
Artificial Intelligence

Study Manual for the Comprehensive

Oral Examination

Hendrik Fischer
Formerly of:

Artificial Intelligence Center
The University of Georgia

Athens, Georgia 30602
henne@uga.edu

Vineet Khosla
Formerly of:

Artificial Intelligence Center
The University of Georgia

Athens, Georgia 30602
vinkhosla@gmail.com

Brian A. Smith
Artificial Intelligence Center
The University of Georgia

Athens, Georgia 30602
brian.allen.smith@gmail.com

2003 - 2005

Contents

1 General Remarks 1

2 Symbolic Programming - CSCI/ARTI 6540 1
2.1 Basics PROLOG . 1
2.2 Algorithms in PROLOG . 2
2.3 Algorithms in LISP . 3
2.4 Factorial . 4
2.5 Fibonacci . 4
2.6 Recursion . 5

2.6.1 Standard Recursion 5
2.6.2 Tail Recursion . 6

2.7 Other Examples . 6

3 Logic - CSCI(PHIL) 4550/6550, PHIL 6510 8
3.1 Definitions for Predicate Logic 8

3.1.1 Entailment |= . 8
3.1.2 Model Checking . 9
3.1.3 Decidability . 10
3.1.4 Unification . 10
3.1.5 Equivalence, Validity and Satisfiability 11

3.2 Inference Procedure . 11
3.2.1 Soundness or Truth Preservation 11
3.2.2 Completeness . 12
3.2.3 Types of Inference Procedures 13

3.3 Propositional or Boolean Logic 13
3.4 First-Order Logic . 14
3.5 Defeasible Logic . 15

3.5.1 Components . 15
3.5.2 Rule conflict . 16

3.6 Default Logic . 16
3.7 Sample derivations . 17

3.7.1 SD derivation . 17
3.7.2 PD derivation . 17

4 Artificial Intelligence - CSCI(PHIL) 4550/6550 18
4.1 Overview . 18

4.1.1 What is AI? . 18
4.1.2 Strong AI vs. Weak AI 19

2

4.1.3 Strong methods v. Weak methods 19
4.1.4 Turing Test . 19
4.1.5 Chinese Room Experiment 20
4.1.6 Mind-Body Problem 21
4.1.7 Frame Problem . 21
4.1.8 Problem-Solving . 21

4.2 Search . 22
4.2.1 Overview . 22
4.2.2 Uninformed Search . 22
4.2.3 Informed (Heuristic) Search 24
4.2.4 Adversarial Search (Game Playing) 26
4.2.5 Constraint Satisfaction Problems 27
4.2.6 Other . 28

4.3 Logic . 28
4.3.1 Logical Agents . 28
4.3.2 Wumpus World . 29
4.3.3 Model Checking . 29
4.3.4 Horn Clauses . 29
4.3.5 Knowledge-Base . 30
4.3.6 Forward- and Backward-Chaining 30
4.3.7 Resolution . 30

4.4 Intelligent Agents . 31
4.4.1 Simple Reflex Agents 31
4.4.2 Model-Based Agents 31
4.4.3 Goal-Based Agents . 31
4.4.4 Utility-Based Agents 32
4.4.5 Learning Agents . 32
4.4.6 Ideal Rational Agents 32
4.4.7 Environments . 32

4.5 Planning . 33
4.5.1 Overview . 33
4.5.2 Search vs. Planning 33
4.5.3 Planning as Search . 34
4.5.4 Partial-Order Planning 34
4.5.5 STRIPS . 35

5 Expert Systems - CSCI 8050 35
5.1 Overview . 35

5.1.1 What Are Expert Systems? 35
5.1.2 Components of an Expert System 37

3

5.1.3 Deep vs. Shallow Expert Systems 37
5.1.4 Why and When Using Expert Systems? 38

5.2 Symbolic Computation . 38
5.3 Rule-Based Systems . 39

5.3.1 Production Systems 39
5.3.2 Conflict Resolution . 40
5.3.3 Forward vs. Backward Chaining 41

5.4 Turing Machines - Computational Power and Expressiveness 41
5.4.1 Time Complexity . 41

5.5 Dealing With Uncertainty . 42
5.5.1 MYCIN-Style Certainty Factors 42
5.5.2 Fuzzy Sets (Possibility Theory) 44
5.5.3 Conditional Probabilities (Bayesian) 44
5.5.4 Dempster-Shafer . 44

5.6 Knowledge Representation . 45
5.6.1 Frames . 45
5.6.2 Semantic Networks / Associative Nets 46
5.6.3 Ontologies . 46
5.6.4 Belief Revision / Truth Maintenance Systems 46

5.7 Knowledge Acquisition . 47
5.8 Case-Based Reasoning . 48
5.9 Explanation . 48
5.10 Famous Problems . 48

5.10.1 Monty-Hall Problem 48
5.10.2 3 Glasses of Water . 49

5.11 Intelligent Information Systems 49
5.11.1 Blackboard Architecture 49
5.11.2 Intelligent Software Agents 50
5.11.3 Data Warehousing . 50
5.11.4 Active Database . 50
5.11.5 Data Mining . 50

6 Genetic Algorithms - CSCI(ENGR) 8940, CSCI(ARTI) 8950 51
6.1 Overview . 51

6.1.1 What is a Genetic Algorithm 51
6.1.2 Components of a Genetic Algorithm 51
6.1.3 Why Using Genetic Algorithms? 51
6.1.4 No Free Lunch Theorem 51
6.1.5 Intractable Problems 52

6.2 Fundamentals . 52

4

6.2.1 Theory of Evolution - Survival of the Fittest 52
6.2.2 Schemata . 52
6.2.3 Building-Block Hypothesis 53
6.2.4 Implicit Parallelism 53
6.2.5 Importance of Diversity 53
6.2.6 Premature Convergence 54
6.2.7 Exponential Growth of “Good” Solutions 54
6.2.8 Deception . 54
6.2.9 Baldwin Effect . 55

6.3 Genetic Operators . 55
6.3.1 Chromosome Representation 55
6.3.2 Population . 55
6.3.3 Selection . 55
6.3.4 Crossover . 55
6.3.5 Mutation . 56

6.4 Advanced Genetic Algorithms 56
6.4.1 Elitism . 56
6.4.2 Seeding . 56
6.4.3 Hill Climbing / Steepest Ascent 56
6.4.4 Taboo Search . 56
6.4.5 Simulated Annealing 56

6.5 Other Evolutionary Strategies 57
6.5.1 Genetic Programming 57
6.5.2 Evolutionary Programming 57
6.5.3 Evolutionary Strategies 58
6.5.4 Swarm Intelligence . 58

7 Neural Networks - CSCI(ENGR) 8940, CSCI(ARTI) 8950 58
7.1 Overview . 58

7.1.1 What is a (Artificial) Neural Network? 58
7.1.2 Components of a Neural Network 58
7.1.3 Why Using Neural Networks? 59

7.2 Fundamentals . 59
7.2.1 Concept of a Perceptron 59
7.2.2 Inductive Bias . 59
7.2.3 Learning From Example 59
7.2.4 Noisy Data . 60
7.2.5 Overfitting . 61

7.3 Structure . 61
7.3.1 Layers . 61

5

7.3.2 Net Input . 61
7.3.3 Activation Function 61

7.4 Types of ANN (Supervised Learning) 61
7.4.1 Feed-Forward NN . 61
7.4.2 Backpropagation NN 61
7.4.3 Functional Link NN 62
7.4.4 Product Unit NN . 62
7.4.5 Simple Recurrent NN 62
7.4.6 Time Delay NN . 62

