
instance of CE

objectAllValuesFrom(+OPE, +CE)
Represents the set of individuals that are connected by OPE only to individuals that are
instances of CE

objectHasValue(+OPE, +I)
Represents the set of individuals that are connected by OPE to I

objectHasSelf(+OPE)
Represents the set of individuals that are connected by OPE to themselves

objectMinCardinality(+N, +OPE, +CE)
Represents the set of individuals that are connected by OPE to at least N different individuals
that are instances of CE

objectMaxCardinality(+N, +OPE, +CE)
Represents the set of individuals that are connected by OPE to at most N different individuals
that are instances of CE

objectExactCardinality(+N, +OPE, +CE)
Represents the set of individuals that are connected by OPE to exactly N different individuals
that are instances of CE

dataSomeValuesFrom(+DPEs, +DR)
Represents the set of individuals that are connected by data property expressions in the
Prolog list DPEs to literals that are within DR

77



dataAllValuesFrom(+DPEs, DR)
Represents the set of individuals that are connected by data property expressions in the
Prolog list DPEs only to literals that are within DR

dataHasValue(+DPE, +Lit)
Represents the set of individuals that are connected by DPE to Lit

dataMinCardinality(+N, +DPE, +DR)
Represents those individuals that are connected by DPE to at least N different literals in DR

dataMaxCardinality(+N, +DPE, +DR)
Represents those individuals that are connected by DPE to at most N different literals in DR

dataExactCardinality(+N, +DPE, +DR)
Represents those individuals that are connected by DPE to exactly N different literals in DR

A.4.2 Data range terms

dataIntersectionOf(+DRs)
Contains all tuples of literals that are contained in each data range in the Prolog list DRs

dataUnionOf(+DRs)
Contains all tuples of literals that are connected in at least one data range in the Prolog list
DRs

dataComplementOf(+DR)
Contains all tuples of literals that are not contained in data range DR

dataOneOf(+Lits)
Contains exactly the literals in the Prolog list Lits

A.4.3 Object property expression terms

inverseObjectProperty(OP)
Represents the opposite relationship of the relationship represented by the object property
OP

78



A.5 Axiom predicates

A.5.1 Class expression axiom predicates

subClassOf(?CE1, ?CE2)
States that CE1 is subsumed by CE2

equivalentClasses(+CEs)
States that class expressions in the Prolog list CEs are equivalent

disjointClasses(+CEs)
States that class expressions in the Prolog list CEs are pairwise disjoint

disjointUnion(+C, +CEs)
States that the class C is a disjoint union of the class expressions in the Prolog list CEs

A.5.2 Object property expression axiom predicates

subObjectPropertyOf(?OPE1, ?OPE2)
States that OPE1 is a subproperty of OPE2

equivalentObjectProperties(+OPEs)
States that object property expressions in the Prolog list OPEs are equivalent

disjointObjectProperties(+OPEs)
States that object property expressions in the Prolog list OPEs are pair-wise disjoint

inverseObjectProperties(?OPE1, ?OPE2)
States that OPE1 and OPE2 are inverses

objectPropertyDomain(+OPE, ?CE)
States that the domain of OPE is the class expression CE

objectPropertyRange(+OPE, ?CE)
States that the range of OPE is the class expression CE

functionalObjectProperty(+OPE)
States that OPE is functional

inverseFunctionalObjectProperty(+OPE)

79



States that OPE is inverse-functional

reflexiveObjectProperty(+OPE)
States that OPE is reflexive

irreflexiveObjectProperty(+OPE)
States that OPE is irreflexive

symmetricObjectProperty(+OPE)
States that OPE is symmetric

asymmetricObjectProperty(+OPE)
States that OPE is asymmetric

transitiveObjectProperty(+OPE)
States that OPE is transitive

A.5.3 Data property expression axiom predicates

subDataPropertyOf(?DPE1, ?DPE2)
States that DPE1 is a subproperty of DPE2

equivalentDataProperties(+DPEs)
States that data property expressions in Prolog list DPEs are equivalent

disjointDataProperties(+DPEs)
States that data property expressions in Prolog list DPEs are pair-wise disjoint

dataPropertyDomain(+DPE, ?CE)
States that the domain of DPE is the class expression CE

dataPropertyRange(+DPE, +DR)
States that the range of DPE is the data range DR

functionalDataProperty(+DPE)
States that DPE is functional

A.5.4 Assertional expression axiom predicates

sameIndividual(+Is)

