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CHAPTER 1 

INTRODUCTION 

 

1.1 OVERVIEW 

This paper describes research on the use of a genetic algorithm (GA) to prescribe 

treatment plans for forest management at the stand level. Forest management refers to making 

decisions about when and where to intervene in the natural growth of forests to achieve 

objectives, such as enhancing the visual quality of a stand or maximizing timber yield. A 

prescription is a schedule of thinning treatments applied to stands over a planning horizon. 

Broadly speaking, national forests are managed on two levels: forest and project 

(Holsapple & Whiston, 1996). Forest-level management plans are large scale strategic programs 

that establish general goals, guidelines, and standards. Forest service personnel typically have 

flexibility in how they choose to implement a forest-level plan on a more local level (Morrison, 

1993). The second level, project-level plans, is tactical and site specific in nature. The 

prescriptive approach described here is an example of a project-level management plan.   

Treatment prescription at the project level is a complex multiple constraint satisfaction 

problem with a search space that increases exponentially with the length of the plan (that is, the 

number of years the plan covers divided by the treatment interval). Human experts can not 

realistically consider every alternative plan and must instead fall back on general rules of thumb 

acquired from experience. One motivation for using machine learning techniques is to take some 

of the guesswork and bias out of planning by providing users with concrete recommendations. 



 2

Many optimization techniques have been applied to the problem of stand-level 

optimization. It is not the purpose of this paper to provide a comprehensive review of the many 

approaches that have been taken to this problem, but examples include the Hooke and Jeeves 

method (1961), dynamic programming, genetic algorithms, tabu search, and various hybrid 

methods that incorporate different heuristic methods. Bettinger and Boston (2002) for example 

found that a combination of a GA and tabu search heuristics got better results for one type of 

harvesting problem than either achieved alone. 

A vast literature exists on GAs and their applications to multiple constraint problems. 

Feng and Lin (1999) used a GA to design several alternative urban plans for the city of Tanhai. 

They concluded that the GA found better solutions than urban planning experts, and also 

provided more alternative plans. 

In the forestry domain, Mathers, Sibbald, and Craw (1999) developed a GA to 

strategically categorize stands within a management unit for different functions with the goal of 

finding the optimal balance of utility within the unit. Some stands might be designated for timber 

production, others for recreational use or other functions. Ducheyne, De Wulf, and Baets (2001) 

also used a GA to categorize stands for different purposes, with the goal of optimizing 

management units along both economic and visual dimensions. 

Others have applied GAs to spatially constrained harvest scheduling problems. Mullen 

and Butler (1999) designed a GA that output the order in which stands should be harvested to 

optimize timber yields. In a similar project, Hughell and Roise (1997) also used a GA to develop 

treatment schedules for harvesting. They made use of a simulation model for the endangered red-

cockaded woodpecker to balance timber objectives with an ecological concern in an uncertain 

environment. The output of this GA is a plan that specifies when to harvest from each stand in a 
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management unit. The authors note that although more traditional linear programming 

techniques are capable of solving this type of optimization problem, scheduling problems with 

large numbers of decision variables may take a prohibitive amount of CPU time. One of the 

strengths of GA heuristics is their ability to produce sets of near optimal solutions in a timely 

manner.  

Some researchers have applied different programming strategies to the problem of 

treatment prescription. Bettinger and Graetz (2004) used dynamic programming techniques to 

reach stand density targets for forests in the Blue Mountains of eastern Oregon. Their method 

pools individual solutions for stands with characteristics in common into a generalized consensus 

opinion that applies to all stands of that type. This is meant to loosely emulate the process by 

which human experts decide how to treat stands based on experience with similar stands. 

Bettinger and Graetz’s research is similar to the present study in that it focuses on stand-level 

optimization, where stand-level goals are defined in terms of basic tree-level data such as basal 

area and trees per acre.  

The approach described here differs from similar projects in the literature mainly because 

a GA is used to develop plans with a high degree of specificity. A framework has been 

developed that allows the GA to evolve highly specific treatment recommendations at the 

project-level for a variety of management goals, timber and non-timber (visual or ecological 

goals) alike. The approach described here does more than lay out a high-level strategy for forest 

management, it will tell the forester exactly when, where, and how to harvest each stand in the 

management unit to maximize the number of management goals that can be satisfied in the 

specified time period. The ultimate measure of the project’s success will be how well it performs 
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compared to a human expert, as well as to other machine learning techniques such as simulated 

annealing and hill-climbing. 

 

1.2 GENETIC ALGORITHMS 

Genetic algorithms are an exciting area of research in the field of computational 

intelligence. As the name suggests, the problem solving mechanism of GAs is loosely modeled 

after biological evolution. The basic idea is to evolve a solution, represented as a string or similar 

data structure, from a randomly generated population of candidate solutions using selective 

reproductive pressures and genetic operators that introduce new candidates into the population.  

Evolution in nature depends on natural selection and sexual reproduction. Natural 

selection determines which individuals survive to reproduce, while sexual reproduction mixes 

the genetic material from survivors into novel combinations. These biological processes have 

their analogs in the selection and crossover operations of the GA. Random mutations are also 

modeled in the GA. 

First a population of “chromosomes” is created. Each chromosome represents a candidate 

solution to the problem at hand. Chromosomes are the basic objects in the GA and are often 

coded as lists of binary numbers. In the current study, chromosomes are lists of real numbers 

between zero and one which define a series of forest thinning treatments over many years. Each 

chromosome string in the population is evaluated by a selection procedure that selects the best, 

or most “fit”, solutions according to criteria set by a fitness function. The high ranking 

individuals exchange string information through crossover and produce a new generation of 

“offspring”. A small percentage of string positions in an offspring may also mutate randomly. 
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The search power of GAs is attributable to a characteristic called implicit parallelism, 

which allows large search spaces to be effectively sampled with relatively few computations 

(Holland, 1992). This is possible because each string in a population belongs to many different 

regions of the search space simultaneously. For example, the string (1 1 0 0 1) belongs to the 

region consisting of strings that begin with “1” (1 * * * *), strings with a “0” and a “1” in the 

fourth and fifth positions (* * * 0 1), and many more. These are examples of schemata, sets of 

strings with common elements in particular positions. When the GA evaluates and assigns fitness 

to a string, it implicitly samples every schema expressed in the string simultaneously, or in 

parallel. The schema theorem shows that schemata that code for advantageous features become 

prevalent in GA populations in the same manner as alleles that increase the fitness of biological 

organisms dominate their gene pools. Initially the schemata that are selected tend to be small, or 

low order. The building block hypothesis predicts that as evolution takes its course, the most fit 

small schemata conglomerate into larger blocks (Smith, 1994). Under ideal (and not always 

realistic) circumstances, the best solution found by the GA can be viewed as the end point of this 

process: a large, very fit schema which is decomposable into component building blocks 

representing important dimensions of the problem.  

Genetic algorithms are not function optimizers (De Jong, 1993). That is, they are not 

guaranteed to find the optimal solution in a search space. Therefore it is inappropriate to apply 

GAs to problems with small search spaces that could be exhaustively searched by algorithmic 

methods with a reasonable amount of time and computer memory. The strength of the GA 

approach is that they can often find near optimal solutions to difficult solutions in large spaces, 

provided a suitable representation and fitness function are specified (Goldberg, 1989). Because 
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GAs do not compare every possible option, even very large problem spaces can often be 

searched in a reasonable amount of time. 

Another advantage to GAs is that they operate blindly, without preconceived notions 

about which characteristics of a forest stand might be relevant to the satisfaction of a 

management goal. All that matters to the GA is how good a treatment plan is, that is, how well 

the management goals are satisfied in simulation when a particular treatment plan is followed. It 

is hoped that this equal-opportunity approach will enable the GA to find creative solutions to 

management problems that might not occur to human experts. 

There are many variations on genetic algorithms, and many parameters that can be 

adjusted that may result in differential levels of performance. The most important aspects of GA 

design by far however are the representation of the chromosomes and the choice of fitness 

function. These are the main determining factors in whether or not the GA will function as 

intended. 

Treatment prescription for forested stands is a complex and multidimensional problem. 

To effectively manage a set of stands, forest managers need to decide what treatments to apply to 

which stands, and when. Plans that project many years into the future become complicated very 

quickly, especially when multiple goals are involved. Simulating every alternative (an exhaustive 

search) is not practical, nor is there any specific method used by human experts to recommend 

prescriptions. Representing treatments on the other hand is fairly straightforward, because the 

primary tool of forest managers is forest thinning, and there is also sufficient information 

available to define useful fitness functions. These issues are discussed in detail in later sections. 

Thus all the ingredients for a GA approach to the problem are in place. 
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1.3 NED-2 

The current research on the GA for treatment scheduling began as an offshoot of the 

Northeast Decision Model (NED) project at the University of Georgia. NED-2 is a decision 

support system (DSS) that provides users with a planning environment for forest management 

and expert system components for evaluating and comparing plans within a management unit 

(Nute et al., 2004). A management unit is simply the area of forest under consideration. 

Management units are divided into stands, which are sections of forest with some uniform 

characteristics. A plan is a schedule of treatments, such as planting or row thinning, applied to 

individual stands over predetermined intervals. 

NED-2 has been developed with a modular programming philosophy which makes 

adding new components fairly straightforward. While the GA is being developed using concepts 

and treatment definitions borrowed from NED-2, it is intended to be usable as a standalone 

utility. If the approach proves to be effective and practical, it may eventually be incorporated into 

NED-2 as a new module. 

 

1.4 FVS 

Like NED-2, the GA uses the Forest Vegetation Simulator (FVS), a growth and yield 

simulator produced by the USDA Forest Service, to simulate treatment plans. FVS needs two 

input files to run a simulation. The parameters describing treatment plans are encoded in a 

keyword file (*.key). The other input file contains tree inventory data gathered by observation or 

generated from the NED-2 databases, and is called during execution of the keyword file. 
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FVS is capable of creating several different output files. The GA only needs data from 

the optional tree inventory data output file to measure fitness. These data are written to files with 

the *.out extension. All simulations were run using the southeastern (SN) variant of FVS. 
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CHAPTER 2 

DESIGN OF THE GA 

 

2.1 REPRESENTATION  

The simplest representation possible in a GA is a binary string. In many cases candidate 

solutions to multiple constraint problems are reducible to a list of Boolean values, one or zero for 

each variable where one indicates the presence of a feature and zero its absence. In addition to 

being parsimonious there are practical advantages to using a binary alphabet. Mutation is as 

simple as flipping a bit, and crossover bears a closer resemblance to its counterpart in nature 

compared to crossover operations in non-binary GAs (De Jong as cited in Deb, 2001). Most 

importantly, there is reason to believe that binary-coded GAs process schemata more efficiently 

than other GAs. Goldberg (1991) argued that based on the total number of schemata searched per 

generation, binary alphabets get the maximum number of schemata per bit of information.  

Binary-coded GAs may also require smaller initial populations than other GAs. Reeves 

(1993) estimated the minimum population size needed by various representations for every 

solution in the search space to be reachable by crossover alone. For this condition to be met, 

every member of the alphabet must be represented at every allele position by some member of 

the population. This ensures that repetitive crossovers will eventually create every possible 

solution in the search space. The larger the size of the alphabet, the more storage and computer 

time will be necessary to satisfy the condition. Because binary-coded GAs have only two values 
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in their alphabets, they require smaller populations and thus less storage and computer time to 

explore their search spaces. 

Unfortunately, binary-coded GAs run into difficulties with multi-objective problems in 

continuous search spaces. One is the difficulty of achieving an arbitrary degree of precision in 

assigning parameter values. The higher the desired precision is, the longer the strings must be, 

and the longer the strings become, the larger the optimum population size becomes (Goldberg, 

Deb, & Clark, 1992). Another problem is that strings that could be considered neighbors in terms 

of observable features may be very far apart in terms of their representation. One manifestation 

of this problem is known as a Hamming cliff (Hamming, 1980). The strings (0 1 1 1) and (1 0 0 

0), for example, are different in every position, but if interpreted as binary numbers these are 

neighboring solutions.  