7.5 Hidden Units - What Are They Good For? 62
7.6 Unsupervised Learning . 62

7.6.1 Self-Organizing Maps 62

8 Machine Learning - CSCI(ARTI) 8950 62
8.1 Overview . 62

8.1.1 What is (Machine) Learning? 62
8.2 Concept Learning . 63

8.2.1 Inductive Learning Hypothesis 63
8.2.2 Concept Learning As Search 63
8.2.3 General-To-Specific Ordering of the Hypothesis Space 63
8.2.4 Find-S Algorithm . 63
8.2.5 Version Space . 64
8.2.6 Candidate Elimination 64
8.2.7 Inductive Bias . 64
8.2.8 Futility of Bias-Free Learning 64

8.3 Decision Trees . 64
8.3.1 Why prefer short hypotheses? 65
8.3.2 Overfitting . 65
8.3.3 Entropy and Information Gain 65

8.4 Bayesian Learning . 66
8.4.1 Bayes’ Rule . 66
8.4.2 Bayes Optimal Classifier 67
8.4.3 Gibbs Classifier . 67
8.4.4 Naive Bayes Classifier 67

9 Philosophy of Language PHIL(LING) 4300/6300 68

10 Fuzzy Logic - CSCI(ENGR) 8940 71
10.1 Overview . 71

10.1.1 What is Fuzzy Logic? 71

6

10.1.2 Components of Fuzzy Logic 71
10.1.3 Why Using Fuzzy Logic? 71

10.2 Fuzzy Systems . 71
10.2.1 Fuzzy Sets / Membership Functions 71

10.3 Fuzzy Inference . 72
10.4 Fuzzy Controllers . 72

10.4.1 Mamdani . 72
10.4.2 Sugeno . 73

11 Knowledge Representation - PSYC 8290 73

12 Decision Support Systems 75

13 Rapid Application Development 76

14 Advanced Data Management (XML) 77

15 Actual Questions 77

Abstract

Most of this guide is written by Hendrik except for few sections
written by Vineet. You are free to use this guide and make changes to
it. The LATEX source file can be obtained by emailing either author.
We are not going to charge anything but a few beers would be nice :)
Best of Luck !

1 General Remarks

1. Be able to write short programs in PROLOG and LISP

2. Explain different programming concepts like tail recursion, recursion
vs. iteration, working with lists (cdr/cad)

3. You won’t have to formally prove any equations or formulas

4. Have examples ready for everything (e.g. a known toy problem to be
solved by a PROLOG program)

5. Explain soundness and completeness and that kind of stuff about logic

6. What is Occam’s Razor?

2 Symbolic Programming - CSCI/ARTI 6540

2.1 Basics PROLOG

Ques 1. What are the four terms of Prolog?
Atom = begin with lower case and includes all predicates.
Structures = atom (arg1, arg2, ... , argN).
Variables = begin with uppercase or underscore.
Numbers
Ques 2. What isNegation by Failure?
We cannot have true logical negation in Prolog because a Prolog is based
on Horn Clause logic and in Horn clause we can have atmost one positive
literal. Since we cannot state a negative fact, we instead try to get the
positive fact to fail, hence having negation by failure.
Ques 3. What is the difference between a red cut and a green cut?
A green cut does not alter the output of the program but makes it more
efficient. Red cut alters the possible output of the program.
Ques 4. What are the advantages of using Prolog over other languages?

1

Inbuilt inference engine.
Can allocate memory dynamically.
Can modify itself.

2.2 Algorithms in PROLOG

Subset of FOL - restricted to Horn Clauses
Inference by resolution theorem proving
Unification
Depth-First-Search
Backward-Chaining Approach

Resolution is semi-decidable for FOL:
KB = {P (f(x)) → P (x)} and let’s say we’re trying to prove P (a). Resolu-
tion refutation assumes the negated goal -∼ P (a) and from∼ P (f(x))∨P (x)
we can derive P (f(a)) by substituting a for x. But then we can go on and
resolve again to get P (f(f(a))) etc.
Does this contradict the claim that resolution refutation is complete? NO
- because completeness states that any sentence Q that can be derived by
resolution from a set of premises P must be entailed by P . If it is not en-
tailed by P , then we might no be able to prove that!

Propositional calculus is decidable.

Horn Clause: a clause (disjunction of literals) with at most one positive
literal (in Prolog: q :- p1, p2, . . . , pn stands for the Horn Clause q∨ ∼ p1∨ ∼
p2 ∨ . . .∨ ∼ pn

Prolog syntax is based on Horn clauses, which have the form of p1, p2, . . . , pn →
q. In Prolog, this is mapped to an “if-then”-clause:
q :- p1, p2, . . . , pn (q, if p1 and p2 and . . .)
This can be viewed as a procedure: (1) A goal literal matches (unifies) with
q; (2) The tail of the clause p1 . . . pn is instantiated with the substitution of
values for variables (unifiers) derived from this match; (3) The instantiated
clauses serve as subgoals that invoke other procedures and so on.

Theorem-proving method of Prolog is resolution refutation (assume the
negated hypothesis and try to resolve the empty clause) - if you succeed,
then it’s safe to assert the hypothesis, otherwise not. Resolution simply
works on contradictory literals (e.g. not p,q,p stands for “if socrates is a
man (p) then he is mortal (q)” in CNF (p implies q becomes not p or q);

2

now if we assume that socrates is indeed a man, then by resolution, this
implies q).

If we have a goal q, then it might make sense to assert the negated goal
for resolution refutation, which is essentially proof by reductio.

This is a form of backward reasoning with sub-goaling: we assert the negated
goal and try to work backwards, unifying and resolving clauses until we get
to the empty clause, which allows us to claim that the Theory implies our
original hypothesis (by reductio).

Input = Query Q and a Logic Program P;
Output = "yes" if Q follows from P, "no" otherwise;

Initialize current goal set to {Q}
While(the current goal set is not empty) do

Choose a G from the current goal set (first)
Look for a suitable rule in the knowledge-base;
unify any variable if necessary to match rule;

G :- B1, B2, B3, ...
If (no such rule exists) EXIT
Else Replace G with B1, B2, B3...

If (current goal set is empty)
return NO.

Else
return YES. (plus all unifications of variables)

Cuts (!) in Prolog are NOT sound!

Prolog itself (even if not considering the “failure by negation” (\ +) and
the cut is NOT complete.

Prolog uses Linear Input Resolution (resolve axiom and goal, then axiom
and newly resolved subgoal, etc. + never resolve two axioms).

2.3 Algorithms in LISP

CDR yields rest of the list, CAR yields head of the list. Lisp programs are
S-expressions containing S-expressions. So basically, a LISP program is a

3

linked list processing linked lists.

2.4 Factorial

factorial(1,1).
factorial(N,Result) :- NewN is N-1,

factorial(NewN,NewResult),
Result is N * NewResult.

tail recursion:

factorial(N,Result) :- fact_iter(N,Result,1,1).
fact_iter(N,Result,N,Result) :- !.
fact_iter(N,Result,I,Temp) :- I < N,

NewI is I+1,
NewTemp is Temp * NewI,
fact_iter(N,Result,NewI,NewTemp).

(defun factorial (n)
(cond

((<= n 1) 1)
(* n (factorial (- n 1)))))

(defun fact_tail (n)
(fact_iter 1 1 n))

(defun fact_iter (result counter max)
(cond

((> counter max) result)
(T (fact_iter (* result counter) (+1 counter) max))))

2.5 Fibonacci

fib(1,1). fib(2,1).

fib(N,Result) :- N > 2,
N1 is N-1,
N2 is N-2,
fib(N1,F1),

4

fib(N2,F2),
Result is F1 + F2.

tail:

fibo(N,Result) :- fib_iter(N,Result,1,1,1).

fib_iter(N,Result,N,_,Result) :- !.

fib_iter(N,Result,I,F1,F2) :- I < N,
NewI is I+1,
NewF1 is F2,
NewF2 is F1+F2,
fib_iter(N,Result,NewI,NewF1,NewF2).