80



States that individuals in Prolog list Is are all equal to one another

differentIndividuals(+Is)
States that individuals in Prolog list Is are all different from one another

classAssertion(?CE, ?I)
States that I is an instance of class expression CE

objectPropertyAssertion(+OPE, +I1, ?I2)
States that I1 is connected by OPE to I2

negativeObjectPropertyAssertion(+OPE, +I1, +I2)
States that I1 is not connected by OPE to I2

dataPropertyAssertion(+DPE, +I1, ?Lit)
States that I1 is connected by DPE to Lit

negativeDataPropertyAssertion(+DPE, +I1, +Lit)
States that I1 is connected by OPE to Lit

A.6 Query predicates

A.6.1 Query predicates for class expression axioms

getSubClasses(+CE, -Iter)
Gets set of named subclasses of class expression CE and binds iterator of set to Iter

getSuperClasses(+CE, -Iter)
Gets set of named superclasses of class expression CE and binds iterator of set to Iter

getEquivalentClasses(+CE, -Iter)
Gets set of named equivalent classes of class expression CE and binds iterator of set to Iter

getDisjointClasses(+CE, -Iter)
Gets set of named disjoint classes of class expression CE and binds iterator of set to Iter

81



A.6.2 Query predicates for object property expression axioms

getSubObjectProperties(+OPE, -Iter)
Gets set of subproperties of OPE and binds iterator of set to Iter

getSuperObjectProperties(+OPE, -Iter)
Gets set of superproperties of OPE and binds iterator of set to Iter

getEquivalentObjectProperties(+OPE, -Iter)
Gets set of equivalent properties of OPE and binds iterator of set to Iter

getDisjointObjectProperties(+OPE, -Iter)
Gets set of disjoint properties of OPE and binds iterator of set to Iter

getInverseObjectProperties(+OPE, -Iter)
Gets set of inverse properties of OPE and binds iterator of set to Iter

getObjectPropertyDomains(+OPE, -Iter)
Gets set of named classes that are domains of OPE

getObjectPropertyRanges(+OPE, -Iter)
Gets set of named classes that are ranges of OPE

A.6.3 Query predicates for data property expression axioms

getSubDataProperties(+DPE, -Iter)
Gets set of subproperties of DPE and binds iterator of set to Iter

getSuperDataProperties(+DPE, -Iter)
Gets set of superproperties of DPE and binds iterator of set to Iter

getEquivalentDataProperties(+DPE, -Iter)
Gets set of equivalent properties of DPE and binds iterator of set to Iter

getDisjointDataProperties(+DPE, -Iter)
Gets set of disjoint properties of DPE and binds iterator of set to Iter

getDataPropertyDomains(+DPE, -Iter)
Gets set of named classes that are domains of DPE

82



A.6.4 Query predicates for assertional axioms

getSameIndividuals(+I, -Iter)
Gets set of individuals that are the same as I

getDifferentIndividuals(+I, -Iter)
Gets set of individuals that are different than I

getTypes(+I, -Iter)
Gets set of named classes of which I belongs and binds iterator of set to Iter

getInstances(+CE, -Iter)
Gets set of individuals that are instances of CE and binds iterator of set to Iter

getObjectPropertyValues(+I, +OPE, -Iter)
Gets set of individuals that are connected to I by OPE and binds iterator of set to Iter

A.7 Ontology manipulation predicates

assertAxiom(+A, +O)
Adds the axiom represented by A into the ontology with handle O

retractAxiom(+A, +O)
Removes the axiom represented by A from the ontology with handle O

containsAxiom(+O, +A)
Determines if the ontology with handle O contains the axiom represented by A

entailsAxiom(+O, +A)
Determines if the ontology with handle O entails the axiom represented by A