In situations where parameters vary over a continuum of values rather than simply being 

present or absent, parameters can be represented directly in alleles (that is, no string coding) as 

real numbers. This simplifies representation for certain problems by removing the need to 

translate real values into discrete, Boolean categories. Real-parameter GAs bring their own 

unique set of challenges however. In particular, mutation and crossover operators must be 

reconsidered to ensure that the population is perturbed in a meaningful manner and the search 

space is explored systematically. It is also not entirely clear what role schemata play in real-

parameter GAs. Goldberg (1991) made the case that selection in real-parameter GAs causes the 

above average solutions to survive. The sub-regions of these solutions constitute a virtual 

alphabet, meaning that they serve as islands in the search space to which the search is restricted. 

Effectively, this means the real-parameter GA with the continuous search space is approximated 

as a discrete search space, and the risk is that the global optimum may lie outside the range of the 
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islands. This concern is ameliorated somewhat by special crossover operations specifically 

designed for exploring continuous search spaces, an issue to be discussed more later in the paper. 

For a good overview of real-parameter GAs and their associated genetic operators, see Herrara, 

Lozano, and Verdegay (1998). 

Treatment plans in NED-2 are divided into cycles separated by regular intervals. A 

typical plan might span 50 years between 2010 and 2060, with a treatment period every 10 years 

for a total of five cycles. The plan in this example would consist of five treatments, 

chronologically ordered. Managers may also opt to select no treatment for a cycle and just let the 

forest grow. 

Treatments are applied at the stand level. The main GA program evolves treatment 

schedules for the management unit one stand at a time, treating stands as independent units (an 

alternative approach is explored in section 3.5). If multiple stands are selected for optimization, 

first the GA creates a population of individuals representing plans for the first stand on the list. 

After evolving the population for the designated number of generations, the GA outputs the 

stand-level plans it found to an HTML file. This is discussed in greater detail in Chapter Five. 

The GA repeats this procedure for each stand in the management unit. The prescription for the 

management unit as a whole is followed by treating each of the component stands according to 

its own schedule. 

There are several predefined treatment types in NED-2. “Thin basal area from above”, 

“clearcut”, and “shelterwood seed cut” are examples. It is also possible to define custom 

treatments. Thus one possible representation for a treatment plan in the GA would be a list of 

chronologically ordered treatment types and cutting efficiencies, as shown in Figure 2.1. 
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Figure 2.1: An early representation of treatment plans. 

 

One problem with using this representation for the GA is that small changes in the 

genotype may result in large changes in phenotype. For example, mutating a “grow” allele into 

“clearcut” would dramatically affect the status of a forested stand, even if only a single allele is 

affected. Radcliffe (1992) argues that “genetic operators and analogues of schemata should be 

defined directly in the space of phenotypes, rather than in the genotype (representation) space”. 

In other words, genetic operations like mutation should operate directly on the features relevant 

to the problem, rather than on high-level concepts like treatment definitions which only 

indirectly control the cut. 

To address this issue two alternative representations have been devised that represent 

treatment plans as lists of floating point numbers between zero and one. Treatments are defined 

by the diameter at breast height (DBH) of the trees to be cut, and a cutting efficiency which 

defines the percentage of trees within the range that will actually be cut. In the first 

representation (R1) a treatment comprises three alleles: 1) cutting efficiency (CUTEFF), which 

defines what percentage of trees within the specified range will be cut; 2) a percentage 

representing the midpoint of the range of DBHs to be cut (STP, a mnemonic for “starting point”); 

and 3) a percentage used to determine the width of the cutting range (SL, a mnemonic for 

“slice”).  

Grow 0.75 Row 
thinning 0.45 Clearcut 

Thin 
basal 

area from 
above 

0.75 0.50 

Cycle 1    Cycle 2       Cycle 3                       Cycle 4 
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A chromosome with N treatment cycles is a list of N treatments, where each three-allele 

triple represents the treatment for a particular cycle: <CUTEFF1, STP1, SL1, …, CUTEFFn, STPn, 

SLn>. The order of treatments in a chromosome is significant. If a treatment schedule starts in the 

year 2019 and has 10 year intervals between treatments, the first three alleles in the chromosome 

code the treatment for 2019, the next three for 2029, and so forth, as shown in Figure 2.2. This 

representation has a very desirable characteristic: Treatments are coded with just three alleles, 

which are grouped together. With respect to the building block hypothesis, treatments are 

obvious candidates for low-order building blocks. And because treatments are only three alleles 

long, fit treatments are less likely to be destroyed by crossover operations than if they were 

represented over longer strings. Figure 2.3 shows an example of how treatments are coded in an 

FVS keyword file. 

 

 
Figure 2.2: The current representation. Treatments are coded over three alleles. 

 

 

0.50 0.10 0.15 0.75 0.25 0.35 0.45 0.85 0.00 0.05 0.15 0.90 

2019     2029        2039          2049 
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COMPUTE         2019 
CUTEFF = 0.3 
STP = 0.3 
SL = 0.4 
DBHMIN = DBHDIST(3,1) 
DBHMAX = DBHDIST(3,6) 
RANGE = DBHMAX - DBHMIN 
STPOINT = (STP*RANGE)+DBHMIN 
SLICE = (SL * RANGE) 
DBHMIN2 = STPOINT - (SLICE/2) 
DBHMAX2 = STPOINT + (SLICE/2) 
END 
thindbh         2019    PARMS(DBHMIN2,DBHMAX2,CUTEFF,ALL,0,0) 
 

 

Figure 2.3: FVS keyword file code (R1). 

 

DBHMIN and DBHMAX are lower and upper bound values respectively for DBH values 

that could realistically occur in a southeastern forest. DBHMIN2 and DBHMAX2 define the 

actual DBH range to be cut in simulation. This range is a calculated percentage of the maximum 

possible range and is determined by the values of STP and SL. The last line in the FVS code 

shows how the information encoded in a chromosome has been interpreted for simulation. The 

simulator will perform a thinning treatment (thindbh) on the stand, cutting a percentage defined 

by CUTEFF on trees with a DBH between DBHMIN2 and DBHMAX2. 

The second representation (R2) also specifies treatments with three floating point 

numbers <CUTTEFF, VAR1, VAR2> in the range [0, 1]. The allele for cutting efficiency serves 

the same purpose as in the first representation, but the other two numbers specify the min and 

max DBH as illustrated in Figure 2.4. 

 



 15

 
COMPUTE         2019 
CUTEFF = 0.5 
VAR1 = 0.6 
VAR2 = 0.25 
DBHMAX = 56 
STARTDBH = (VAR1*DBHMAX) 
DELTA = DBHMAX - STARTDBH 
ENDDBH = (VAR2*DELTA)+STARTDBH 
END 
thindbh         2019    PARMS(STARTDBH,ENDDBH,CUTEFF,ALL,0,0) 
 

 

Figure 2.4: FVS keyword file code (R2). 

 

 DBHMAX is a species dependent value indicating the largest diameter trees of that 

species grow to. Like MAXDBH in the first representation, this serves as an upper bound on the 

range of DBH values that may be included in a treatment. The computed range from 

STARTDBH to ENDDBH defines the actual range of DBHs to be thinned.  

Importantly, in both of these representations each allele corresponds directly and 

continuously to a particular feature of the phenotype. Every allele codes for a discrete, 

observable feature in the plan, and small changes in genotype will result in small changes to the 

phenotype. In the first representation for example, changing the value of STP shifts the range of 

trees to be cut towards smaller or larger trees, while SL determines how wide or narrow the 

range will be. CUTEFF tells the program what percentage of trees in the range to cut. These 

three simple variables can be altered and recombined to represent a great variety of thinning 

treatments. 

 

2.2 FITNESS FUNCTION 

One of the most difficult steps in the design of a GA is selecting an appropriate fitness 

function. The role of the fitness function is to assign numeric values to solutions in the 
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population indicating how good, or “fit”, those solutions are so that selection operators can be 

applied. Gong (1992) gives a good account of the difficulties involved in eliciting a suitable 

fitness function from domain experts. Forest management experts may be unwilling or unable to 

quantify the criteria by which they judge the desirability of various forest conditions. Fortunately 

work has already been done at the University of Georgia to develop rules for goal analysis in the 

context of the NED project. These rules, while not definitive, have a sound theoretical basis in 

expert opinion (Rauscher et al., 2000). 

Data used as input for the fitness function is extracted from the FVS tree list output file 

(*.out). The tree list contains tree records generated by the simulator for each treatment cycle. 

These records include attributes such as DBH values and trees per acre that are needed to 

evaluate fitness. Figure 2.5 shows a sample output file. The rows beginning with “-999” are 

machine headers and contain information such as the year of the treatment (the fourth field) and 

cycle length (field 11). The rows below the machine header are the tree records. The GA uses the 

data from four of the columns: The third column contains a code indicating the species of tree for 

an observation; data in the fifth column are tree class codes indicating timber quality; the eighth 

column lists trees per acre; and the 11th column contains the DBH in inches for each observation 

(Dixon 2002).     

 

 



 17

 
Figure 2.5: Example of tree list output file (*.out). 

 

Before a goal analysis can be performed on a stand it must be assigned a forest and 

prescription type. The expert knowledge needed to perform these classifications is borrowed 

from NED-2. Forest types are labels such as “pine” or “mixed pine-hardwoods” that reflect the 

species composition of the stand. The forest type determines the prescription type for the stand, 

which in turn determines which rules will be used during goal analysis. 

The NED-2 knowledge base also contains rules that define goals in terms of desired 

future conditions (DFCs). Simply put, DFCs are conditions that are necessary and sufficient for 

satisfying a management goal. NED-2 uses DFCs to evaluate the success or failure of user-

defined treatment plans in achieving a set of objectives. The point is to give the user who has 
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designed and simulated a plan some feedback on how likely his or her plan is to succeed at 

meeting the management objectives. 

Silvicultural goals have different DFCs depending on the prescription type of the forest. 

For example, if a user selects the timber goal “Focus on cubic foot production”, then a stand 

classified as an aspen-birch forest type meets the goal if the total basal area and acceptable 

growing stock for timber exceed certain thresholds. The thresholds may have different values for 

the various prescription types depending on the characteristics of the associated forest types. 

Nute et al. (2000) and Rauscher, Lloyd, Loftis, and Twery (2000) provide an extensive 

discussion of the hierarchy of DFCs and goals in NED-2.  

Viewing goal analysis as a constraint satisfaction problem in which certain DFCs either 

are or are not met has notable advantages over a system that searches for an optimum solution. 

First, assuming that certain crucial thresholds are satisfied, differences between candidate 

solutions may be inconsequential. Forest managers in the real world may not care about finding 

optimal solutions, just good solutions. Second, forest ecosystems are complicated entities and 

assuming certain basic criteria are met it may not always be possible to confidently rate one 

solution more highly than another. The third reason is a bit more complex and relates to a 

concept in multi-objective optimization called Pareto optimality. The object of single objective 

optimization problems is to find a particular point in the search space that gives the best value for 

that objective. By contrast, during n-objective optimization there may be no one point that is 

superior to all other solutions, but rather an n-1 dimensional surface called the Pareto optimal 

front where no point on the surface dominates any other (Smith, 1994). For example, if the GA 

has two goals, “periodic income” and “enhance big tree appearance”, there might not be any one 

best solution. One good solution might satisfy the first goal with a score of 4.0 and the second 
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with a score of 5.0, while another good solution satisfies the first with a score of 5.0 and second 

with a score of 4.0. In this case the Pareto optimal front would consist of the set of solutions with 

scores of 9.0, and could be plotted as a line on a graph. Under the DFC system of goal analysis 

goals may be satisfied with varying degrees of confidence. This is very convenient because it 

allows goals that may deal with different units or quantities behind the scenes to be dealt with in 

like terms; namely, how confident the system is that the goals were satisfied during each year of 

the plan.   

The fourth and perhaps most important advantage to using DFCs is that it allows the 

reasons for a goal’s success or failure to be easily explained to the user, giving managers a clue 

as to what went wrong and what, if anything, can be done to correct the shortcoming (Rauscher 

et al., 2000). 