(defun fib (n)
(cond

((<= n 2) 1)
(+ (fib (- n 1)) (fib (- n 2)))))

(defun fib_tail (n)
(fib_iter 1 1 1 1 n))

(defun fib_iter (result counter f1 f2 max)
(cond

((> counter max) result)
(T (fib_iter (+ f1 f2) (+1 counter) f2 (+ f1 f2) max)))

2.6 Recursion

2.6.1 Standard Recursion

Program calls itself recursively from within the program. Uses a stack to
store intermediate states that “wait” for a result from a lower level. The
recursion goes down to a stopping condition, which returns a definite result
that is passed on to the next higher level until we reach the top level again.
The final result is computed along the way.

5

2.6.2 Tail Recursion

In tail recursion, the recursive call is the last call in the program and there
are no backtrack points. This allows us to build up the result while we’re
going down in the recursion until we hit the bottom level; along the way, we
compute the final result, such that it is available once we reach the stopping
condition. “Smart” compilers recognize tail recursion and stop the program
once we hit the bottom - but some compilers “bubble” the result up to the
top level before returning it.

2.7 Other Examples

% FLATTEN
(defun flatten (thelist)

(if
((null thelist) nil)
((atom thelist) (list thelist))
(t (append (flatten (car thelist)))
(flatten (cdr thelist)))))

% REVERSE
(defun myrev (thelist)

(if
((null thelist) nil)

(append (myrev (cdr thelist)) (list (car thelist))

% reverse function...reverses a list...non tail recursive
my_reverse([],[]).
my_reverse([Head|Tail],Result) :-

my_reverse(Tail,RevTail),
append(RevTail,[Head],Result).

% reverse function...reverses a list...tail recursive
fast_reverse(Orignal,Result):-

nonvar(Orignal),
fast_reverse_aux(Orignal,[],Result).

fast_reverse_aux([Head|Tail],Stack,Result) :-
fast_reverse_aux(Tail,[Head|Stack],Result).

6

fast_reverse_aux([],Result,Result).

% DELETE ELEMENT (Prolog)
del(X,[],[]) :- !.
del(X,[X|Tail],Tail1) :- !, del(X,Tail,Tail1).
del(X,[Y|Tail],[Y|Tail1]) :- del(X,Tail,Tail1).

% FLATTEN (Prolog)
flat([],[]). flat([Head|Tail],Result) :- is_list(Head),

flat(Head,FlatHead),
flat(Tail,FlatTail),
append(FlatHead,FlatTail,Result).

flat([Head|Tail],[Head|FlatTail]) :- \+(is_list(Head)),
flat(Tail,FlatTail).

% SET STUFF
% Union
union([],Set,Set).

union([Head|Tail],Set,Union) :- member(Head,Set),
union(Tail,Set,Union).

union([Head|Tail],Set,[Head|Union]) :- \+(member(Head,Set)),
union(Tail,Set,Union).

% PERMUTATION
permut([],[]).
permut([L|H],R):- permut(H,R1),add(L,R1,R).

add(X,L,[X|L]).
add(X,[L|H],[L|R]):- add(X,H,R).

% POWER SET (the set of all possible subsets)
power_set([],[]).

power_set([Head|Tail],Result) :-
power_set(Tail,TailResult),
power_set_aux(Head,TailResult,[],TempResult),
append(TailResult,TempResult,Result).

7

power_set_aux(Head,[S|T],Stack,Result) :-
is_list(S),
append([Head],S,R),
power_set_aux(Head,T,[R|Stack],Result).

power_set_aux(Head,[S|T],Stack,Result) :-
\+ is_list(S),
append([Head],[S],R),
power_set_aux(Head,T,[R|Stack],Result).

power_set_aux(X,[],Stack,[X|Stack]).

3 Logic - CSCI(PHIL) 4550/6550, PHIL 6510

3.1 Definitions for Predicate Logic

An atomic formula is a sentence letter or an n-place predicate, e.g. A or
Rabx.
A literal is an atomic formula or the negation of an atomic formula.
A clause is a disjunction of literals.
A unit clause is a disjunction with one disjunct / the same as a literal.
A negative clause is a clause with no positive literals.
A definite clause is a clause with exactly one positive literal.
A Horn clause is a clause with at most one positive literal.
An empty clause is a disjunction with no disjuncts.
A ground term is a term that contains no variables, e.g. a constant or
f((f(f(c)))).
A ground literal is a literal with no variables.
A ground clause is a clause with no variables / a disjunctions of ground
literals.

3.1.1 Entailment |=
A set of sentences A semantically entails a sentence B iff in every model in
which all sentences of A are true, B is also true or A |= B. That is, every
model of A is also a model of B.

A set of sentences A logically entails a sentence B means that “B can be

8

proven by A”. That is, B can be derived from A by applying the according
derivation steps (depends on the logic system used).

A set of sentences A truth-functionally entails a sentence B iff there is
no truth-value assignment (TVA) on which every member of A is true and
B is false.

Example: Wumpus world; Lets say that according to the KB, we know
that there’s a breeze in [2,1]. Hence possible models are: there is a pit in
[1,3] and [2,2], or [2,2] only or [1,3] only. Then α1 =“There is no pit in [1,2]”
is entailed by the KB, because in every model in which KB is true, α is also
true. If we consider α2 =“There is no pit in [2,2]”, then we can say that α2

is not entailed by the KB, because in some models in which the KB is true,
α2 is false. Hence the agent cannot conclude that there is no pit in [2,2],
nor can it conclude that there indeed IS a pit in [2,2]!

Entailment is only semi-decidable in FOL (i.e. we can show that sentences
follow from premises if they do, but we cannot always show it if they do not).

To check an entailment claim, we have to check if for every model for p
that it is also a model for q. This might be infeasible and that’s why we
use inference rules (derivations) to proof these claims (e.g. Modus Ponens,
Resolution, etc.)

3.1.2 Model Checking

m is called a model for a sentence α if α is true on m. In propositional logic,
a truth value assignment for a given sentence is an interpretation (similarly,
in FOL, an interpretation is a definition of all terms, predicates etc.). Now,
such an interpretation, or TVA, is a model for α iff α is true on that TVA.

Model Checking is a type of infernece algorithm which enumerate all
possible models to check if α is true for all models in which the knowledge-
base is true.

A model is generally a commitment to the truth of its components.

9

3.1.3 Decidability

Decidable
A set S is decidable iff there is an algorithm that determines for every input
if the input is in the set or not.
Decidable = recursive set (roughly speaking)
In terms of turing machine a set S is recursive iff there is a Turing machine
that for any input, halts and outputs 1 if the input is in S and halts and
outputs 0 if the input is not in S. It can always tell you if something is a
theorem and also if something is not a theorem.
A QUESTION is decidable, semi-decidable, or undecidable. A SET or a
FUNCTION is recursive, recursively enumerable, or neither. If a SET S is
recursive, then the QUESTION “Is x a member of S?” is decidable, etc.

Non-Decidable
A set S is non-decidable iff it is not decidable.

Semi-Decidable
A set S is semi-decidable iff there is an algorithm that determines for every
input if the input is in the set, but can’t determine if an input is not in the
set.
Semi-Decidable=recursive enumerable. (roughly speaking)
In terms of Turing machine a set S is recursive enumerable iff there is a
Turing machine that for any input halt and outputs 1 if the input is in S
and runs forever if the input is not in S. It can always tell you if something
is a theorem, but not that something is not a theorem.

???: Is the set of semi-decidable problems a subset of the non-decidable
problems?

3.1.4 Unification

Unification takes two atomic sentences p and q and returns a substitution
that would make p and q look the same or else fails. If we have “Knows(John,
Jane)” in our KB and the sentence “Knows(John, x)”, then we can unify
both by substituting x with “Jane” in the second sentence, making them
look alike. This is used for the generalized modus ponens. If we have
the rule “Knows(John, x) ⇒ Hates(John, x)”, the above unification can be
used to deduce that John hates Jane.