isConsistent(+O)
Determines if the ontology with handle O is consistent

83



Appendix B

Listing of SensorLib predicates

B.1 Sensor type atoms

accelerometer
Represents an accelerometer

gravitySensor
Represents a gravity sensor

gyroscope
Represents a gyroscope

linearAccelerationSensor
Represents a linear acceleration sensor

rotationVectorSensor
Represents a rotation vector sensor

gameRotationVectorSensor
Represents a game rotation vector

geomagneticRotationVectorSensor
Represents a geomagnetic rotation vector

magneticFieldSensor
Represents a magnetic field sensor

84



proximitySensor
Represents a proximity sensor

ambientTemperatureSensor
Represents an ambient temperature sensor

lightSensor
Represents a light sensor

pressureSensor
Represents a pressure sensor

relativeHumiditySensor
Represents a relative humidity sensor

gps
Represents a GPS location provider

networkLocationSensor
Represents a network location provider

B.2 Available sensor predicates

getSensorTypes(-Types)
Binds a Prolog list containing sensor type atoms of available sensors to Types

hasSensor(+Type)
Evaluates to true if a sensor of the type represented by Type is available on the device and
false otherwise

B.3 Observation manager predicates

createObsMgr(+H, +Type, +Rate)
Creates an OM with handle H and registers it with sensor of type Type with requested
sampling rate Rate

setCapacity(+H, +CapType, +CapVal)

85



Sets the capacity type of OM with handle H to CapType (either size or time); capacity set
to value CapVal (either floating point number representing time or integer representing size)

destroyObsMgr(+H)
Unregisters OM with handle H and discards it completely

unregisterObsMgr(+H)
Unregisters OM with handle H

registerObsMgr(+H)
Reregisters OM with handle H with its corresponding sensor

lastObservation(+H, -O)
Binds the last (most recent) observation stored in the window of OM with handle H to O

firstObservation(+H, -O)
Binds the first (oldest) observation stored in the window of OM with handle H to O

B.4 Window clone predicates

cloneWindow(+H, -W)
Clones the window of OM with handle H and binds the clone to W as a ReferenceTerm

cloneWindowNoOverlap(+H, +PrevW, -NewW)
Clones the window of OM with handle H that has no overlapping observations with PrevW
and binds the clone to NewW as a ReferenceTerm

getDuration(+W, -Dur)
Binds the duration (time of most recently stored observation minus time of oldest stored
observation) in seconds of the window clone in the ReferenceTerm W to Dur

getSize(+W, -Size)
Binds the size (number of observations) of the window clone in the ReferenceTerm W to
Size

getIterator(+W, -Iter)
Binds an iterator of the window clone in the ReferenceTerm W to Iter as a ReferenceTerm

86



B.5 Statistical operation predicates

minValues(+W, [-V1, ..., -Vn])
Binds minimum values of all observations in window clone W to unbound variables V1 to Vn
in the Prolog list

maxValues(+W, [-V1, ..., -Vn])
Binds maximum values of all observations in window clone W to unbound variables V1 to Vn
in the Prolog list

medianValues(+W, [-V1, ..., -Vn])
Binds median values of all observations in window clone W to unbound variables V1 to Vn in
the Prolog list

meanValues(+W, [-V1, ..., -Vn])
Binds mean of values of all observations in window clone W to unbound variables V1 to Vn in
the Prolog list

varianceValues(+W, [-V1, ..., -Vn])
Binds variance of values of all observations in window clone W to unbound variables V1 to Vn
in the Prolog list

stddevValues(+W, [-V1, ..., -Vn])
Binds minimum value all observations in window clone W to unbound variables V1 to Vn in
the Prolog list

minMagnitude(+W, -Mag)
Binds minimum magnitude of all observations in window clone W to M

maxMagnitude(+W, -Mag)
Binds maximum magnitude of all observations in window clone W to M

medianMagnitude(+W, -Mag)
Binds median values of all observations in window clone W to M

meanMagnitude(+W, -Mag)
Binds mean of values of all observations in window clone W to M

varianceMagnitude(+W, -Mag)
Binds variance of values of all observations in window clone W to M

stddevMagnitude(+W, -Mag)

87



Binds minimum value all observations in window clone W to M

B.6 Observation predicates

getValues(+O, [-V1, ..., -Vn])
Binds each value of the observation in the ReferenceTerm O to unbound variables V1 to Vn
in the Prolog list

getTime(+O, -Time)
Binds the timestamp of the observation in the ReferenceTerm O to Time

getAccuracy(+O, -Accy)
Binds the accuracy of the observation in the ReferenceTerm O

getSensor(+O, -S)
Binds the type of the sensor that reported the observation in the ReferenceTerm O to S as
a sensor type atom

88



Bibliography

[1] International Data Corporation (IDC), “Smartphone OS Market Share, Q4 2014.” http:

//www.idc.com/prodserv/smartphone-os-market-share.jsp. Accessed: April 2015.