Five DFC-based goals from the NED-2 knowledge base have been adapted into a fitness 

function for the GA. Four of these goals involve timber production, while the fifth relates to the 

visual quality of the forest and was selected to counter-balance the purely economic focus of the 

other goals. Treatment prescription becomes a more complex and interesting problem when 

economic needs must be balanced by esthetic or ecological goals. The goals are: focus on cubic 

foot production, focus on board foot production, periodic income, focus on net present value, and 

enhance big tree appearance (see Appendix A for the content of these rules). Any combination of 

these goals may be selected for optimization. To determine the fitness of a treatment plan, the 

GA simulates it with FVS and checks whether the output satisfies the DFCs for the selected 

goals. The NED-2 help files show how to calculate basal area, relative density, and other 

variables referred to in the DFCs from tree observation data in FVS *.out files.  
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One way to determine the fitness of a treatment schedule upon goal analysis is to simply 

sum the number of goals that are satisfied over the course of the simulation. With this method, a 

goal is either satisfied for a cycle or it is not. So if two goals are selected for a simulation with 10 

cycles of any interval length, the best possible fitness would be 20. One version of the GA has 

been developed and tested using this simple design. 

Unfortunately the target values defined by DFCs are not incontrovertible (Rauscher et al., 

2000) and values obtained in simulation are not guaranteed to match reality. Another concern is 

that using rigid threshold values for goal satisfaction could degrade the performance of the GA. 

Ideally it should be possible for the GA to make incremental progress towards satisfying goals 

with a series of small improvements to the composition of the gene pool. If a DFC for a goal 

states that the stand should have a basal area of 60 square feet per acre and the actual value is 

59.9, the GA should recognize that while current conditions fall short of the DFC, this is an 

improvement over a previous plan that resulted in a basal area of just 10 square feet per acre.  

To help mitigate these concerns, confidence factors (CF) indicating the degree to which a 

goal or DFC is satisfied have been incorporated into goal analysis. Confidence factors capture 

the idea that goal satisfaction can operate across a continuum. For example, if a goal is satisfied 

well within the ranges defined by its DFCs it is assigned a higher value than a goal that is barely 

satisfied. CFs are assigned by partitioning observed values into categories relative to thresholds ± 

10% of the DFC’s target value. A DFC may be completely satisfied (CF = 1.0), marginally 

satisfied (CF = 0.6), nearly satisfied (CF = 0.4), or it may fail completely (CF = 0.0) (Routh, 

2004).   
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Most goals are defined by three or more DFCs, each with its own CF. The values 

associated with each DFC are combined to produce a number indicating the degree to which the 

whole goal is satisfied.  

 

For two conditions P1 and P2: 

 

CF(P1 and P2) = min((CF(P1), CF(P2)) 

CF(P1 or P2) = max((CF(P1), CF(P1)) 

 

At the time of writing the premise for every goal in the GA is a conjunction of DFCs, so 

the degree to which any goal is satisfied is always the same as the CF of the least satisfied DFC. 

The fitness of a stand is determined by adding the CFs of all the goals that were at least 

marginally satisfied over the course of the plan. This involves checking the values assigned to 

goals during each treatment interval, or cycle, of the plan, then summing those values.  

Checking the status of management goals during each cycle, as opposed to evaluating the 

goal status at the end of a plan, enables the GA to show a preference for plans that satisfy 

management goals early and often. If two plans satisfy the same goal set but one satisfies those 

goals through more cycles than the other, the latter plan will be assigned a higher fitness.  

The method described above is the default procedure for calculating the fitness of plans. 

Two alternative methods of assigning fitness were also explored. A vector evaluated GA, or 

VEGA, is a very simple modification of a simple GA for multi-objective optimization (Schaffer, 

1985). In a VEGA, the population is randomly divided into N equal subpopulations every 

generation, where N is the number of goals. The fitness of each subpopulation is calculated based 
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on a different objective function. This method helps prevent dominance by individual champions 

of a particular goal. When all goals are considered simultaneously it is possible for a solution to 

dominate the population by virtue of its success at satisfying a particular goal very well, even if it 

does not do well by the other objectives. In a VEGA this is less likely to occur because the 

function the solution is measured against is randomly determined by its assignment to one of the 

subpopulations. An individual that easily satisfies one goal at the expense of others is unlikely to 

do well under a VEGA system. Another advantage to checking solutions against one objective 

function at a time is that there is no problem with differences in the ranges of objective functions. 

If one goal is more easily satisfied than another, performance on that objective might drown out 

the fitness contribution from another goal if all objectives were considered simultaneously. With 

VEGA solutions that perform well on many goals should have a distinct advantage, while those 

that are not particularly fit overall but satisfy a particularly difficult goal may persist in the 

population as management alternatives. 

Another GA modification for multi-objective optimization, first suggested by Bentley 

and Wakefield (1997), uses a ranking scheme to encourage a variety of solutions in the GA 

population. The weighted average ranking (WAR) method ranks population members separately 

according to their performance on each objective function. The fitness of a solution is assigned 

by summing its rankings (in this system, a higher number is a better rank). Like the VEGA, the 

WAR scheme is intended to prevent dominance of the population by individual champions.  

 

2.3 GENETIC OPERATORS 

One of the fundamental problems encountered when trying to optimize the design of a 

GA is balancing the needs for population diversity and strong selection pressure. Ideally the GA 
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should find optimal or near-optimal solutions, but the final population should be diverse enough 

that the program can offer alternative recommendations. The difficulty is that the strength of 

selection pressure is often inversely related to the amount of diversity in the population. 

Applying mutation and crossover operations directly to real-parameter values also presents a 

challenge. The goal of genetic operators is to perturb the allele pool in incremental and 

meaningful steps, discovering and propagating meaningful schemata. This section presents a 

discussion of these issues and explains the reasoning behind the choice of genetic operators. 

 

2.3.1 MUTATION 

Mutations are chance alterations in the genetic composition of offspring as they are 

created from parents in the mating pool. This serves an important and complementary role to 

crossover. While the latter recombines genetic information from parent solutions into new 

configurations, mutation represents the random error in copying that sometimes occurs in nature. 

Sometimes these errors convey significant advantage to an individual and become prominent 

schemata in the population. Mutation may play an important role in the success of the GA 

because it samples allele values that do not occur anywhere in the initial population and would 

thus not be explored by a conventional crossover. Although the importance of mutation is less 

prominent in a GA with blending crossovers (discussed in the next section), guided mutation can 

still be a valuable tool for tweaking values on an allele-by-allele basis. 

In the current study mutation is usually incremental. This is necessary because small 

changes in a treatment plan genotype, in the allele for cutting efficiency for example, can have a 

large impact on the fitness of a treatment plan. Since all alleles are percentages between zero and 

one, an incrementally mutated allele adds or subtracts 0.05 from its previous value. 
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It appears probable that, on average, not all legal allele values are equally likely to be 

parts of effective treatment definitions. Clearcutting and the grow condition (where nothing is 

done because the cutting efficiency is set to 0) in particular seem likely to be common treatments 

when management goals are timber-related. Plans with instructions to simply let a stand grow or 

to clearcut also have the advantage of being parsimonious. If two plans satisfy the same goal set, 

but one involves several precise cutting treatments over narrow DBH ranges while the other 

recommends letting the stand grow for several cycles and then clearcutting, the latter plan will be 

the more attractive option of the two because it will be easier and more economical to execute. 

For these reasons it may be desirable to occasionally mutate treatments into grow or clearcutting 

treatments instead of the usual incremental mutation. 

Treatments for a cycle are represented over three alleles. Therefore the mutation operator 

must look at three alleles at a time. In the case of a grow mutation the first allele, which codes for 

cutting efficiency, is set to 0. The second and third alleles are left alone. Mutation into a clearcut 

changes the alleles differently depending on which representation is used. In R1 CUTEFF, STP 

and SL change to 1.0, 0.5, and 1.0 respectively. For R2 the alleles coding for CUTEFF, VAR1 

and VAR2 become 1.0, 0, and 1.0. 20% of all mutations result in a grow treatment, 20% create 

clearcuts, and the remaining 60% of the time each allele is independently evaluated with possible 

tweaks of plus or minus 0.05, as described before. The 20/20/60 breakdown is not theoretically 

grounded but produced reasonable results in testing. Figure 2.6 illustrates the three mutation 

types. All test runs were performed with a fairly standard baseline mutation rate of 0.05. 
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Example of incremental mutation  

0.75 0.25 0.45 

 
 

0.80 0.25 0.45 

 
Example of mutation into no treatment, or grow 

0.75 0.25 0.45 

 
 

0.00 0.25 0.45 

 
Example of mutation into a clearcutting treatment (R1) 

0.75 0.25 0.45 

 
 

1.00 0.50 1.00 

Figure 2.6: Illustration of mutation types. 

 
 
2.3.2 CROSSOVER 

Crossover is an operation that separates and recombines parent solutions to create two 

new solutions with a mix of characteristics from each parent. Ideally if two solutions selected for 

mating each have desirable characteristics, the offspring created by crossover will inherit the best 

features from both. The solutions created by lucky crossovers may be significantly more fit than 

either of the solutions from which they are constructed. 

Early versions of the GA were implemented with two-point and uniform crossover 

operators. In two-point crossover, two allele positions on a parent chromosome are selected as 
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er points. The section of chromosome between the crossover points is swapped with

corresponding section from another individual, resulting in two new chromosomes, or offspring

For example, a two-point crossover on parents P1 and P2 where P1 = [1, 2, 3, 4, 5] and P2 = [6, 7

8, 9, 10] at the second and fourth positions would result in offspring O1 and O2, where O1 = [1, 2, 

8, 9, 5] and O2 = [6, 7, 3, 4, 10].  

In uniform crossover a crossover mask is generated that defines which positions will be 

swapped between chromosomes. T

e would result in offspring O1 and O2, where O1 = [6, 2, 3, 4, 10] and O2 = [1, 7, 8, 9, 5]. 

Every allele in a binary-coded GA has one of two values: one or zero. Mutation can flip 

an allele value from one bit to another, and the crossover operator searches different schema 

gs. Unfortunately traditional crossover methods like two-point and uniform may be less 

effective when dealing with real-parameter GAs. The reason for this can be understood by 

considering the dimensions of the search space. Because the value of each allele can vary 

continuously between zero and one, it is vital not only to explore different possible ordering

existing alleles, but also to try new allele values. Conventional crossover methods that sim

reorder the alleles from parent chromosomes place too much of the burden of the search on the 

mutation operator. No matter how the alleles in a real-parameter GA are shuffled position-wise

if different values are not sampled large portions of the search space will be neglected.  

For these reasons it may be necessary to explore alternative crossover options. An 

effective operator needs to explore the ranges of continuous values in string positions, cr

ng equidistant in the search space from the parent chromosomes. Technically this is 

described as a blending operation instead of crossover, although for the sake of simplicity the 

term crossover will continue to be used. 
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One of the simplest real-parameter crossover implementations is known as linear 

crossover (Wright, 1991). This operator creates three candidate offspring, 0.5(P1 + P2), (1.5P1 – 

0.5P2) ossover 

 O1 

r GAs. For two parent chromosomes P1 and P2, and assuming P1 < P2, 

BLX-α

with α = 

ch space the 

differen

ch 

developed by Deb and his students (Deb & Agrawal, 1995; 

Deb & Kumar, 1995). SBX was designed to approximate the effect of single-point crossover on 

and (-0.5P1 + 1.5P2) from parent chromosomes P1 and P2. For example, a linear cr

on parents P1 and P2 where P1 = [0.5, 0.5, 0.5] and P2 = [1.0, 1.0, 1.0] results in offspring O1, O2, 

and O3 where O1 = [0.75, 0.75, 0.75], O2 = [0.25, 0.25, 0.25], and O3 = [1.25, 1.25, 1.25]. 

Typically the better two of the three are passed to the next generation. In this case O3 is an illegal 

crossover result because all allele values in the GA are required to be in the range [0, 1], so

and O2 would be selected. 

Eshelman and Schaffer (1993) suggested a different method, called blend crossover 

(BLX-α) for real-paramete

 creates offspring in the range [P1 – α(P2 – P1), P2 + α(P2 – P1)]. The value of α 

determines the width of the range of possible offspring values. Thus if α = 0, the crossover will 

result in a random solution in the range [P1,  P2]. The investigators reported that a BLX 

0.5 performed the best on several test problems, so this is the value used in our GA. 

One interesting characteristic of BLX-α is that the range of values in offspring depends 

on the difference between parent solutions. When the parents are far apart in the sear

ce between parents and offspring is also large, but as the population converges, new 

offspring are more similar to their parents. This is a desirable characteristic in a genetic operator; 

a larger space of solutions will be searched early on, and as the population converges the sear

will become appropriately focused. 