10

This is the main concept on which PROLOG is based on: the binding of
uninstantiated variables with an atom or a term. The assignment with an-
other uninstantiated variable (or even itself) is forbidden in modern PRO-
LOG. This protection takes the form of an occurs-check (Otherwise A =
f(A): A could be unified with f(f(f(. . .))), which is not desirable).

3.1.5 Equivalence, Validity and Satisfiability

Two sentences α and β are logically equivalent if they are true in the same
set of models. In other words, if α |= β and β |= α, then they are equivalent.

A sentence is valid if it is true in all models in which the premises (or
knowledge base) is true.

A sentence that is true in all models is known as a tautology. For ex-
ample, P ∨ ¬ P is valid and a tautology.

A sentence that is not valid on any model is known as a contradiction.
An example of such a sentence is P ∧ ¬ P .

A sentence is satisfiable if it is true in some model. Validity and satisfiabil-
ity are connected in the following manner: α is valid iff ¬ α is unsatisfiable.
α |= β iff the sentence (α ∧ ¬ β) is unsatisfiable.
The above is called proof by refutation or proof by contradiction.

3.2 Inference Procedure

Patterns of inference that can be applied to derive chains of conclusions that
lead to a desired goal.

3.2.1 Soundness or Truth Preservation

A derivation system is sound iff if Γ ` P, then Γ |= P, for all Γ, P.

Soundness is a property of an inference procedure and an inference pro-
cedure is sound iff derivations only produce entailed sentences. That is, a
system is sound if all derived results are entailed by the knowledge base used
in the derivation. If the system (claims to) prove something true, it really
is true! That is, if the conclusion is true in all cases where the premises are
true. This is sometimes called “truth-preserving”.

11

A logical argument is sound iff the argument is valid and all of its premises
are true.

An unsound inference rule is abduction (a → b, and b, then a might be
true, or not).

All men are mortal.
Socrates is a man
Hence Socrates is mortal.

This argument is valid and it is sound, since its premises are true. Whereas

All animals can fly.
Pigs are animals.
Therefore, pigs can fly.

is valid, but it is not sound, since the first premise is false.

An example of a sound, but incomplete derivation system would be one
containing only &I and &E. All derivable sentences in such a system are
logically entailed, but there are many logically entailed sentences which are
underivable.

3.2.2 Completeness

A derivation system is complete iff if Γ |= P, then Γ ` P, for all Γ, P.

An inference procedure is complete iff derivations can produce all entailed
sentences. That is, if something really is true, the system is capable of prov-
ing it.

An example of a complete but unsound derivation system would be SD
with the addition of abduction as an inference procedure. Such a system
can, indeed, derive all logically entailed sentences. But, it can also derive
sentences which are not logically entailed.

???: Can SD with the addition of abduction as an inference procedure derive
all sentences?

12

3.2.3 Types of Inference Procedures

Modus Ponens P ⊃ Q and P, therefore Q.
Modus Ponens is sound.
Modus Ponens is incomplete.
Modus Ponens is complete for Horn KB’s.

Modus Tollens P ⊃ Q and ¬ Q, therefore ¬ P.
Modus Tollens is sound.

And-Elimination P & Q, therefore P.
And-Elimination is sound.
And-Elimination is incomplete.

Resolution Resolution is sound.
Resolution is complete.
Resolution works as a proof by reductio, based on a set of sentences in con-
junctive normal form (CNF). If we got two sentences A ∨ B and ∼ A ∨ C
in CNF, then we can use resolution to get B ∨ C. This also works with
substituting ground terms for variables before the actual resolution. Proof
by resolution refutation is assuming the negation of a hypothesis and then
showing that we can resolve to the empty clause in some way (which essen-
tially depicts a proof by reductio, or contradiction).
Resolution is refutation complete means if the set of sentences is unsatis-
fiable, then you will always be able to derive a contradiction with resolution.

3.3 Propositional or Boolean Logic

Ontological commitment: there exist only “facts” in the world.
Epistemological commitment: true, false and unknown.

Pros of Propositional Logic:
(1) declarative - pieces of syntax correspond to facts.
(2) compositional - the meaning of A ∨ B is derived from the meaning of its
constituents A and B.
(3) context-independent.

Cons of Propositional Logic:
(1) lacks the expressive power of higher logical languages like FOL (predi-
cate logic).

13

Propositional Logic consists of atomic sentences (A, B, C . . .) and a set
of logical connectives (not, and, or, conditional, biconditional). Each atom
can be assigned a truth value (TVA). The truth value of the main connective
determines the “meaning” of the sentence (i.e. its truth value).

3.4 First-Order Logic

Ontological commitment: there exist facts, objects and relations between
those objects
Epistemological commitment: true, false and unknown.

FOL consists of variables (x, y, z . . . = variable terms), constants (a, b,
c . . . = constant terms), first-order predicates (P, Q, R . . . = define a rela-
tion among objects of the universe of discourse), functions (legOf, fatherOf,
+, *, . . . = take an object as input and return an object) and logical con-
nectives (same as propositional logic + ∀ and ∃ quantifiers).

Universal Instantiation: every instantiation of a universally quantified sen-
tence is entailed by it

Existential Instantiation: we can substitute a new constant (that does not
appear anywhere else in the KB) for the existentially quantified variable of
a sentence. This is called a Skolem constant. The new sentence is entailed
by the old one.

If we instantiate all sentences in all possible ways, we have reduced the
FOL problem to propositional logic and can use its tools for inferences.

FOL is semi-decidable: it stops if a formula follows, but could run forever
without ever stopping if it does not.
First-order logic is sound: means if K yields/derives P, then K entails P
(K ` P, then K |= P).
Basically it means that it derives only entailed sentences.
First-order logic is complete: If K entails P, then K yields/derives P
(K |= P, then K ` P).
Basically it means that it can derive any sentence that is entailed.

14

3.5 Defeasible Logic

Defeasible logic is a subset of non-monotonic logic.

Non-monotonic logic - meaning: in monotonic logic, the line of reasoning
usually is piling up propositions; but in non-monotonic logic, the proposi-
tions are defeasible: the number of valid propositions can decrease if justi-
fication for one of them is retracted. This line of reasoning resembles the
scientific method (hypothesis, gather evidence, modify hypothesis according
to new findings).
Nonmonotonic reasoning: In Nonmonotonic reasoning we can reject an
earlier conclusion on the basis of new information, even if the old conclusion
was justified by the evidence we had at that time. This reasoning system
lets us draw likely conclusions with less than conclusive evidence. Human
reasoning is not monotonic. In the normal course of human reasoning we
often arrive at conclusions which we later retract when additional evidence
becomes available. The additional evidence defeats our earlier reasoning and
much of our reasoning is nonmonotonic and Defeasible in this way

???: Barring the retraction of rules, is it true that the set of entailed sen-
tences can only increase asinformation is added to the knowledge base?

3.5.1 Components

Undercutting defeaters : Undercutting defeaters are too weak to support
an inference on their own and their sole purpose is to call into question an
inference we might otherwise be inclined to make. It is important to note
here that they don’t suggest the opposite conclusion or for that matter any
conclusion at all. They stop you from making a wrong conclusion. Generally
these rules can be identified by the word ’might’. For example, “A damp
match might not burn.”
Strict rules : These are the rules which can never be defeated or undercut.
They don’t have exceptions and represent necessary truth conditions.
An example would be “All crows are black” or “Everyone born in Atlanta
was born in Georgia”.
Defeasible rules : These are the weaker rules which can be defeated or
undercut. For example “Birds fly” or “Penguins live in Antarctica.”
Defeasible rules can be defeated or rebutted by a strict rule or another de-
feasible rule which supports the opposite inference.
Defeasible rules can be undercut by undercutting defeaters which point out

15

a situation in which the rules they defeat might not apply.

???: Can defeasible rules undercut one another, or is there a definite hier-
archy?