[2] W3C OWL Working Group, “OWL 2 Web Ontology Language Document Overview

(Second Edition).” http://www.w3.org/TR/owl-overview/. Accessed: April 2015.

[3] C. Baral and M. Gelfond, “Logic programming and knowledge representation,” The

Journal of Logic Programming, vol. 19âĂŞ20, Supplement 1, no. 0, pp. 73 – 148, 1994.

Special Issue: Ten Years of Logic Programming.

[4] F. Baader and W. Nutt, “Basic Description Logics,” in The Description Logic Handbook:

Theory, Implementation, and Applications (F. Baader, D. Calvanese, D. L. McGuinness,

D. Nardi, and P. F. Patel-Schneider, eds.), New York, NY, USA: Cambridge University

Press, 2003.

[5] F. Donini, M. Lenzerini, D. Nardi, and A. Schaerf, “Al-log: Integrating datalog and

description logics,” Journal of Intelligent Information Systems, vol. 10, no. 3, pp. 227–

252, 1998.

[6] A. Y. Levy and M.-C. Rousset, “Combining horn rules and description logics in CARIN,”

Artificial Intelligence, vol. 104, no. 1âĂŞ2, pp. 165 – 209, 1998.

89



[7] B. N. Grosof, I. Horrocks, R. Volz, and S. Decker, “Description logic programs: Com-

bining logic programs with description logic,” in Proceedings of the 12th International

Conference on World Wide Web, WWW ’03, (New York, NY, USA), pp. 48–57, ACM,

2003.

[8] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean, “SWRL:

A Semantic Web Rule Language Combining OWL and RuleML,” w3c member submis-

sion, World Wide Web Consortium, 2004.

[9] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean, “Swrl:

A semantic web rule language combining owl and ruleml,” w3c member submission,

World Wide Web Consortium, 2004.

[10] B. Motik, U. Sattler, and R. Studer, “Query answering for owl-dl with rules,” in The

Semantic Web âĂŞ ISWC 2004 (S. McIlraith, D. Plexousakis, and F. van Harmelen,

eds.), vol. 3298 of Lecture Notes in Computer Science, pp. 549–563, Springer Berlin

Heidelberg, 2004.

[11] T. Eiter, G. Ianni, A. Polleres, R. Schindlauer, and H. Tompits, “Reasoning with rules

and ontologies,” in Reasoning Web, vol. 4126 of Lecture Notes in Computer Science,

pp. 93–127, Springer Berlin Heidelberg, 2006.

[12] R. Rosati, “Integrating ontologies and rules: Semantic and computational issues,” in

Reasoning Web (P. Barahona, F. Bry, E. Franconi, N. Henze, and U. Sattler, eds.),

vol. 4126 of Lecture Notes in Computer Science, pp. 128–151, Springer Berlin Heidelberg,

2006.

[13] B. Motik and R. Rosati, “Reconciling description logics and rules,” J. ACM, vol. 57,

pp. 30:1–30:62, June 2008.

90



[14] T. Eiter, G. Ianni, T. Lukasiewicz, R. Schindlauer, and H. Tompits, “Combining answer

set programming with description logics for the semantic web,” Artificial Intelligence,

vol. 172, no. 12âĂŞ13, pp. 1495 – 1539, 2008.

[15] T. Eiter, G. Ianni, T. Lukasiewicz, and R. Schindlauer, “Well-founded semantics for

description logic programs in the semantic web,” ACM Trans. Comput. Logic, vol. 12,

pp. 11:1–11:41, January 2011.

[16] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web,” Scientific American,

vol. 284, pp. 34–43, May 2001.

[17] A. K. Dey, “Understanding and using context,” Personal Ubiquitous Comput., vol. 5,

pp. 4–7, Jan. 2001.