The third and final real-parameter crossover operator explored in this study is simulated 

binary crossover (SBX), which was 
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values have been assigned. The main objective is keeping selection pressure high, meaning 

th high fitness values, while simultaneously maintaining a healthy amount 

of dive nces 

strings for non-binary representations. Essentially SBX creates a probability density 

function such that offspring values closer to the values of the parents are more likely to occur 

than values far from the parents. Offspring are symmetric around parent solutions in the search 

space to avoid bias towards either parent. The distribution index ηc affects the steepness of t

probability curve, with high values steepening the curve and giving a higher probability to near

parent solutions. Like BLX-α, the difference between offspring is proportional to the difference 

between the parent solutions. However, SBX has the additional property that near-parent 

solutions are biased over distant solutions. Put another way, BLX-α narrows the search space as 

parent solutions become more similar, but within the range of legal values all offspring are 

equally probable. SBX does not restrict the range of possible values, but rather makes som

values more likely than others. 

The baseline crossover rate for our GA is 0.6. This number is only meaningful durin

early generations however, because of a design decision to enforce genotypic uniqueness in t

population. This is discussed further in the next section. 

 

2.3.3 SELECTION 

There are several methods for selecting individua

favoring solutions wi

rsity in the population. When selection pressure is high individuals with small differe

in phenotype may be evaluated very differently. One way of achieving this is by taking the 

exponent of raw fitness values, so that even if an individual is only slightly better than its 

neighbors, it will be much more likely to be selected for the mating pool.  
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The problem with high selection pressure is its inverse relationship with population 

diversity. Diversity in the population is desirable because it allows the search space to be m

fully explored, and because the population at the last generation should ide

ore 

ally include several 

alternat is too 

k. 

 

 

ne this 

ol is 

ulation. The advantage 

of usin

ive solutions representing significant management alternatives. If selection pressure 

severe, especially in the early generations, the population can become dominated by a small 

number of super-individuals, and the subsequent lack of richness in the allele pool may stymie 

further improvements. This is the problem of getting stuck in a local optimum; sometimes it is 

necessary to temporarily move through a “valley” in the search space to reach the highest pea

On the other hand, if selection pressures are too low, diversity may be preserved but population

convergence towards good solutions may be very slow. The difficulty is exacerbated by the fact

that GAs usually do well with relatively low selection pressure in early generations, but 

populations become more competitive in later generations, resulting in a need for higher 

selection pressure. This has come to be known as the scaling problem. 

Whitley (1989) advocates a rank-based selection scheme as the best way to fine tu

balance. In his scheme, the likelihood that an individual will be selected for the mating po

determined by its fitness ranking compared to other members of the pop

g fitness rankings rather than actual fitness values is that selection pressure remains level 

throughout the run of the GA. The most fit individual has the same advantage over the least fit 

individual whether the difference in fitness values is 1 or 100. This has the effect of helping to 

prevent premature convergence in early generations while continuing to reward even small 

improvements in later generations when the population members are closer in fitness. For these 

reasons rank-based selection has been selected for use in the current study. 
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2.3.4 ENFORCED GENOTYPIC UNIQUENESS AND ELITISM 

Another potentially important design decision is whether to enforce genotypic uniqueness 

 the population, and if so how to go about it. Intervening in the normal run of the GA to ensure 

A philosophy of letting 

artificia

 

ay still dominate if every 

populat

d 

or. 

te 

s 

han a randomly selected number 

betwee

in

that no duplicate individuals exist seems to run counter to the general G

l evolution run its course. Thus some explanation is in order. 

One potential benefit of enforcing uniqueness is that it works as a foil to the dominance 

of super-individuals in early generations. Although this prevents the GA from early convergence

on a single point in the search space, a particular class of individual m

ion member is a closely related variation of one solution. Another problem with this 

approach is that it makes the relative contributions of the mutation and crossover operators very 

difficult to interpret, because crossovers resulting in duplicates of existing members of the 

population are repeated until novel offspring are created. In spite of these drawbacks, enforce

genotypic uniqueness may be useful in creating a range of non-dominated alternative solutions 

with similar fitness values, especially when combined with a sophisticated crossover operat

Whitley (1989) also notes that selection procedures are most fair in populations with no duplica

individuals. An individual with multiple copies in the population is more likely to be selected 

whatever its fitness value may be. When each solution is unique, selection for the mating pool i

determined entirely by individuals’ relative fitness values. 

The selection operation works as follows. During the formation of a new generation 

individuals from the current population are selected in pairs by the rank-based selection method 

to create offspring. If the set crossover rate (0.6) is greater t

n zero and one, a crossover operation is applied to the parents which results in two 

offspring for the new population. Otherwise the parents themselves are passed into the new 
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population. The exception to this procedure occurs when a duplicate solution is passed into th

new generation (assuming the option to enforce genotypic uniqueness is enabled). In this 

situation the program backtracks and repeats the crossover operation until a unique solution 

created. 

Elitism has also been implemented in the GA. Elitism is a mechanism that guarant

most fit individual in a population a place in the next generation. When a new population is 

spawned

e 

is 

ees the 

, the GA automatically selects the most fit N percent of individuals from the current 

population first. The rest of the new population is filled out by the normal selection, crossover, 

and mutation procedure.  
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CHAPTER 3 

EXPERIMENTS 

 

Several experimental runs of the GA were conducted to decide between alternative 

genetic operators and selection methods. The two alternative representations discussed in section 

2.1 were also compared. Having decided on the parameter settings, the performance of the GA 

was tested against a hill-climbing/GA hybrid, simulated annealing, and steady state GA across 

two conditions, with and without CFs, for a total of eight test conditions. In the final experiment 

a plan generated by the GA was compared to a plan recommended by a human expert.  

The management units mentioned in this section (Deer Hill, Liberty 1, and Bent Creek) 

are data sets containing forest inventory information that are used for testing NED-2. With two 

exceptions the experiments were simulated using data from 10 stands in the Deer Hill 

management unit located in Williamsburg County, South Carolina. Figure 3.1 shows the default 

settings used in these experiments. The settings were held constant unless otherwise noted.  

The experiment described in 3.3 was simulated on the Liberty 1 dataset, from Liberty 

Reservoir in Baltimore County, Maryland, which consists of five stands. This experiment 

compared methods intended for evaluating fitness in systems with multiple goals, so every 

available goal was selected. Liberty 1 was used instead of Deer Hill because the former offers 

greater opportunity for the more difficult goals to be satisfied. 

The experiment described in 3.6 (comparison to a human expert) was conducted using the 

Bent Creek dataset at the request of the expert, and the evaluation procedure was significantly 
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more complicated than for other experiments. This is explained in more detail in the sections 

ahead. 

Statistical analysis of results was performed using a two-factor analysis of variance 

(ANOVA) with replication with alpha = 0.05. This tests the hypothesis that data from two or 

more groups are drawn from populations with the same mean (the null hypothesis), where there 

are multiple samples for each group of data. A p-value is the probability that a sample would 

have been selected assuming that the null hypothesis is true. The value of alpha sets the 

confidence level for the test. A p-value less than 0.05 for example indicates a significant 

difference between groups with 95% confidence. 

Every experimental condition was tested 10 times for each of the stands in the 

management area. For example, in the experiments run on the 10 stands from Deer Hill each of 

the 10 samples consisted of 10 rows of data, one row per stand. Table 3.1 shows an example of 

how the data was formatted for ANOVA. The two-factor test was selected to account for the 

possibility that there might be an interaction between the stand number and the variables of 

interest due to differences in stand compositions. Although 10 samples per condition is not ideal 

for measuring statistical differences between groups, time constraints limited the number of tests 

that could be performed. Fortunately, during testing it was observed that stand composition never 

had a significant interactive effect with the experimental variables under consideration. 

Generally speaking, what worked well for one stand worked well for all stands. 
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Database: DeerHill 
Stands Processed: [1,2,3,4,5,6,7,8,9,10] 
Population Size: 50 
Max Generations: 40 
FVS Cycle Length: 20 
FVS Number of Cycles: 10 
Representation: R1 
Selection Type: rank 
Mutation Rate: 0.05 
Crossover Rate: 0.6 
Crossover Type: uniform 
Elitism (Percent): 2 
Genotypic Uniqueness Enforced: yes 
Fitness Function: DFCs with confidence factors 
Goals: Periodic income, enhance big tree appearance 
 

igure 3.1: Default settings for generational GA; experiments 3.1-3.4. 

Table 3.1: Example of data formatted for two-factor ANOVA with replication. Each row is data 
from one stand. Each cell contains the best fitness value found for a stand on a particular trial. 

Actual experiments consisted of 10 trials. 
 GGA SA HC SSGA 
Trial 1 14 8 10 12
 12 10 9 13
 8 11 8 9
 15 14 12 15
 14 14 10 13
 14 15 13 13
 14 15 11 14
 13 13 11 11
 11 11 13 12
 12 12 7 13
Trial 2 13 12 10 13
 11 14 11 12
 8 9 8 12
 13 12 12 13
 15 14 12 13
 16 15 13 13
 14 12 11 14
 15 13 10 13
 12 11 7 11
 14 13 10 10
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3.1 COMPARISON OF REPRESENTATIONS 

The two representations described in section 2.1 were compared on the GA with no CFs 

(this experiment was conducted before their implementation). All other parameters were set to 

default values. To review, treatments in the first representation (R1) are triples <CUTEFF, STP, 

SL>, where CUTEFF defines the percentage of trees in the range to be cut, STP is a percentage 

representing the midpoint of the range of DBHs to be cut, and SL is a percentage used to 

determine the width of the cutting range. The second representation (R2) also represents 

treatments with three floating-point numbers between zero and one, <CUTEFF, DBHMIN, 

DBHMAX>, but the treatment range is computed from the second and third arguments 

differently than in R1. 

The results from R1 and R2 were not significantly different (p = 0.71; p > 0.05). Table 

3.2 shows results by stand number. The cell values are the means of the best fitness values found 

during each of the 10 runs of the GA. For consistency, R1 was used as the default setting for the 

remainder of the experiments. 

 

Table 3.2: Comparison of representations. 
Stand R1 R2 

1 14.1 14.1
2 11.6 12.8
3 9.8 7.5
4 14 13.8
5 14.4 12.1
6 15.6 15.8
7 14 13.6
8 13.9 16
9 12.1 13.2

10 13.3 15.2
All Stands 132.8 134.1
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3.2 COMPARISON OF CROSSOVERS 

The next set of experiments tested the relative effectiveness of different crossover 

operations. The primary purpose of these experiments was to compare classical crossover 

techniques to BLX-α and SBX, which were specifically developed for use with real-parameter 

GAs.  

Another point of interest was whether the blending operations of BLX-α and SBX would 

be more effective when applied on an allele-by-allele basis or across entire chromosomes 

simultaneously. This issue arose for two reasons. First, both operators use random numbers in 

calculations that create offspring allele values from parent alleles. One question addressed by this 

experiment is whether better results are achieved when a different random number is used for 

each allele position, compared to using the same number across an entire chromosome. The other 

reason for creating offspring one allele at a time is that the operations of BLX-α and SBX 

sometimes result in illegal alleles, that is, alleles with values greater than one or less than zero. If 

every offspring allele position is calculated independently, illegal alleles can be re-blended until 

a legal value is generated. Illegal alleles are much more problematic when entire chromosomes 

are blended at once, because it means the offspring must be either entirely recalculated (Option 1) 

or thrown out, in which case a clone of a parent takes the aborted offspring’s place in the next 

generation (Option 2). 

Two versions of BLX-α were tested, one using the allele-by-allele calculation and the 

other the “whole chromosome” method. The allele-by-allele calculation won by default because 

Option 1 was impractically slow and Option 2 resulted in a significantly lower crossover rate 

than the specified 0.6 because it had to throw out so many illegal offspring. 