3.5.2 Rule conflict

Strict Rule vs Defeasible Rule : The strict rule is always superior to the
defeasible rule, even if the condition of the strict rule is defeasibly derivable
while the condition of the defeasible rule is strictly derivable.
Defeasible Rule vs Defeasible Rule : When two defeasible rules reach
a contradicting conclusion, we need a way to break that loop. We can either
declare competing rules as “incompatible” or declare one rule “superior” to
other.
Undercutting defeaters : Undercutting defeaters are used to defeat de-
feasible rules. Undercutting defeaters are small pieces of knowledge, which
stop us from making conclusions we normally would have made.

3.6 Default Logic

Behaves like standard logic if complete information is available, but lets us
also infer things if information is not complete. For example, in standard
logic, if we know that something is a bird, we don’t infer that it can fly,
because there are birds that don’t fly. In default logic, we would infer that
it flies, until we get evidence that it might be otherwise.

If our initial premises are:

Bird(Condor), Bird(Penguin), ∼Flies(Penguin), Flies(Airplane) and our de-
fault rule is

W =
{

Bird(X):Flies(X)
Flies(X)

}

then we can safely infer that a condor flies, because condor is a bird and we
don’t have evidence that condors can’t fly. However, we cannot infer that
penguins fly, because it is inconsistent with our knowledge.

16

3.7 Sample derivations

3.7.1 SD derivation

Given assumptions 1-3 below, derive H ⊃ J.
1 | (H & T) ⊃ J Assp
2 | (M ⊃ D) & (¬D ⊃ M) Assp
3 | ¬T ≡ (¬D & M) Assp
4 | | H Assp
5 | | | ¬J Assp
6 | | | | ¬D Assp
7 | | | | ¬D ⊃ M 2&E
8 | | | | M 6,7⊃E
9 | | | | M ⊃ D 2&E
10 | | | | D 8,9⊃E
11 | | | D 6-10¬E
12 | | | | T Assp
13 | | | | H & T 4,12&I
14 | | | | J 1,13⊃E
15 | | | | ¬J 5Reit
16 | | | ¬T 12-15¬I
17 | | | ¬D & M 3,16≡E
18 | | | ¬D 17&E
19 | | J 5-18¬E
20 | H ⊃ J 4-19⊃I

3.7.2 PD derivation

Derive (∀x)(Bi ⊃ Ax) ≡ Bi ⊃ (∀x)Ax.
1 | | (∀x)(Bi ⊃ Ax) Assp
2 | | | Bi Assp
3 | | | Bi ⊃ Ac 1∀E
4 | | | Ac 2,3⊃E
5 | | | (∀x)Ax 4∀I
6 | | Bi ⊃ (∀x)Ax 2-5⊃I
7 | | Bi ⊃ (∀x)Ax Assp
8 | | | Bi Assp
9 | | | (∀x)Ax 7,8⊃E
10 | | | Ac 9∀E
11 | | Bi ⊃ Ac 8-10⊃I
12 | | (∀x)(Bi ⊃ Ax) 11∀I

17

13 | (∀x)(Bi ⊃ Ax) ≡ Bi ⊃ (∀x)Ax 1-6,7-12≡I

4 Artificial Intelligence - CSCI(PHIL) 4550/6550

4.1 Overview

Except for the search part, almost everything else covered in this class is
covered in detail in a specialized class e.g. “expert systems”, “genetic algo-
rithms”,“neural networks” etc.

4.1.1 What is AI?

Artificial Intelligence is the field that strives to manufacture machines that
exhibit intelligence. This leads to two questions - what is artificial, i.e. what
can be built, and what is intelligence or intelligent behavior.

There are numerous definitions of what artificial intelligence is.
We end up with four possible goals:

1. Systems that think like humans: Cognitive modeling
(focus on reasoning and human framework)

2. Systems that think rationally: Laws of thought
(focus on reasoning and a general concept of intelligence)

3. Systems that act like humans: Turing test
(focus on behavior and human framework)

4. Systems that act rationally: Rational agent
(focus on behavior and a general concept of intelligence)

What is rationality? An ideal concept of intelligence, “doing the right
thing” simply speaking.

Definition:
“The art of creating machines that perform functions that require intelli-
gence when performed by humans” (Kurzweil)

(1) Involves cognitive modeling - we have to determine how humans think
in a literal sense (explain the inner workings of the human mind, which re-
quires experimental inspection or psychological testing) - Newell and Simon:
GPS (General Problem Solver).

18

(2) Deals with “right thinking” and dives into the field of logic. Uses logic
to represent the world and relationships between objects in it and come to
conclusions about it. Problems: hard to encode informal knowledge into a
formal logic system + theorem provers have limitations (if there’s no solu-
tion to a given logical notation).
(3) Turing defined intelligent behavior as the ability to achieve human-
level performance in all cognitive tasks, sufficient to fool a human person
(=Turing Test). Avoided physical contact to the machine, because phys-
ical appearance is not relevant to exhibit intelligence. The “total Turing
Test” includes this by encompassing visual input and robotics as well.
(4) The rational agent - achieving one’s goals given one’s beliefs. Instead
of focusing on humans, this approach is more general, focusing on agents
(which perceive and act). More general than strict logical approach (=think-
ing rationally).

4.1.2 Strong AI vs. Weak AI

Strong AI = sentience : machine-based artificial intelligence that can
truly reason and becomes self-aware (sentient), either human-like (thinks
and reasons like a human mind) or non-human-like (different form of sen-
tience and reasoning) - coined by John Searle: “an appropriately programmed
computer IS a mind” (see Chinese Room).

Weak AI = problem-tailored : machine-based artificial intelligence that
can reason and solve problems in a limited domain. Hence it acts as if it were
intelligent in that domain, but would not be truly intelligent or sentient.

4.1.3 Strong methods v. Weak methods

Strong methods : Makes use of deep knowledge regarding the environment
and possible situations that may be faced. Strong methods are usually fine-
tuned to the problem at hand and make use of a problem model.

Weak methods : Makes use of general problem solving structures such
as logic and automated reasoning. Weak methods are not usually fine-tuned
to a specific problem but are applicable to a broad range of different problem
classes.

4.1.4 Turing Test

A human judge engages in a natural language conversation with two other
parties, one a human and the other a machine; if the judge cannot reliably

19

tell which is which, then the machine is said to pass the test. It is assumed
that both the human and the machine try to appear human.

Objections:
(1) A machine passing the test could simulate human behavior, but this
might be considered much weaker than intelligence - the machine might just
follow a set of cleverly designed rules. Turing rebutted this by saying that
maybe the human mind is just following a set of cleverly designed rules also.
(2) A machine could be intelligent without being capable of conducting con-
versations with humans
(3) Many humans might fail this test, if they’re illiterate or inexperienced
(e.g. children).

???: How applicable is the third objection?

4.1.5 Chinese Room Experiment

Tried to debunk the claims of “Strong AI”. Searle opposed the view that
the human mind IS a computer and that consequently, any appropriately
construed computer program could also be a mind.

Outline: Man who doesn’t speak Chinese sits in a room and is handed
sheets of paper with Chinese symbols through a slit. He has access to a
manual with a comprehensive set of rules on how to respond to this in-
put. The output is also in Chinese and to an observer on the outside of
the room, the room appears to give perfectly reasonable responses to the
inputs. Searle argues, that even though he can answer correctly, he doesn’t
understand Chinese; he’s just following syntactical rules and doesn’t have
access to the meaning of them. Searle believes that “mind” emerges from
brain functions, but is more than a “computer program” - it requires inten-
tionality, consciousness, subjectivity and mental causation.

One objection to Searle is the systems response. Of course the man doesn’t
know Chinese and neither does the room, but the man-room system clearly
knows Chinese. This response points out the serious flaw in Searle’s argu-
ment: he appears to require a single, irreducible part of the system that
is responsible for intentionality. He refuses to allow for the possibility that
intentionality emerges from the interaction of several parts.