[18] M. Baldauf, S. Dustdar, and F. Rosenberg, “A survey on context-aware systems,” Int.

J. Ad Hoc Ubiquitous Comput., vol. 2, pp. 263–277, June 2007.

[19] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models and issues in data

stream systems,” in Proceedings of the Twenty-first ACM SIGMOD-SIGACT-SIGART

Symposium on Principles of Database Systems, PODS ’02, (New York, NY, USA),

pp. 1–16, ACM, 2002.

[20] M. Horridge and S. Bechhofer, “The OWL API: A Java API for OWL Ontologies,”

Semantic Web Journal 2(1), Special Issue on Semantic Web Tools and Systems, pp. 11–

21, 2011.

[21] “JFact DL Reasoner.” http://jfact.sourceforge.net/. Accessed: January 2015.

[22] Y. Kazakov, M. Krötzsch, and F. Simančík, “The incredible ELK: From polynomial

procedures to efficient reasoning with EL ontologies,” Journal of Automated Reasoning,

vol. 53, pp. 1–61, 2013.

91



[23] “The Android Software Development Kit (SDK).” https://developer.android.com/

sdk/index.html. Accessed: April 2015.

[24] “Android.” https://www.android.com/intl/en_us/. Accessed: April 2015.

[25] Oracle, “Java JDK.” http://www.oracle.com/technetwork/java/javase/overview/

index.html. Accessed: April 2015.

[26] “Processes and Threads.” http://developer.android.com/guide/components/

processes-and-threads.html. Accessed: April 2015.

[27] “Sensors Overview.” http://developer.android.com/guide/topics/sensors/

sensors_overview.html. Accessed: April 2015.

[28] J. W. Lloyd, Foundations of Logic Programming; (2Nd Extended Ed.). New York, NY,

USA: Springer-Verlag New York, Inc., 1987.

[29] M. Gelfond, “Answer Sets,” in Handbook of Knowledge Representation (F. van Harmelen,

F. van Harmelen, V. Lifschitz, and B. Porter, eds.), San Diego, USA: Elsevier Science,

2008.

[30] A. Van Gelder, K. A. Ross, and J. S. Schlipf, “The well-founded semantics for general

logic programs,” J. ACM, vol. 38, pp. 619–649, July 1991.

[31] M. Schmidt-SchauÃ§ and G. Smolka, “Attributive concept descriptions with comple-

ments,” Artificial Intelligence, vol. 48, no. 1, pp. 1 – 26, 1991.

[32] F. Baader, I. Horrocks, and U. Sattler, “Description Logics,” in Handbook of Knowledge

Representation (F. van Harmelen, F. van Harmelen, V. Lifschitz, and B. Porter, eds.),

San Diego, USA: Elsevier Science, 2008.

92



[33] M. Compton, P. Barnaghi, L. Bermudez, R. GarcÃŋa-Castro, O. Corcho, S. Cox,

J. Graybeal, M. Hauswirth, C. Henson, A. Herzog, V. Huang, K. Janowicz, W. D.

Kelsey, D. L. Phuoc, L. Lefort, M. Leggieri, H. Neuhaus, A. Nikolov, K. Page, A. Pas-

sant, A. Sheth, and K. Taylor, “The SSN ontology of the W3C semantic sensor network

incubator group,” Web Semantics: Science, Services and Agents on the World Wide

Web, vol. 17, pp. 25 – 32, 2012.

[34] “Time Ontology in OWL (W3C Working Draft).” http://www.w3.org/TR/owl-time/.

Accessed: March 2015.

[35] J. F. Allen, “Maintaining knowledge about temporal intervals,” Commun. ACM, vol. 26,

pp. 832–843, Nov. 1983.

[36] M. Duerst and M. Suignard, “RFC 3987: Internationalized Resource Identifiers (IRIs).”

RFC 3987 (Proposed Standard), see http://www.ietf.org/rfc/rfc3987.txt, Jan-

uary 2005. Accessed: April 2015.

[37] B. Motik, P. F. Patel-Schneider, and B. Parsia, “OWL 2 Web Ontology Language:

Structural Specification and Functional-Style Syntax (Second Edition).” http://www.

w3.org/TR/owl2-syntax/. Accessed: April 2015.