 37

Next the effectiveness of five crossovers: two-point, uniform, linear, BLX-α, and SBX; 

were compared while other variable parameters were held constant. Although the choice of 

crossover was significant with p < 0.001, the results in Table 3.3 and Figure 3.2 show that the 

expected advantage for real-parameter crossovers did not materialize (again, results show mean 

fitness values across all trials). In fact, although the differences were not dramatic, when the best 

results from all stands were summed for each crossover the two-point and uniform crossover 

slightly outperformed the real-parameter crossovers. The results from uniform crossover were 

significantly better (p = 0.004; p < 0.05) than the results from the best-performing of the real-

parameter crossovers, BLX-α. Because two-point and uniform cross can not discover allele 

values not present in the initial population, the results seem to indicate that either 1) the initial 

populations already contained the necessary schemata to locate good plans, or 2) those schemata 

were located by the mutation operator.  

Although blending crossovers explore a great diversity of solutions, this comes at the cost 

of losing the exact allele values the parent solutions comprise. During a linear cross, to take the 

simplest example, if parents P1 and P2 have values at the nth allele position of 1.0 and 0.5, then 

the offspring may inherit the average of these values (0.75) at position n. Viewing the blending 

of allele values in terms of the Schema Theorem, it may be that for this particular application the 

blending operations were too disruptive and ended up destroying important schemata. Uniform 

cross was selected for the remaining experiments. 
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Table 3.3: Comparison of crossovers. 
Stand two-point uniform linear BLX-α SBX 

1 14.42 15.02 13.7 13.18 13.22 
2 13.52 13.86 13.18 13.1 13.08 
3 11.18 10.88 10.98 11.12 11.14 
4 15.38 15.04 14.88 14.98 14.92 
5 15.36 15.56 14.48 15.22 14.66 
6 15.46 15.22 15.04 15.24 15.18 
7 15.24 15.04 14.4 14.72 14.52 
8 14.3 14.72 13.66 13.82 13.66 
9 12.84 13.54 11.66 11.7 11.74 

10 13.12 13.32 12.5 12.7 11.9 
All Stands 140.82 142.24 134.5 135.78 134.02 
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Figure 3.2: Comparison of crossovers. 
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3.3 COMPARISON OF FITNESS FUNCTIONS 

By default fitness is assigned by summing the CFs for each goal from every treatment 

interval of the plan. This straightforward evaluation procedure was compared to the VEGA and 

WAR fitness function variants described in section 2.2.  

A large part of the appeal of VEGA and WAR is that they provide means for handling 

goals with incommensurate values. For example, if one goal attempted to maximize timber 

production in terms of board foot volume, while another goal dealt with inches of leaf litter on 

the forest floor, it may not be clear how those values should be weighed against one another. In 

the case of VEGA, the problem disappears because only one goal per individual is evaluated 

each generation. In the case of WAR, performances on each goal are assigned a rank rather than 

using absolute values so there is no problem with the different units of measurement. However, 

because the GA rates individuals according to the confidence with which DFCs are satisfied the 

problem of incommensurate values does not occur to begin with: The GA’s performance on any 

given goal is assigned a value of 1.0, 0.6, 0.4, or 0.0 only, no matter what units the DFCs deal 

with.  

The remaining incentive for testing VEGA and WAR is that they were designed to 

prevent dominance of the population by super-individuals in one category. These are solutions 

that dominate the population in early generations because they do very well on one goal, perhaps 

at the expense of other goals. If this happens the GA may prematurely converge on a local 

maximum and subsequently lack the population diversity needed to effectively sample the search 

space.  

Because VEGA and WAR are intended for multi-objective search, all five goals (focus 

on board foot production, focus on cubic foot production, periodic income, net present value, and 
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enhance big tree appearance) were entered into the fitness function for this experiment. The 

experiments in this section were conducted on the Liberty data set, which contains five stands. 

Other parameters such as population size and the treatment interval were left at the default values. 

The choice of fitness function across all three conditions was significant. The default 

fitness function was significantly better than the fitness function using WAR (p < 0.001), and 

WAR was significantly better than VEGA (p < 0.001). WAR suffered the additional 

disadvantage of being the most computationally intensive of the three. This is not surprising 

because the WAR fitness function must rank each individual’s performance relative to the rest of 

the population on every goal. Table 3.4 shows results by stand number over the 10 trials. Figure 

3.3 presents the same information graphically. The regular fitness function was used for the 

remainder of the experiments. 

 

Table 3.4: Comparison of fitness functions. 
Stand Normal VEGA WAR 

0 24.16 20.74 21.92
1 25 20.42 20.54
2 24.64 20.24 22.48
3 22.1 18.24 22.18
4 23.92 21.6 23.04

All Stands 119.88 101.24 110.16
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Figure 3.3: Comparison of fitness functions. 

 

3.4 COMPARISONS TO OTHER SEARCH HEURISTICS  

In this set of experiments the GA was compared to three other search heuristics: modified 

hill-climbing, simulated annealing, and the steady-state GA. Each heuristic was tested with and 

without CFs incorporated into the goal analysis. Without CFs the search space becomes more 

step-like and discrete, so it would be interesting to see how the searches fare in each condition. 

The next three subsections introduce the heuristics. The results of the experiments along with a 

brief discussion are in section 3.4.4. 

 

3.4.1 MODIFIED HILL-CLIMBING 

Hill-climbing procedures work by generating a list of possible alterations, or moves, in a 

search space that can be reached from the current state, and selecting the move that brings the 
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state closest to a goal state. Hill-climbing is a very simple operation that only accepts a new state 

if it is closer to the goal state than the previous state. The drawback to this approach is that in 

complex search spaces with many peaks and valleys there is a risk of getting stuck in a local 

optimum. Hill-climbing is a relatively naive procedure compared to GAs and other evolutionary 

programming, but with minor modification it was found to be quite effective at finding good 

treatment schedules. 

The routine described here is a hill-climbing/GA hybrid system. First a population of 

solutions is created, just as in the main GA program, and fitness values are assigned. The most fit 

individual in the population, Ig is selected as the starting point for the hill-climber. Now begins 

the recursive part of the program. A new population, analogous to the list of legal moves in a 

regular hill-climbing algorithm, is created by mutating Ig repeatedly. The most favorable of the 

mutations is selected as the new state of the system, Ig+1. This is repeated for some set number of 

generations, just as in a GA.  

This hybrid system differs from a regular hill-climbing procedure in an important respect. 

Instead of modifying the current state along a single dimension and moving into a new state if 

the modification results in a higher fitness, entire plans are subjected to the same mutation 

operation used by the baseline GA program. Although the majority of mutations result in small 

phenotypic changes to treatment schedules, multiple allele mutations are a statistical possibility 

even with a low mutation rate because the operation is performed on an allele-by-allele basis. A 

significant mutation may actually represent a substantive leap in the topography of the search 

space, thereby allowing the procedure to escape the local optimums that would entrap a simple 

hill-climbing routine.  
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3.4.2 SIMULATED ANNEALING 

Simulated annealing (SA) is generalization of the Metropolis Monte Carlo method for 

evaluating the states of a thermodynamic system. A simple Monte Carlo simulation is a system 

that samples a search space by randomly choosing different parameters. The results of such 

sampling provide information about the space.  

In a Metropolis Monte Carlo simulation new points in the search space are sampled by 

making minor changes to the current state of the system. In a thermodynamic system with energy 

E and temperature T, if a modification is favorable (negative energy change) the change is 

accepted, otherwise it may be accepted with a probability given by the Bolzmann factor exp –

(dE/T) (Metropolis et al. as cited in Luke, 2005).   

Simulated annealing applies the methodology of a Metropolis Monte Carlo simulation to 

find the most stable orientation of a system (Kirkpatrick et al. as cited in Luke, 2005). The 

inspiration for SA is the procedure used in making glass and metals from a melt. At the highest 

temperatures the molecules in the glass move about relatively easily. As the glass cools the 

molecules stabilize. If the melt cools slowly the glass adopts a stable orientation, but if cooling 

occurs too quickly or the initial temperature is too low, defects may occur. By analogy, SA 

perturbs the current solution to a problem according to a “cooling schedule”. Early in the process 

large disturbances are permitted for broader search. As the system “cools” changes become less 

severe and the search becomes focused on an ever smaller region of the search space. 

 An SA algorithm was implemented and tested against the other methods described in 

this section. The population corresponds to a collection of individuals around a single 

point.  With the first generation, the best individual is saved. With subsequent generations, the 

best individual is compared to the stored individual.  If the best individual is better than the 
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stored individual, the new individual takes the stored individual's place. If it is inferior, then it is 

selected with a probability P defined by the SA's cooling function. The equation for determining 

P is: 

 

P = e (- ( 1 – ( ∆f / F )) / T ) 

 

where F is the fitness of the stored individual, T is the current temperature, and ∆f is the 

difference in fitness between the new and the stored individuals. The constant e is approximated 

as 2.72.  

 After P is determined and the stored individual has been updated, a new set of states or 

moves in the search space are generated and the temperature is decremented. The cooling 

schedule decreases the temperature by a step size defined as 1/MAX, where MAX is the number 

of generations given for the search. Consistent with the GA, the SA search was allowed 40 

generations to converge. The initial temperature T was set to 1. The hill-climbing algorithm 

described in the previous subsection is equivalent to an SA search with T initialized to 0.  

 

3.4.3 STEADY-STATE GA 

The steady-state GA (SSGA) is a variation on standard generational GAs (GGA). Instead 

of successively spawning new generations from the most fit members of a population, SSGAs 

continually improve the composition of a single population by replacing the least fit members of 

the population with the offspring of fit individuals. The SSGA tested here repeats its crossover 

operation until new offspring have fitness values greater than or equal to the parent 

chromosomes, providing additional selection pressure. 
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Chafekar, Xuan, and Rasheed (2004) suggested that SSGAs may be more practical than 

conventional GAs in situations where determining the fitness of an individual is computationally 

expensive. In standard GAs a newly formed population will often contain many of the same 

individuals as the previous population, and the fitness of those individuals will be recomputed 

multiple times unless special programming steps are taken. SSGAs spend less time computing 

fitness values than regular GAs because only newly created individuals are evaluated. In the 

present study a GGA approach was selected at the outset because determining fitness is fairly 

straightforward, but a simple SSGA was tested for comparison. 

The SSGA was run over 450 cycles. This cutoff point is admittedly somewhat arbitrary, 

but it appeared to be sufficient for convergence to take place. Other parameters, where applicable, 

were set to the default values. 

 

3.4.4 COMPARISON OF SEARCH HEURISTICS: RESULTS 

On the comparison of search heuristics without CFs, the choice of search technique was 

significant with p < 0.001. The best fitness values found for each stand number and search 

heuristic pairing were averaged over the 10 trials to produce the results shown in Table 3.5. 

Figure 3.4 presents the same information graphically. 

 Results on the GGA condition were not significantly different from the SSGA condition 

(p = 0.205; p > 0.05). However, the GGA was significantly better than the hill-climbing (HC) 

search (p < 0.001) and SA (p < 0.001).  
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Table 3.5: Comparison of search heuristics without CFs. 
Stand GGA SSGA HC SA 

1 14 13.2 9.7 11.3 
2 11.7 12.1 10.4 11.3 
3 9.1 11.2 7.5 8.8 
4 14.1 13.7 12.5 13.5 
5 14.4 13.6 12.8 13.7 
6 14.9 14.4 12.6 14.7 
7 14.1 13.7 12 13.2 
8 13.4 12.3 11 12.6 
9 12.5 11.7 10.2 9.1 

10 12.7 11.7 9.1 11.7 
All stands 130.9 127.6 107.8 119.9 
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Figure 3.4: Comparison of search heuristics without CFs. 

 

On the comparison of search heuristics with CFs, the search technique used was also 

significant with a p-value less than 0.001. Just as before, averaging the results from all 10 trials 

shows that the hill-climbing procedure performed the worst while the GGA turned in the best 
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performance. Table 3.6 shows the best fitness on each condition by stand number. Figure 3.5 

presents the same information graphically. 

Results on the GGA condition were not significantly different from the SSGA condition 

(p = 0.066; p > 0.05). However, the GGA performed significantly better than the HC (p < 0.001) 

and SA (p = 0.002; p < 0.05) conditions.  

Essentially the relative search powers of the heuristics were the same whether or not CFs 

were taken into account. The important point is that the GGA performed as well or better than 

the other methods under both conditions.  