20

4.1.6 Mind-Body Problem

The problem deals with the relationship between mental and physical
events. Suppose I decide to stand up. My decision could be seen as a men-
tal event. Now something happens in my brain (neurons firing, chemicals
flowing, you name it) which could be seen as a physical, measurable event.
How can it be, that something “mental” causes something “physical”. So
it’s hard to claim that both are completely different things. One take on this
is to say that these mental events are, in fact, physical events. My decision
IS neurons firing, but I’m not aware of this - I feel like I made a decision
independently from the physical. Of course this works the other way round
to: everything physical could, in fact, be mental events. When I stand up
after having made the decision (mental event), I’m not physically standing
up, but my actions cause mental events in my and the bystanders minds -
physical reality is an illusion.

There are two extremes of ontological commitment in relation to this prob-
lem. Material reductionism holds that all mental activity is reducible to
interactions taking place in an objective, physical reality. Radical idealism
holds instead that physical reality is instead entirely reducible to mental
activity in some consciousness. Descartes is famous for his treatment of the
issue and his is sometimes known as Cartesian duality. It holds that mind
(or spirit) is non-physical while the body is physical. Just how the mind
and body could interact under such an interpretation was a mystery even to
Descartes, though he did suggest that the pineal gland in the brain might
somehow be responsible.

4.1.7 Frame Problem

It is the question of how to determine which things remain the same in a
changing environment.

4.1.8 Problem-Solving

Occurs whenever an organism or artificial intelligence is at some current
state and does not know how to proceed in order to reach a desired goal
state. This is considered to be a problem that can be solved by coming up
with a series of actions that lead to the goal state (the “solving”).

21

4.2 Search

4.2.1 Overview

In general, search is an algorithm that takes a problem as input and returns
with a solution from the search space. The search space is the set of all
possible solutions. We dealt a lot with so called “state space search” where
the problem is to find a goal state or a path from some initial state to a
goal state in the state space. A state space is a collection of states, arcs
between them and a non-empty set of start states and goal states. It is
helpful to think of the search as building up a search tree - from any given
node (state): what are my options to go next (towards the goal).

Complete search : Search is complete if it is guaranteed to find a solu-
tion if a solution exists.
Optimal search : A search method is optimal if it finds the cheapest solu-
tion.
Complexity of search: It is of two types:

1. Time : How long does it take to find a solution.

2. Space : How much memory is used to find a solution.

Name Complete Optimal Time Space
Depth First Yes∗ No O(b)m O(b ∗m)
Breadth First Yes Yes∗∗ O(b)d O(bd)
Iterative Deepening Yes Yes O(b)d O(b ∗ d)

Greedy Search No No O(b)m O(b)m

A-Star Yes∗∗∗ Yes∗∗∗

Uniform Cost

d = depth
m = max depth
∗ if search tree is finite
∗∗ only when cost is uniform
∗∗∗ if heuristic is admisssible, i.e it never overestimates

4.2.2 Uninformed Search

Uninformed search (blind search) has no information about the number
of steps or the path costs from the current state to the goal. They can
only distinguish a goal state from a non-goal state. There is no bias to go

22

towards the desired goal.

1. Breadth-First-Search:
Starts with the root node and explores all neighboring nodes and repeats
this for every one of those (expanding the “depth” of the search tree by
one in each iteration). This is realized in a FIFO queue. Thus, it does an
exhaustive search until it finds a goal. BFS is complete (it finds the goal
if one exists and the branching factor is finite). BFS is optimal (if it finds
the node, it will be the shallowest in the search tree). Space: O(bd). Time:
O(bd).

Open list: nodes yet to be explored, closed list: nodes that have been ex-
plored.

2. Depth-First-Search:
Explores one path to the deepest level and then backtracks until it finds a
goal state. This is realized in a LIFO queue, or stack. DFS is complete (if
the search tree is finite). DFS is not optimal (it stops at the first goal state
it finds, no matter if there is another goal state that is shallower than that).
Space: O(bm) (much lower than BFS). Time: O(bm) (Higher than BFS if
there is a solution on a level smaller than the maximum depth of the tree).
Danger of running out of memory or running indefinitely for infinite trees.

3. Depth-Limited / Iterative Deepening:
To avoid that, the search depth for DFS can be either limited to a constant
value, depth-limited search. DLS is not complete, as the goal state may be
deeper than the search depth. Iterative deepening Repeatedly applies depth-
limited search, each time with an increased search depth. This is repeated
until finding a goal. Iterative deepening combines the advantages of DFS
and BFS. ID is complete. ID is optimal (the shallowest goal state will
be found first, since the level is increased by one every iteration). Space:
O(b · d) (better than DFS, d is depth of shallowest goal state, instead of m,
maximum depth of the whole tree). Time: O(bd).

4. Bi-Directional Search:
Searches the tree both forward from the initial state and backward from
the goal and stops when they meet somewhere in the middle. Di-directional
search requires a predecessor function in addition to the successor function
required by all uninformed search methods. It is complete and optimal.

23

Space: O(b
d
2). Time: O(b

d
2).

5. Graph Search:
Graph search avoids making repeated steps and is therefor useful when the
search tree is a true tree, but rather a cyclic graph. Graph search maintains
a closed list of expanded nodes and an open list of unexpanded nodes on
the fringe. Graph search can be applied to any of the tree search algorithms
previously discussed.

4.2.3 Informed (Heuristic) Search

In informed search, a heuristic is used as a guide that leads to better
overall performance in getting to the goal state. Instead of exploring the
search tree blindly, one node at a time, the nodes that we could go to are or-
dered according to some evaluation function h(n) that determines which
node is probably the “best” to go to next. This node is then expanded and
the process is repeated (“Best First Search”). A* is a form of BestFS.
In order to direct the search towards the goal, the evaluation function must
include some estimate of the cost to reach the closest goal state from a given
state. This can be based on knowledge about the problem domain and the
description of the current node, the search cost up to the current node.
BestFS optimizes DFS by expanding the most promising node first. Effi-
cient selection of the current best candidate is realized by a priority queue.

1. Greedy Search:
Minimizes the estimated cost to reach the goal. The node that is closest to
the goal according to h(n) is always expanded first. It optimizes the search
locally, but not always finds the global optimum. It is not complete (can go
down an infinite branch of the tree), it is not optimal. Space: O(bm) for the
worst case, same for time, but can be reduced by choosing a good heuristic
function.

2. A* Search:
Combines uniform cost search (expand node on path with lowest cost so
far) and greedy search. Evaluation function is f(n) = g(n) + h(n) (or
estimated cost of the cheapest solution through node n).
g(n) = Cost to reach the node.
h(n) = Cost to get from node to goal.
It can be proven that A* is complete and optimal if h is “admissible” - that
is, if it never overestimates the cost to reach the goal. This is optimistic,

24

since they think the cost of solving the problem is less than it actually is.
Examples for h: Path-Finding in a map: Straight-Line-Distance. 8-Puzzle:
Manhattan-Distance to Goal State. Everything works, it just has to be
admissible (e.g. h(n) = 0 always works, but transforms A* back to uni-
form cost search). If a heuristic function h1 always estimates the actual
distance to the goal better than another heuristic function h2, then h1

dominates h2.
A* maintains an open list (priority queue) and a closed list (visited nodes).
If a node is expanded that’s already in the closed list, stored with a lower
cost, the new node is ignored. If it was stored with a higher cost, it is deleted
from the closed list and the new node is processed.

h is monotonic, if h(n) − h(n′) ≤ g(n′) − g(n), so that the difference
between the heuristics of any two connected nodes does not overestimate
the actual distance between those nodes. If h is monotonic and there is only
one goal state, then h must be admissable. Example of a non-monotonic
heuristic: n and n′ are two connected nodes, where n is the parent of n′.
Suppose g(n) = 3 and h(n) = 4, then we know that the true cost of a
solution path through n is at least 7. Now suppose that g(n′) = 4 and
h(n′) = 2. Hence, f(n′) = 6. First off, the difference in the heuristics (2)
overestimates the actual cost between those nodes (1). However, we know
that any path through n′ is also a path through n and we already know that
any path through n has a true cost of at least 7. Thus, the f-value of 6 for
n′ is meaningless and we will consider its parent’s f-value.

h is consistent, if the h-value for a given node is less or equal than the
actual cost from this node to the next node plus the h-value from this next
node (triangular inequality).