[38] B. Motik, P. F. Patel-Schneider, and B. C. Grau, “OWL 2 Web Ontology Language:

Structural Specification and Functional-Style Syntax (Second Edition).” http://www.

w3.org/TR/owl2-syntax/. Accessed: April 2015.

[39] I. Horrocks, O. Kutz, and U. Sattler, “The Even More Irresistible SROIQ,” in Proc. of

the 10th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR2006),

pp. 57–67, 10th International Conference on Principles of Knowledge Representation and

Reasoning, AAAI Press, 2006.

93



[40] B. Motik, B. C. Grau, I. Horrocks, Z. Wu, A. Fokoue, and C. Lutz, “OWL 2 Web On-

tology Language Profiles (Second Edition).” http://www.w3.org/TR/owl2-profiles/.

Accessed: April 2015.

[41] H. Boley, S. Tabet, and G. Wagner, “Design rationale of RuleML: A markup language

for semantic web rules,” in International Semantic Web Working Symposium (SWWS),

pp. 381–402, Citeseer, 2001.

[42] T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits, “dlvhex: A Prover for Semantic-

Web Reasoning under the Answer-Set Semantics,” in IEEE/WIC/ACM International

Conference on Web Intelligence, 2006. WI 2006. , (Hong Kong), pp. 1073–1074, Dec.

2006.

[43] G. Antoniou and A. Bikakis, “DR-Prolog: A System for Defeasible Reasoning with

Rules and Ontologies on the Semantic Web,” IEEE Transactions on Knowledge and

Data Engineering, vol. 19, pp. 233–245, Feb. 2007.

[44] D. Nute, “Handbook of logic in artificial intelligence and logic programming (vol. 3),”

ch. Defeasible Logic, pp. 353–395, New York, NY, USA: Oxford University Press, Inc.,

1994.

[45] V. Vassiliadis, J. Wielemaker, and C. Mungall, “Processing OWL2 ontologies using

Thea: An application of logic programming,” in Proceedings of the 5th International

Workshop on OWL: Experiences and Directions, 2009.

[46] M. Şensoy, G. de Mel, W. W. Vasconcelos, and T. J. Norman, “Ontological logic pro-

gramming,” in Proceedings of the International Conference on Web Intelligence, Mining

and Semantics, WIMS ’11, (New York, NY, USA), pp. 44:1–44:9, ACM, 2011.

94



[47] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A practical OWL-

DL reasoner ,” Web Semantics: Science, Services and Agents on the World Wide Web,

vol. 5, no. 2, pp. 51 – 53, 2007. Software Engineering and the Semantic Web.

[48] A. Devaraju, S. Hoh, and M. Hartley, “A context gathering framework for context-

aware mobile solutions,” in Proceedings of the 4th International Conference on Mobile

Technology, Applications, and Systems and the 1st International Symposium on Com-

puter Human Interaction in Mobile Technology, Mobility ’07, (New York, NY, USA),

pp. 39–46, ACM, 2007.

[49] O. Lara and M. Labrador, “A survey on human activity recognition using wearable

sensors,” Communications Surveys Tutorials, IEEE, vol. 15, pp. 1192–1209, Third 2013.

[50] L. Chen, C. Nugent, and H. Wang, “A knowledge-driven approach to activity recognition

in smart homes,” Knowledge and Data Engineering, IEEE Transactions on, vol. 24,

pp. 961–974, June 2012.

[51] R. Poppe, “A survey on vision-based human action recognition,” Image and Vision

Computing, vol. 28, no. 6, pp. 976 – 990, 2010.

[52] X. Su, H. Tong, and P. Ji, “Activity recognition with smartphone sensors,” Tsinghua

Science and Technology, vol. 19, pp. 235–249, June 2014.

[53] S. Reddy, M. Mun, J. Burke, D. Estrin, M. Hansen, and M. Srivastava, “Using mobile

phones to determine transportation modes,” ACM Trans. Sen. Netw., vol. 6, pp. 13:1–

13:27, Mar. 2010.

[54] H. Xia, Y. Qiao, J. Jian, and Y. Chang, “Using smart phone sensors to detect trans-

portation modes,” Sensors, vol. 14, no. 11, pp. 20843–20865, 2014.