 

Table 3.6: Comparison of search heuristics with CFs. 
Stand GGA SSGA HC SA 

1 15.22 14.36 12.72 13.02 
2 13.78 13.4 12.98 13.26 
3 11.1 12.06 10.32 9.7 
4 15.04 14.86 14.32 15.08 
5 15.18 14.7 14.14 14.92 
6 15.2 15.04 14.72 15.2 
7 15.12 14.72 14.14 14.7 
8 14.6 14.1 13.04 14.52 
9 13.5 12.36 10.84 11.04 

10 13.32 12.86 10.94 12.46 
All stands 142.06 138.46 128.16 133.9 
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Figure 3.5: Comparison of search heuristics with CFs. 

 

3.5 COMPARING THE GA TO A DOMAIN EXPERT 

Lastly plans evolved with the GA were compared to a treatment schedule recommended 

by a human expert. The expert is a forester who has worked on the NED-2 project and is familiar 

with the goals and underlying DFCs used by the GA’s fitness function. This helped to control for 

the possibility that the expert might develop a plan based on different values or criteria than the 

computer generated plans.  

 

3.5.1 GA VS. FORESTRY EXPERT: OVERVIEW AND METHODS 

The expert developed a treatment schedule for the Bent Creek experimental forest 

management unit located near Ashville, North Carolina. A planning period of 40 years beginning 

in the year 2005 was agreed on, with 5 year intervals between treatments. Because of the 
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difficulty of designing a long term plan with multiple and possibly incompatible objectives, the 

expert designed a plan for one goal only, periodic income. The periodic income goal emphasizes 

long-term and sustainable timber production.  

At this point in the project it became necessary to reevaluate the DFCs when the domain 

expert pointed out deficiencies in the existing rules. In previous experiments goals were defined 

entirely in terms of stand-level DFCs, with the implicit assumption that management-level goals 

could be satisfied by independently optimizing each stand in the management unit. From a 

designer’s perspective this is an appealing idea because it reduces the complexity of 

chromosome representations. Instead of representing plans for multiple diverse stands, each 

chromosome need only represent a plan for one stand. Unfortunately this approach fails for 

management unit-level goals involving relationships among stands in the unit. For example, if a 

forest manager is interested in promoting an uneven aged forest with trees of many different 

sizes, she will need to consider the age and height of trees in each stand compared to other stands 

in the management unit.  

The omission of management unit-level DFCs for timber goals does not invalidate the 

preceding experiments as measures of the effectiveness of various search parameters, but in 

order to realistically compare the performance of the GA to a human expert’s plan the DFCs for 

periodic income were expanded to include size class data from multiple stands. This new 

requirement is a management unit DFC, distinct from the stand DFCs listed in the appendix. A 

size class is simply a label for a range of DBH values. For example, a “sapling” is a tree with a 

DBH between one and four inches. The management unit DFCs for periodic income, shown in 

Figure 3.6, tests the percent of the basal area in a management unit accounted for by each size 

class. The rule was taken from NED-1, the predecessor of NED-2. 
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· Percent of area in regeneration >= 5 and <= 10; and 

· Percent of area in sapling + Percent of area in pole >= 35 and <=45; and 

· Percent of area in small sawtimber >= 25 and <= 35; and 

· Percent of area in large sawtimber >= 10 and <= 15; and 

· At least 65% of Management Unit Area satisfies the stand DFCs 

 

Figure 3.6: NED-1 management unit DFC for periodic income. 

 

A simple modification of the GA was developed for this experiment that represents 

individuals as management unit-level plans. Chromosomes in this GA contain a plan for each 

stand in the management unit. Crossover between individuals is limited to corresponding stands. 

Put another way, if a management unit plan includes plans for Stand A and Stand B, when 

crossover occurs between it and another individual the sections corresponding to Stand A 

crossover independently of the sections corresponding to Stand B. This measure was taken to 

help guide and constrain search, because plans for different stands are likely to be very different 

and crossovers between stands may be overly disruptive.  

In other respects the management unit GA works very much like the normal version. The 

fitness of a management unit-level plan is computed by adding the fitness values assigned to 

each stand-level plan (computed in the usual way), and then adding a special bonus score if the 

management unit has balanced size classes. The last condition of the NED-1 rule, which requires 

that 65% of the area satisfies the stand DFCs, was judged to be redundant and left out of the GA. 

The reasoning behind this decision is that stand-level plans are already assigned fitness values 

for satisfying stand DFCs, and these values are part of the calculation that determines the fitness 
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of the management unit-level plan. Therefore, plans in which many stands satisfy their DFCs 

will already be assigned higher fitness values, and do not need to be rewarded twice. 

The human expert devised a treatment schedule with a focus on creating a more favorable 

size-class distribution in the management unit. Bent Creek is a very even-aged and even-sized 

forest, which is undesirable for a periodic income treatment regime. The expert noted that much 

of the management unit comprises yellow poplar and oak stands, and devised a treatment 

schedule to balance size structures with a secondary concern of getting high value species back 

in the regenerated stands (Rauscher, personal communication, June 11, 2005). Yellow poplar 

stands were clearcut once during the 40 year planning horizon, and oak stands reduced to a basal 

area of 60 square feet followed by a clear cut 15 years later. The timing of these treatments was 

distributed so that, for example, not all the yellow poplar stands were clearcut in the same year. 

With 65 stands over 6140 acres, Bent Creek is a much larger management unit that those 

tested in the other experiments. Nevertheless, it was informally observed during debugging that 

the GA performed as well or nearly so with a smaller population size than the size 50 used in 

previous experiments, so the expert’s plan was compared to the new management unit-level 

generational GA using a population size of 40. The cycle length was set to 5, with 9 treatment 

intervals beginning in 2005 and ending in 2045. The rest of the variable parameters were left at 

their default values.  

In order to test the expert’s plan in the same environment as the GA, the plan was first 

entered into the NED-2 planning interface and simulated. This was necessary to generate FVS 

keyword files for the plan because it was described in terms of NED-2 treatments. The keyword 

files created by NED-2 routines were then copied to the GA directory, and the expert plan was 

evaluated by the GA fitness function. To be safe, the expert and GA plans were also compared 
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by evaluating total removals in terms of merchantable cubic foot volume, sawlog cubic foot 

volume, and sawlog board foot volume, as well as the amount of harvestable timber left in 

reserve at the end of the plans. These data were retrieved from the summary statistics table in the 

FVS *.out file. 

Initially the expert’s plan fared suspiciously poorly on the GA fitness function. Following 

a lengthy investigation the problem was traced to the way in which tree class codes were used to 

calculate volumes of commercially viable timber in a stand. Tree records are assigned a “1”, “2”, 

or “3” to indicate that they represent high value, commercially viable, or noncommercial stock 

respectively. Until this point in the experiments the GA had always relied on FVS to provide 

these codes. NED-2 provides an alternative means of assigning tree class codes. Each 

management unit database contains a list of tree species native to the region and their associated 

values. The tree class codes in the NED-2 databases are more particular to each management unit 

and therefore probably more accurate. The expert’s plan achieved a more reasonable level of 

success when tested with the NED-2 tree class codes. The GA was also re-tested with the new 

codes.  

 

3.5.2 GA VS. FORESTRY EXPERT: RESULTS AND DISCUSSION 

After running the GA several times a representative sample was chosen to compare to the 

expert’s plan. Neither the best plan evolved with the GA nor the expert’s plan resulted in 

balanced size classes by 2045. Therefore neither plan satisfied the management unit-level DFCs 

for the periodic income goal. This can be attributed to the very even-aged and even-sized starting 

conditions of the Bent Creek forest. In terms of stand-level DFCs, the fitness function gave the 

best solution found by the GA a score of 324.6 while the expert’s plan scored 280.8.  
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The plans were also evaluated by comparing harvest volumes for three categories of 

timber product: merchantable cubic-foot volume, sawlog cubic-foot volume, and sawlog board-

foot volume. The harvest volumes were extracted from the FVS summary output files (*.sum). 

Tables 3.7 and 3.8 show harvest volumes by year for each plan across the whole management 

unit, while Tables B.1 and B.2 in Appendix B show harvest volumes by stand number and also 

provide estimates of unharvested volumes remaining in each stand at the end of the planning 

horizon.  

The plan discovered by the GA resulted in a higher volume for all three categories of 

timber product compared to the expert’s plan, while the expert’s plan left more harvestable 

timber in reserve at the end of the plan. The GA was also somewhat more consistent in the 

volume of harvest by year, as determined by measuring the variance within each product column 

over the course of the plans.  

 

Table 3.7: Timber removals by year under forestry expert’s plan. 
  Product 
Year merch cu ft sawlg cu ft sawlg bd ft 

2005 11803 10970 60593
2010 7974 7276 41075
2015 6781 6041 32942
2020 17183 15370 80386
2025 25530 24746 137573
2030 7813 6738 35654
2035 20973 19484 105363
2040 6274 5754 31260
2045 30753 29115 159360

All Years 135084 125494 684206
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Table 3.8: Timber removals by year under GA plan. 
 Product 
Year merch cu ft sawlg cu ft sawlg bd ft 

2005 37385 28906 153083
2010 29499 21036 109360
2015 30110 21143 114553
2020 33018 27273 154941
2025 27702 22522 120232
2030 22935 17758 111579
2035 26926 21204 118194
2040 13384 10159 56225
2045 9342 7025 42058

All Years 230301 177026 980225
 

 

An important caveat to this experiment is that the model of forest regeneration provided 

with FVS is very rudimentary. This means that certain assumptions made by the expert regarding 

the course of regeneration following treatments could be correct in reality, but not be modeled by 

FVS. As such it should be expected that the expert’s treatment would underperform in simulation. 

By contrast, the GA is only as good as its regeneration model. The GA could be upgraded to run 

other forest growth simulators fairly easily, indicating a possible future avenue for research. 

Another limitation to the evaluation methods described here is the lack of an economic 

model for determining the cost of thinning treatments. Going on raw harvest volumes and stand 

DFCs alone, the GA appears to surpass the human expert. However, the plan recommended by 

the GA involves a greater number of treatments than the expert’s plan. Clearly, if the goal of a 

treatment regimen is periodic and sustainable income from timber, the costs associated with 

performing the treatments need to be outweighed by the profits. At this time of writing, the 

means for making this determination were not available and therefore not a part of the fitness 

function’s calculations. This would be a desirable addition in any future iterations of the GA 

program. 
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CHAPTER 4 

PRESENTING RESULTS 

 

Following optimization of each stand, an html report is created using data from the last 

generation of plans. The report contains a table listing every phenotypically unique management 

alternative discovered by the GA. Columns represent treatment cycles. Data pertaining to each 

plan are contained in two rows. The rows labeled “Treatment” contain the plan prescriptions 

themselves, and the rows underneath show which goals were satisfied during each cycle of the 

plan. If two or more plans satisfy the same goals in the same treatment intervals, only one 

appears in the table. Therefore each plan represents a distinct management alternative. 

Presentation is further simplified by predicates that replace treatments interpreted as doing 

nothing or clearcutting in the table with the words “grow” and “clearcut” respectively. 
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Figure 4.1: Example of HTML stand report. 
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CHAPTER 5 

PROGRAM EXECUTION 

 

This section briefly describes the execution of the main generational GA program, which 

optimizes stands independently. The program is too large to describe in precise detail, but 

descriptions are provided for the most important predicates and presented in the general order by 

which they are called when the program is run. All code for the GA is implemented with LPA 

WIN-Prolog 4300. 

Before the GA program begins there are several one-place predicates defining general 

parameters that may be adjusted. The predicate database/1 tells the program which directory to 

look in for tree inventory input data (*.tin) and computed variable data (*.pl) files. These files 

are necessary to create the keyword file needed by FVS to run simulations and must be generated 

before executing the GA using the NED-2 predicate mdb2fvs/0. Glende (2004) describes the 

operation of this predicate in detail. Figure 5.1 provides an overview of dataflow in the GA. 
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Figure 5.1: Dataflow in the GA. 