If h is admissible and monotonic, the first solution found by A* is guar-
anteed to be the optimal solution (open/close list bookkeeping is no longer
needed).

Finding Heuristics: (a) Relax the problem (e.g. 8-puzzle: Manhattan dis-
tance). (b) Calculate cost of subproblems (e.g. 8-puzzle: calculate cost of
first 3 tiles).

3. Uniform Cost Search: Use only the “g” value. Is optimal.

25

4.2.4 Adversarial Search (Game Playing)

Adversarial search makes use of a competitive environment with multiple
agents that have conflicting goals. Minimax is for deterministic games with
perfect information. Minimax is complete if the game tree is finite and op-
timal against an optimal opponent. Non-Deterministic games will use the
expectiminimax algorithm.

1. Minimax Algorithm:
A two player zero-sum game, in which bothplayers make a move alter-
nately, is defined by an initial state (e.g. board positions), a set of operators
that define legal moves, a terminal test that defines the end of the game and
a utility function that determines a numeric value for the outcome of the
game (e.g. “1” for win, “-1” for loss).

If it was a search problem, one would simply search for a path that leads to
a terminal state with value “1”. But the opponent (Min) will try to min-
imize one’s (Max) outcome. The minimax algorithm generates the whole
game tree and applies the utility function to each terminal state. Then
it propagates the utility up one level and continues to do so until reaching
the start node. Propagation works like this: Min is assumed to always chose
the option that is the worst for Max (minimum utility value). If we have
three terminal states in one branch with 1, 2 and 3 as their utility values,
then Min would chose 1. Hence, “1” is propagated to the next level and so
forth. Max can then decide upon his opening move (the “minimax decision”
= maximizing utility under the assumption that the opponent will play per-
fectly to minimize it).

For games that are too complex to compute the whole game tree, the game
tree is cut off at some point and the utility value is estimated by a heuristic
evaluation function (e.g. “material value” in chess).

2. Alpha-Beta Pruning:
We don’t have to look at each node of the game tree: Minimax with
α β pruning yields the same result as a complete search, but with much
greater efficiency (reduces its effective branching factor to its square root).
Here we store the best value for Max’ play found so far in α and the best
value for Min’s play found so far (i.e. the lowest value) in β. If, at any given
point, α becomes smaller than β, we can prune the game tree at this point.
Therefore, it is required to evaluate at least on set of leaf nodes branching

26

off of one of the deepest Min nodes and then use the acquired alpha-value
to prune the rest of the search.

3. Non-determinism:
Introduces “chance nodes” to the decision points, based on what kind of
chance is introduced (e.g. a 50/50 chance for flipping a coin), which yield
the “expected value” (average - add up utility values weighted by the chance
to achieve them).

???: Is expected value always the best way to go? What about cases where
there will not be multiple trial?

4.2.5 Constraint Satisfaction Problems

For CSP’s, states in the search space are defined by the values of a set of
variables, which can get assigned a value from a specific domain, and the
goal test is a set of constraints that the variables must obey in order to
make up a valid solution to the initial problem. Example: 8-queens problem;
variables could be the positions of each of the eight queens, the constraint
to pass the goal test is that no two queens can be such that they harm each
other.

Different types of constraints: (a) unary (value of a single variable), (b)
binary (pairs of variables, e.g. x ¿ y), (c) n-ary constraints. In addition to
that, constraints can be absolute or preference in nature (the former rules
out certain solutions, the latter just says which solutions are preferred). The
domain can be discrete or continuous. In each step of the search, it is checked
if any variable has violated one of the constraints - if yes: backtrack and
rule out this path.

Forward checking looks one step ahead, removing some of the possible
assignments from variables linked by constrainst. It checks if any decisions
on yet unassigned variables would be ruled out by assigning a value to a vari-
able. It deletes any conflicting values from the set of possible values for each
of the unassigned variables. If one of the sets becomes empty, then backtrack
immediately. Constraint propogation occurs after forward checking. It
applies constraints ”outward” from each of the variables altered during for-
ward checking to the variables they are linked to by some constraint.

There are also heuristics for making decisions on variable assignments.

27

Selecting the next variable:
most-constrained-variable works together with forward checking (check-
ing which values are still allowed for each unassigned variable): the next
variable to be assigned a value is the one with the fewest possible values
(reduces branching factor).
Most-constraining-variable assigns a value to the variable that is in-
volved in the largest number of constraints on other yet unassigned vari-
ables.
After selecting the variable:
least-constraining-value assigns a value that rules out the smallest num-
ber of values in variables connected to the current variable through con-
straints.

CSP’s that work with iterative improvement are often called “heuristic
repair” methods, because they repair inconsistencies in the current config-
uration. Tree-structured CSP’s can be solved in linear time.

4.2.6 Other

1. Hill Climbing (Gredy local search):
Evaluate all neighboring nodes and move to the best one. If there is no
better node than the current node, declare this node to be the optimum and
halt. Will get stuck at local maxima. Plateauxs in the search space allow
for the possibility of loops. Selecting the successor node randomly when
plateauxs are encountered may allaw the algorithm to break out of such a
loop.

2. Simulated Annealing:
Escape local maxima by allowing “bad” moves (descent), but gradually de-
crease their size and frequency (read Genetic Algorithm section for more
detail).

4.3 Logic

4.3.1 Logical Agents

Usually in a knowledge-based approach agents are seen as “knowing” about
the environment and being able to “reason” about possible course of actions.
This combines the “perceive-act” cycle of agents with logical deduction as
their means of inference. Inference is the process of producing new knowl-
edge based on available knowledge (knowledge base + percept/input).

28

Validity and Satisfiability:
A sentence is valid (necessarily true) iff it is true under all possible interpre-
tations in all possible worlds (e.g. A∨ ∼ A, a tautology).
A sentence is satisfiable iff there is some interpretation in some world for
which it is true (e.g. A ∧B might be true, but is not valid).
A sentence is unsatisfiable or false if it is not satisfiable (e.g. A∧ ∼ A, a
contradiction).

“Logic” in general, is a formal language for representing information such
that conclusions can be drawn. The syntax defines the way sentences are
set up in this language. The semantics define the “truth” of a sentence in a
world (meaning).

4.3.2 Wumpus World

Observable - no (only local perception)
Deterministic - yes (outcomes are specified)
Episodic - no (sequential at the level of actions)
Static - yes (Wumpus and pits do not move)
Discrete - yes
Single-Agent - yes (Wumpus is not an agent).

4.3.3 Model Checking

m is called a model for a sentence α if α is true on m. A model is generally a
commitment to the truth of its components. In propositional logic, a truth
value assignment for a given sentence is an interpretation (similarly, in FOL,
an interpretation is a definition of all terms, predicates etc.). Now, such an
interpretation, or TVA, is a model for α iff α is true on that TVA.

Model Checking
Take the current knowledge base and enumerate all possible models that
could lead to the KB. Check if α is true for all models in which the knowledge-
base is true.

4.3.4 Horn Clauses

A Horn clause is a disjuntion of literals, of which at most one is positive.
A Horn clause can be written as an implication where the premise is a
conjunction of positive literals and the conclusion is a single positive literal.