95



[55] H. Vathsangam, M. Zhang, A. Tarashansky, A. A. Sawchuk, and G. S. Sukhatme, “To-

wards practical energy expenditure estimation with mobile phones,” in 2013 Asilomar

Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, November

3-6, 2013, pp. 74–79, 2013.

[56] R. Luque, E. Casilari, M.-J. MorÃşn, and G. Redondo, “Comparison and characteriza-

tion of android-based fall detection systems,” Sensors, vol. 14, no. 10, pp. 18543–18574,

2014.

[57] J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and K. Wilkinson,

“Jena: Implementing the semantic web recommendations,” in Proceedings of the 13th

International World Wide Web Conference on Alternate Track Papers &Amp; Posters,

WWW Alt. ’04, (New York, NY, USA), pp. 74–83, ACM, 2004.

[58] D. Tsarkov and I. Horrocks, “FaCT++ Description Logic Reasoner: System Descrip-

tion,” in Automated Reasoning, vol. 4130 of Lecture Notes in Computer Science, pp. 292–

297, Springer Berlin Heidelberg, 2006.

[59] R. Yus, C. Bobed, G. Esteban, F. Bobillo, and E. Mena, “Android goes Semantic:

DL Reasoners on Smartphones.,” in ORE, vol. 1015 of CEUR Workshop Proceedings,

pp. 46–52, CEUR-WS.org, 2013.

[60] C. Bobed, fernando Bobillo, R. Yus, G. Esteban, and E. Mena, “Android Went Semantic:

Time for Evaluation,” in 3rd International Workshop on OWL Reasoner Evaluation

(ORE 2014), At Vienna (Austria), 2014.

[61] J. Mendez, “jcel: A modular rule-based reasoner,” in In In Proc. of the 1st Int. Workshop

on OWL Reasoner Evaluation (OREâĂŹ12, 2012.

[62] B. Glimm, I. Horrocks, B. Motik, G. Stoilos, and Z. Wang, “HermiT: An OWL 2

Reasoner,” Journal of Automated Reasoning, vol. 53, no. 3, pp. 245–269, 2014.

96



[63] Y. Kazakov, “Consequence-Driven Reasoning for Horn SHIQ Ontologies,” in Proceed-

ings of the 21st International Joint Conference on Artificial Intelligence (IJCAI 2009),

2009.

[64] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stone-

braker, N. Tatbul, and S. Zdonik, “Monitoring streams – a new class of data manage-

ment applications,” in Proceedings of the 28th International Conference on Very Large

Data Bases, VLDB ’02, pp. 215–226, VLDB Endowment, 2002.

[65] L. Sun, D. Zhang, B. Li, B. Guo, and S. Li, “Activity recognition on an accelerometer

embedded mobile phone with varying positions and orientations,” in Proceedings of

the 7th International Conference on Ubiquitous Intelligence and Computing, UIC’10,

(Berlin, Heidelberg), pp. 548–562, Springer-Verlag, 2010.

[66] “Pervasive Systems Research Data Sets.” http://ps.cs.utwente.nl/Datasets.php.

Accessed: March 2015.

[67] M. Shoaib, S. Bosch, O. D. Incel, H. Scholten, and P. J. M. Havinga, “Fusion of

smartphone motion sensors for physical activity recognition,” Sensors, vol. 14, no. 6,

pp. 10146–10176, 2014.

[68] W. Wu, S. Dasgupta, E. E. Ramirez, C. Peterson, and J. G. Norman, “Classification

accuracies of physical activities using smartphone motion sensors,” J Med Internet Res,

vol. 14, p. e130, Oct 2012.

[69] S. Garner, “WEKA: The Waikato Environment for Knowledge Analysis,” in Proc

New Zealand Computer Science Research Students Conference, (University of Waikato,

Hamilton, New Zealand), pp. 57–64, 1995.

[70] “An OWL Ontology of Time (OWL-Time).” http://www.w3.org/2006/time. Accessed:

March 2015.

97



[71] J. W. Lockhart, T. Pulickal, and G. M. Weiss, “Applications of mobile activity recogni-

tion,” in Proceedings of the 2012 ACM Conference on Ubiquitous Computing, UbiComp

’12, (New York, NY, USA), pp. 1054–1058, ACM, 2012.

98