 

Other initialization parameters tell the program which stands from the database to 

simulate (stand_list/1), how large the population should be (population_size/1), how many 

generations to run (max_generation/1), the probability of mutation (mutation/1) crossover rate 

(crossover_rate/1), the type of fitness function (ff_type/1), the selection method (selection/1), 

the number and length of treatment cycles in a treatment schedule (fvs_number_cycles/1 and 

fvs_cycle_length/1), the number of most fit individuals to carry forward automatically 

(elitism/1), and whether or not to enforce genotypic uniqueness 

(enforce_genotypic_uniqueness/1). 
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When the parameters are set to the desired values and the program is compiled, the user 

is prompted to begin by typing “go.” The go/0 predicate begins execution of the program. First 

the program loads needed files and tree inventory data whose location is specified by the 

database/1 parameter. A windows dialog box is created that will continue to be updated over the 

course of the GA run, displaying the current individual number being processed, the current 

generation number, the best solution found so far (for the current generation), the worst fitness, 

and mean fitness and the standard deviation, as shown in Figure 5.2. Some of this information 

may not be available or applicable to all variations of the GA program. The user may exit the 

program at any time by clicking the ‘Abort’ button.  

 

 
Figure 5.2: GA Status dialog box. 

 

Next the program enters the recursive predicate mu_loop/4, which performs GA 

optimization on each stand in stand_list/1 one by one. First the init/0 predicate is queried, which 
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cleans up old files left over from the optimization of any previous stands. Then the predicate 

new_mu_population/3 creates a random initial population from scratch for the current stand. 

Each individual plan is assigned an uninstantiated variable for its fitness and a unique number N, 

where N is an integer in the range from zero to the size of the population. Information about the 

starting population is asserted, and the run_generations/4 predicate is queried, which runs the 

GA for the given number of cycles. The run_generations/4 predicate is the recursive heart of 

the program and is shown in Figure 5.3. 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% A LOOP TO RUN THE GA FOR THE GIVEN NUMBER OF CYCLES.  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% At end, hide dialog.  
 
run_generations(AverageFitnessStack,BestFitnessStack,GeneDifferenceStack, 

UniqueStack) :- 
  
 % Stop if flag is set to 1,  
 switch(f, Stop),  
 Stop == 0, 
   
 % Get the population 

generation_data([CurrentPop, Stand, Snapshot, TreeFile, PopSize, 
Cycles]), 

  
 % Update generation number 
 generation(GOld),  
 GNew is GOld + 1,  
  
 % Initialize the best and worst fitness values   
 retractall(current_best(_,_, _)), 
 assert(current_best(0,0,0)), 
 retractall(current_worst(_,_, _)), 
 assert(current_worst(0,0,99999999)), 
 
 % Create a batch keyword file for the whole population 
 write_big_keyfile0(CurrentPop, Stand, Snapshot,TreeFile), 
 
 % Process one generation  
 run_generation(CurrentPop, Stand, Snapshot, TreeFile), 
 
 % Sort the population by fitness 
 findall( [IndFitness, IndNum, Indi, Parents],  
   member([IndFitness,  IndNum, Indi, Parents], CurrentPop), 
   IndListTemp), 
 sort(IndListTemp,IndList), 
 
  

% A test--get number of unique individuals in pop  
 findall(TP,member([_,_,TP,_],IndList),MyList), 
 sort(MyList,MySorted), 
 length(MySorted,Unique), 
  
 % A test--checks genotypic distance between 
 % best and worst plans in current pop 
 first_element(IndList,[_,_,WorstPlan,_]), 
 last_element(IndList,[BestFitness,_,BestPlan,_]), 
 list_distance(BestPlan,WorstPlan,DifferenceList), 
 sum(DifferenceList,Difference),  

Figure 5.3: The recursive predicate run_generations/4. 
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 % Compile a list of fitness values 
 findall(Val, member([Val,_, _,_],IndList), FitValList), 
  
 % Update statistics  
 update_stats(Cycles , FitValList), 
 update_dialog_alt(GNew, 1,FitValList), 
 current_mean(Avg), 
 
 % Create the next population/generation 
 generate_new_pop(IndList, FitValList, PopSize, PopTemp), 
 
 %Save the old population if specified 
 save_pop(CurrentPop),  
 
 % add uninstantiated fitness variables to new population 
 findall( [FitVal, IndNum,Ind,Parents2],  
   member([Ind,Parents2], PopTemp,IndNum),  
   NewPopulation),  
 !, 
 
 % if at end then stop,  
 ( 
 Cycles < 2,  
 last_pop(CurrentPop),  
 
 % set the stop flag to true 
 switch(f, 1), 
 
 % Print some data directly to the console (for diagnostic purposes) 

print_results([Avg|AverageFitnessStack],[BestFitness|BestFitnessStack
],[Difference|GeneDifferenceStack],[Unique|UniqueStack]), 

 ! 
; 

 % ..else run the next population.   
 
 NextCycle is Cycles -1, 
 
 % Assert the newly spawned generation as the current population 
 retractall(generation_data(_)), 

assert(generation_data([NewPopulation, Stand, Snapshot, 
TreeFile,PopSize, NextCycle])), 

 !, 
 
 % Recursive call to run_generations/4 

run_generations([Avg|AverageFitnessStack],[BestFitness|BestFitnessSta
ck],[Difference|GeneDifferenceStack],[Unique|UniqueStack]) 

 ). 
 
% At the end, hide the dialog box 
run_generations(_,_,_,_) :- 
 wshow(new_dialog, 0). 
 

Figure 5.3 (Cont): The recursive predicate run_generations/4. 
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The run_generations/4 predicate uses a switch/2 statement to loop until a counter that 

keeps track of the number of generations simulated so far reaches its stopping point. As long as 

the switch has not been triggered the program goes forward with processing the population for 

another generation. First a keyword file (*.key) defining the population in terms understandable 

by FVS is created with the write_big_keyfile/4 predicate. Writing a keyword file for the entire 

population allows the program to run in batch mode, performing all the simulations for a 

generation in one sweep. This saves times compared with starting and closing FVS separately for 

each individual in the population. After the keyword file is written run_generation/4 is queried, 

which simulates treatments in the population for a single generation.  

Inside of run_generation/4 the program gets input data from the tree data file (*.tin) and 

keyword file and runs the FVS simulation. The results for each stand are written to the tree list 

output file (*.out), with the stand number in the name for identification. The output files contain 

all the information necessary for evaluating the fitness of each treatment in the population. 

Before this happens however the data must undergo additional processing. Data from the output 

files is processed differently depending on which fitness function is selected. The baseline fitness 

function used in most of the testing uses the predicate process_output3/3 to read the batch data 

for each individual in the population recursively and calls dfc_fitness/3, which assigns fitness. 

Within the dfc_fitness/3 predicate, relevant tree data read from the tree list file is 

extracted. These data are the species code, trees per acre, DBH, and a code indicating the timber 

quality. The timber quality may be classified as cull (no timber value), regular, or high value. 

Other values needed in fitness calculations such as relative density and basal area are estimated 

from the DBH and basal area using formulas borrowed from expert knowledge incorporated into 

NED-2. The dfc_fitness_by_year/5 predicate gets the fitness for each treatment interval, or 
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cycle, while keeping a record of which goals were satisfied in each cycle. The goal analysis for 

each year is performed by a call to check_goals/3, which sums the values indicating the degrees 

with which the DFCs for each goal are satisfied. The fitness values from each treatment interval 

in a plan are summed to get the fitness of the entire plan.  

After every plan in the population has been assigned a fitness value generate_new_pop/4 

creates the next generation from the current population. First the number of “best” solutions to be 

automatically passed (N) on is instantiated with the elitism/1 predicate. Then, best_n/3 finds the 

best N solutions in the current population and puts them in a stack: This is the starting point for 

the new generation. The rest of the new population is filled in by checking the selection operator 

(selection_type/1) and applying it to select the best from the old population using Selection/5. 

Next the old population is saved if specified (save_pop/1), and uninstantiated fitness values are 

added to the new population. If there are no more cycles left to run, the GA changes a switch/2 

value that will cause the program to exit from the run_generations/4 segment and prints the 

results of the search to the console. Otherwise, the current generation data is asserted to working 

memory, the number of cycles left to run is decremented by 1, and the next generation is 

simulated by run_generations/4. 

When every stand has been optimized by run_generations/4, the program exits from 

mu_loop_aux/4 back into the mu_loop/4. If the GA has run its entire course the number of 

times specified by run_this_many_times/1, the program is finished. Figure 5.4 summarizes the 

control hierarchy of the most important predicates in an outline. 
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 mu_loop/4       Optimize fitness for each stand 

 run_generations/4       A loop to run the GA for a given # of cycles 
♦ write_big_keyfile0/4      Create keyword file for whole population 
♦ run_generation/4            Simulate treatments for one generation 

 fvs_run/4                        Simulate plans 
 process_output3/3         Assign fitness to plans 

♦ generate_new_pop/4      Create the next generation 
 best_n/3            Most fit plans advance automatically 
 rank/5                             Use rank-based selection  

Figure 5.4: GA predicate hierarchy. 
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CHAPTER 6 

CONCLUSION AND FUTURE DIRECTIONS 

 

In the current study the standard generational GA fared well against other heuristics such 

as simulated annealing and the steady state GA, and by most measures produced better results in 

simulation than a human expert’s recommendation. Promising results in the latter experiment 

must be qualified by noting a relative lack of sophistication in the FVS regeneration model 

compared to other models of forest growth. A further reservation involves the large number of 

relatively minor treatments recommended by the GA, compared to the smaller number of 

treatments in the expert’s plan. Although following a plan recommended by the GA would result 

in a steady flow of merchantable timber, the costs associated with actually performing the 

needed treatments was not factored into the fitness function. A more detailed economic model of 

the costs and gains associated with various treatments is still needed if this program is to serve a 

practical prescriptive function. 

Reservations aside, the GA approach to the problem of treatment prescription is 

promising for a couple of reasons. First, the search space (number of possible solutions) for a 

large management unit is too big to test every possibility in a reasonable amount of time. There 

may be general heuristics that could be helpful in making plans, but these would likely be of 

limited use because of geographic differences in forest types around the country. Using a GA is 

an attractive alternative to relying on exhaustive search techniques or general rules of thumb that 

may not always be applicable. Although GAs are not guaranteed to find optimal solutions (De 
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Jong, 1993), when the search space is sampled effectively they often find very good solutions 

and sometimes even the optimal solution (Goldberg 1989).  

Future developments of the GA may expand the goal analysis to include more non-timber 

goals and a realistic economic model.  Another limitation of the current program is the lack of a 

planting treatment. This could be important if, for example, the only way to satisfy a timber goal 

is to introduce a new, commercially valuable species to the stand. Current treatment definitions 

are also limited by the fact that they are applied to all species. Specifying that certain species 

should not be cut would complicate the representation of treatments, but more accurately reflect 

real life management options. 

Additional care also needs be taken to present the results of the GA search in terms easily 

understandable by someone unfamiliar with the inner workings of the program. Currently the 

HTML stand reports generated by the program display treatments as they are represented in the 

GA. These values could be easily transformed into values more comprehensible to a forest 

manager, such as the minimum and maximum DBH values of the trees to be cut, in the same way 

that they are interpreted by FVS before simulation. The incorporation of additional simulators as 

alternatives to FVS would also be a worthwhile addition to the program. With these 

improvements the GA could be a powerful and practical prescriptive tool. 
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APPENDIX A 

QUICK REFERENCE: GOALS AND DFCS 

 

Figures A-1 through A-5 contain descriptions of five management goals in terms of desired 

future conditions (DFCs). The goals are borrowed from NED-1 and -2 and re-implemented in the 

genetic algorithm program. The information in this appendix is also available in the NED-1 help 

file.  
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Focus on Periodic Income 
 

Goal Description 
 
The landowner desires to maximize periodic (or annual) income -- usually by favoring high-
value products. 
 
Desired Future Conditions (DFCs) 
 
To achieve this goal, the following DFCs must be met: 
 
Management unit level 
 
· Percent of area in regeneration >= 5 and <= 10; and 
· Percent of area in sapling + Percent of area in pole >= 35 and <=45; and 
· Percent of area in small sawtimber >= 25 and <= 35; and 
· Percent of area in large sawtimber >= 10 and <= 15; and 
· At least 65% of Management Unit Area satisfies the stand DFCs 
 

 
Stand level – The following table lists DFCs by Prescription forest type. 
 
 

Relative density Basal area 
Basal area of 

AGS 
  >= < >= < >= 

Allegheny hardwoods 60 100     30 
Appalachian hardwoods 60 100     30 
aspen - birch     60 140 30 
hemlock - hardwoods 60 100     30 
northern hardwoods 60 100     35 
oak - hickory 60 100     30 
oak - northern hardwoods 60 100     30 
spruce - fir     80 160 35 
spruce - hardwoods     80 140 35 
white pine 60 100     35 

Figure A-1: Focus on periodic income. 
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Focus on Cubic-Foot Production 
 

Goal Description 
 
The landowner desires to maximize cubic volume yield - usually to favor timber products such 
as pulpwood and other fiber products. 
 
Note:  In the Allegheny hardwoods forest type, the values of sawtimber products are so high that 
landowners may prefer to manage for board-foot production and use the cubic-foot by-products 
of thinnings to meet cubic-foot objectives. 
 
Desired Future Conditions (DFCs) 
 
To achieve this goal, the following DFCs must be met: 
 
Management unit level  
 
· Percent of area in regeneration >= 5 and <= 10; and 
· Percent of area in sapling + Percent of area in pole >= 35 and <=45; and 
· Percent of area in small sawtimber >= 25 and <= 35; and 
· Percent of area in large sawtimber >= 10 and <= 15; and 
· At least 65% of Management Unit Area satisfies the stand DFCs  
 
 
Stand level – The following table lists DFCs by Prescription forest type 
 
 

Relative density Basal area 
Basal area of 

AGS 
  >= < >= < >= 

Allegheny hardwoods 60 100     50 
Appalachian hardwoods 60 100     30 
aspen - birch     60 140 30 
hemlock - hardwoods 60 100     30 
northern hardwoods 60 100     35 
oak - hickory 60 100     30 
oak - northern hardwoods 60 100     30 
spruce - fir     80 140 35 
spruce - hardwoods     80 140 35 
white pine 60 100     35 

Figure A-2: Focus on cubic-foot production. 
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Focus on Board-Foot Production 
 
Goal Description 
 
The landowner desires to maximize board-volume yield -- usually to favor timber products such 
as sawtimber and veneer, or other high-value products. 
 
Desired Future Conditions (DFCs) 
 
To achieve this goal, the following DFCs must be met: 
 
Management unit level 
 
· Percent of area in regeneration >= 5 and <= 10; and 
· Percent of area in sapling + Percent of area in pole >= 35 and <=45; and 
· Percent of area in small sawtimber >= 25 and <= 35; and 
· Percent of area in large sawtimber >= 10 and <= 15; and 
· At least 65% of Management Unit Area satisfies the stand DFCs 
 
 
Stand level - The following table lists DFCs by Prescription forest type. 
 
 

Relative density Basal area Basal 
area of 
AGS 

% BA 
High 
value 
spp 

% BA 
comm 
spp 

  >= < >= < >= >= >= 
Allegheny hardwoods 60 100     30 25 85 
Appalachian 
hardwoods 60 100     30 25 85 
aspen - birch     60 140 30 25 85 
hemlock - hardwoods 60 100     30 25 85 
northern hardwoods 60 100     35 25 85 
oak - hickory 60 100     30 25 85 
oak - northern 
hardwoods 60 100     30 25 85 
spruce - fir     80 160 35 25 85 
spruce - hardwoods     80 140 35 25 85 
white pine 60 100     35 25 85 

Figure A-3: Focus on board-foot production. 
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Focus on Net Present Value 
 
Goal Description 
 
The landowner desires to maximize net present value -- treating the forest property in the same 
manner as any other investment.   
 
Desired Future Conditions (DFCs) 
 
To achieve this goal, the following DFCs must be met: 
 
Management unit level 
 
· Percent of area in regeneration >= 5 and <= 10; and 
· Percent of area in sapling + Percent of area in pole >= 35 and <=45; and 
· Percent of area in small sawtimber >= 25 and <= 35; and 
· Percent of area in large sawtimber >= 10 and <= 15; and 
· At least 65% of Management Unit Area satisfies the stand DFCs 
 
 
Stand level - The following table lists DFCs by Prescription forest type. 
 
 

Relative density Basal area Basal 
area of 
AGS 

% BA 
High 
value 
spp 

% BA 
comm 
spp 

  >= < >= < >= >= >= 
Allegheny hardwoods 60 100     30 25 85 
Appalachian 
hardwoods 60 100     30 25 85 
aspen - birch     60 140 30 25 85 
hemlock - hardwoods 60 100     30 25 85 
northern hardwoods 60 100     35 25 85 
oak - hickory 60 100     30 25 85 
oak - northern 
hardwoods 60 100     30 25 85 
spruce - fir     80 160 35 25 85 
spruce - hardwoods     80 140 35 25 85 
white pine 60 100     35 25 85 

Figure A-4: Focus on net present value. 
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Enhance Big Tree Appearance 
 
Goal Description 
 
The landowner desires to create or hasten the development of an old-growth or large tree 
appearance. 
 
Desired Future Conditions (DFCs) 
 
To achieve this goal, the following DFCs must be met: 
 
Stand level: 
 
· Stems per unit area in saplings <= 1000 Stems per acre in saplings; and 
· Number of big trees per unit area >= 30 trees per acre 
 
Figure A-5: Enhance big tree appearance. 
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APPENDIX B 

TIMBER REMOVALS BY STAND 

 

Tables B-1 and B-2 display volumes of timber removals by stand number on schedules 

recommended by a forestry expert and the genetic algorithm respectively. Timber volumes are 

listed for three categories: merchantable cubic foot volume, sawlog cubic foot volume, and 

sawlog board foot volume. 
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Table B-1: Timber removals by stand under forestry expert's plan. 
 Total Removals Timber remaining in 2046 
Stand merch cu ft sawlg cu ft sawlg bd ft merch cu ft sawlg cu ft sawlg bd ft 

0 0 0 0 4724 4002 20646
1 0 0 0 4796 4371 22415
2 5074 4171 21356 0 0 0
3 0 0 0 7955 7266 55597
4 0 0 0 7953 7264 55544
5 7626 7796 43636 0 0 0
6 0 0 0 5972 4615 23917
7 0 0 0 5344 4854 25335
8 0 0 0 4612 4011 21987
9 0 0 0 5324 2976 15845

10 0 0 0 4681 4186 22689
11 0 0 0 6771 4964 34735
12 0 0 0 5306 2952 15691
13 0 0 0 4804 4183 22217
14 0 0 0 6569 5752 27901
15 0 0 0 5157 2832 15254
16 6314 6453 35978 203 0 0
17 3180 2865 15607 2021 1860 10129
18 6689 6768 38521 78 0 0
19 5565 4734 26157 7 0 0
20 8353 7860 41108 0 0 0
21 4129 3461 18489 578 0 0
22 0 0 0 4102 3723 20612
23 3048 2750 15239 1932 1781 9862
24 3585 3146 16932 311 0 0
25 4664 3857 18955 0 0 0
26 4071 4195 24560 820 193 871
27 3136 2882 15089 225 0 0
28 0 0 0 4943 4276 22129
29 0 0 0 5927 5859 32645
30 0 0 0 5051 4251 22153
31 3970 3719 18702 502 0 0
32 2530 2301 12204 1764 1608 8538
33 0 0 0 5165 4654 25350
34 0 0 0 5943 5879 32809
35 3174 2859 15568 2021 1859 10119
36 2838 2471 13398 2305 2126 11614
37 0 0 0 4664 4245 22490
38 0 0 0 5938 5873 32759
39 0 0 0 4635 4176 22054
40 0 0 0 6976 5996 29795
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Table B-1 (Cont): Timber removals by stand under forestry expert's plan. 
 Total Removals Timber remaining in 2046 
Stand merch cu ft sawlg cu ft sawlg bd ft merch cu ft sawlg cu ft sawlg bd ft 

41 3181 2795 15348 2151 1935 10680
42 0 0 0 4640 4182 22102
43 2818 2452 13277 2299 2118 11554
44 0 0 0 5264 3804 20420
45 2836 2470 13388 2304 2125 11607
46 0 0 0 4643 4185 22124
47 4442 3942 23658 33 0 0
48 5918 5848 32555 0 0 0
49 6584 6674 36857 1533 0 0
50 0 0 0 4345 3956 20954
51 4484 3914 19907 0 0 0
52 2342 2108 11521 0 0 0
53 4580 4062 24198 154 0 0
54 3602 3237 17736 318 0 0
55 3841 3489 17875 255 0 0
56 4230 3769 19783 0 0 0
57 0 0 0 5908 5837 32457
58 0 0 0 5545 3793 17886
59 0 0 0 4650 4214 22291
60 8280 8446 46604 0 0 0
61 0 0 0 5194 4684 25572
62 0 0 0 5367 4882 25540
63 0 0 0 8368 7670 58205
64 0 0 0 5371 4887 25567

All Stands 261872 243256 1329492 391018 333819 1870107
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Table B-2: Timber removals by stand under GA plan. 
 Total Removals Timber remaining in 2046 
Stand merch cu ft sawlg cu ft sawlg bd ft merch cu ft sawlg cu ft sawlg bd ft 

0 2825 1882 9343 1236 1213 6830
1 2712 1789 8662 1626 1208 6885
2 3392 2708 13302 1656 1124 6226
3 7547 6857 48833 2283 2131 16556
4 8204 7481 55371 994 774 5501
5 6405 6399 34613 1775 1697 10353
6 4620 2003 10067 3198 493 2469
7 2272 1853 9100 3228 2992 15910
8 1070 252 1266 2859 2763 15862
9 3212 1848 9463 3064 16 89

10 1605 668 3304 3179 3077 17371
11 4645 1905 12141 1822 1724 15080
12 3801 1255 6534 747 329 1980
13 3489 2857 14950 1596 1225 6832
14 1177 239 1084 5391 5360 27075
15 1993 723 3892 2999 189 1109
16 2956 2913 15359 4186 4194 25885
17 4068 3257 17454 528 329 1989
18 848 823 4173 6306 6461 38383
19 4388 3652 20028 1438 1108 5630
20 7565 7146 36425 870 334 1525
21 3429 3006 15094 1652 1591 9375
22 2946 2200 12120 1142 981 5789
23 3984 3305 17962 591 535 3125
24 3076 2567 13683 1177 1072 6379
25 3597 2527 11926 1133 893 4810
26 4416 4335 25493 471 155 967
27 2127 1845 9516 1462 1369 7676
28 2642 1442 7025 1941 1546 8727
29 3785 2408 12910 2348 2400 14740
30 2872 2035 10142 2418 2266 12432
31 3348 3033 15682 1455 1018 5317
32 2473 1865 9191 1594 1571 8945
33 2320 1725 9312 2772 2606 14442
34 3011 2349 12183 3363 3349 19579
35 3084 2232 11878 1738 1702 9919
36 3475 2595 13938 964 638 3926
37 2599 1595 8182 1892 1793 9870
38 3346 3145 17712 2723 2692 14505
39 3296 2572 12990 569 131 724
40 1157 0 0 3628 3686 20355
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Table B-2 (Cont): Timber removals by stand under GA plan. 
 Total Removals Timber remaining in 2046 
Stand merch cu ft sawlg cu ft sawlg bd ft merch cu ft sawlg cu ft sawlg bd ft 

41 4236 3471 18469 358 156 761
42 3132 2528 13261 1366 1058 5830
43 4587 3796 20996 156 0 0
44 2635 578 2942 1916 1195 6892
45 3076 2273 11860 1157 731 4468
46 2174 1699 8611 2355 2286 12315
47 4093 3645 22393 840 541 3131
48 5447 5259 28185 324 309 1701
49 5591 5606 30487 1882 1516 9477
50 2806 2107 10746 1489 1252 7266
51 3618 2788 14207 533 234 1268
52 1811 1371 7158 2252 2152 12095
53 3848 3426 20074 1454 1427 8856
54 3830 3367 18771 372 322 1893
55 3371 2976 15137 919 746 3971
56 2783 2419 12314 2110 1929 10700
57 2424 1631 7878 3436 3464 20426
58 4924 205 966 1264 10 52
59 3919 3317 17227 519 452 2558
60 3723 3694 18828 5192 5347 31211
61 2378 1636 8467 2461 2106 12324
62 4438 3582 18083 242 0 0
63 7320 6992 53197 2993 2577 17001
64 4360 3369 17665 229 183 982

All Stands 431317 334984 1852952 208348 174705 1015554
 