29

Horn clauses allow inference through forward or backward chaining. Given
a knowledge base of Horn clauses, entailment is decidable in linear time
relative to the size of the KB.

4.3.5 Knowledge-Base

A logical knowledge-base is a conjunction of Horn clauses. A Horn clause
consists of either a proposition symbol or an implication like (A1 ∧ A2 ∧
. . . An) → B. Logical agents apply inferences to the knowledge-base to
come to new knowledge about what course of action to take.

4.3.6 Forward- and Backward-Chaining

Forward-Chaining is based on the idea to add the conclusions of any im-
plications whose premises are satisfied by the available facts to the knowl-
edge base. The new facts will probably be part of other implications whose
premises can be satisfied and so on. This is a data-driven approach which
might lead to redundant work.

Backward-Chaining works backwards from a query: it checks all implica-
tions which conclude the query q and tries to find facts that satisfy the
premises of these implications or looks for other implications that conclude
those premises. This is a goal-driven approach, appropriate for problem-
solving.

Forward- and Backward-Chaining are both sound and complete (BC is in-
complete if we don’t check for infinite loops). May not terminate if α is not
entailed (semi-decidable)

4.3.7 Resolution

1. CNF Convert all premises in the knowledge base into conjunctive nor-
mal form, a conjunction of disjuncions of literals.

2. Break apart Split the KB into its component axioms on the ∧ symbol.

3. Negate goal Add the negation of the goal to the list of axioms.

4. Combination Take two axioms that contain contradictory literals such
as A∨B and ∼ B ∨C and combine them, removing the contradictory
terms the get A∨C, a new axiom. Repeat this step, always aiming to
eliminate the number of literals.

30

5. Empty set Resolution is complete when an empty set is derived. This
implies that the goal is entailed by the knowledge base.

4.4 Intelligent Agents

“An agent is a computer system that is situated in some environment, and
that is capable of autonomous action in this environment in order to meet
its design objectives”. It has sensors, with which it percepts its environment
and effectors to manipulate the environment in order to proceed towards a
desired goal or objective.

Ideal rational agent: for each possible percept sequence, an ideal rational
agent should do whatever action is expected to maximize its performance
measure, on the basis of the evidence provided by the percept sequence
(history) and whatever built-in knowledge the agent has.

4.4.1 Simple Reflex Agents

Consists of simple “condition-action rules”: the sensors tell the agent what
the environment looks like at a given time and the rules will control the
agents behavior and take some action based on what rule was triggered by
the conditions that match the current perceived situation.

4.4.2 Model-Based Agents

Works with a knowledge-base and is grounded in some system (e.g. propo-
sitional logic or predicate logic). It still perceives its environment and acts
according to the appropriate rule derived by the inference rules given by the
logic system. It can make conclusions about its environment and the best
action to take in the current state by reasoning on the currently known facts,
the percept and the model incorporated in it (Wumpus world). If it draws
a conclusion, it is guaranteed to be correct, given the available information
and the underlying model are correct.

4.4.3 Goal-Based Agents

In simple reflex agents, the programmer has to determine the right action
that should be taken in a certain situation. Goal-based agents involve con-
sideration of the future: information about the ultimate goal and how to get
there. This includes information about the outcome of the actions and their
evaluation in respect to proceeding towards the goal. This makes it a lot

31

more flexible (e.g. a car driving agent could be given a new destination as
a goal and it would adjust its turn-actions accordingly - whereas we would
have to rewrite a great deal of rules of the reflex agents to account for the
changed sequence of turns).

4.4.4 Utility-Based Agents

Just having a goal is not enough to generate high-quality behavior (e.g.
there are many ways to get to a destination). Utility-based agents add to
that by assigning a utility value to the possible actions, thus choosing the
(hopefully) optimal action out of the set of all possible actions.

Performance Function : Used by an outside observer to evaluate the per-
formance of an agent in an environment.

Utility function : Maps the world state to a real value allowing for the
comparison of distinct world states. Used by an agent to better its own
performance.

4.4.5 Learning Agents

The learning agent learns from experience with respect to its assigned task
and some performance measure. It strives to increase its performance over
time, with increasing experience.

4.4.6 Ideal Rational Agents

A rational agent should do whatever action is expected to maximize its per-
formance measure, on the basis of the evidence provided by percept sequence
and whatever built in knowledge the agent has in it.

4.4.7 Environments

1. Accessible vs. Inaccessible:
Sensors give access to complete state of the environment (hence no need to
keep track of the world).

2. Deterministic vs. Non-Deterministic:
If the next state of the environment is completely determined by the current
state and the actions selected by the agent, then the environment is deter-
ministic.

32

3. Episodic vs. Non-Episodic:
In episodic environments, the agent’s experience is divided into “episodes”.
Each episode is a perceive-act cycle. Evaluation of behavior is limited to
the current episode - no real look-ahead.

4. Static vs. Dynamic:
The environment is dynamic, if it can change while the agent is working on
figuring out the next step.

5. Discrete vs. Continuous:
If there are a limited number of distinct, clearly defined percepts and actions,
we say that the environment is discrete.

4.5 Planning

4.5.1 Overview

Planning is the task of coming up with a sequence of actions that will achieve
a goal. Search-based problem-solving and logical planning agents involve
planning. A classical planning environment is deterministic, finite, fully ob-
servable, static (it changes only through actions) and discrete.

Closed-world assumption = any conditions that are not mentioned are as-
sumed false.

4.5.2 Search vs. Planning

Search-based problem-solvers are overwhelmed by irrelevant actions. They
will search for the appropriate action - which can be a problem if the search
space is large. Planning agents have the necessary knowledge to directly
decide what action has to be taken to achieve a goal.

Planning agents can treat a goal as a conjunction of subgoals and so forth -
coming up with a general heuristic is therefore easy. Search agents usually
require a much more complex heuristic that is problem-dependent.

Planning agents can decompose the problem into a set of subproblems, which
a search-based agent cannot do.

33

4.5.3 Planning as Search

Forward-Search:
Progression planning. Starts with the initial state and performs a search
for a path through the search tree to the goal node. Considers irrelevant
actions and is inefficient without a good heuristic.

Backward-Search:
Regression planning. Easy to implement in STRIPS, since the goal state
consists of a condition that has to be satisfied (by the effects of some ac-
tion). Doesn’t necessarily consider irrelevant actions - efficient! In addition
to requiring certain actions to satisfy certain (pre-)conditions of further ac-
tions or the goal state, we also require them to not undo any desired literals.
An action that satisfies this restriction is called consistent.

Both backward and forward search are called total-order planning - they
explore strictly linear sequences of actions that lead from the initial state to
the goal state and thus cannot take advantage of problem decomposition.

4.5.4 Partial-Order Planning

POP starts with an empty plan, only containing the start state and the finish
state (start = set of literals as effects, no preconditions; finish = no effects,
set of literals as preconditions). We then work out subplans for subgoals
and put them into the plan, establishing a certain order based on how the
actions of each subplan effect the state of the world - partial order: for some
subplans it wouldn’t matter which one comes first. POP can be linearized
into total-order plans by fixing the actual ordering. Delaying that kind of
choice is the least-commitment strategy

A plan consists of a set of “actions” (steps from Start to Finish), order-
ing constraints (e.g. A ≺ B = A before B - cycles are usually forbidden),
a set of causal links (e.g. A →p B = A achieves p for B, which essentially
protects “p” from being negated until action B was executed) and finally a
set of open preconditions (from which the next “to do” item is arbitrarily
chosen).

A solution is defined by a plan that has no remaining open preconditions
and no conflicts with any causal links and no cycles. Conflicts are resolved
by demoting/promoting the conflicting action to somewhere outside the pro-

34

tection interval of another set of actions (e.g. if C conflicts with A →p B,
then the ordering constraint added is either B ≺ C or C ≺ A).

Planning is more of a plan refinement strategy than search among states.

Heuristics:
Could be based on number of open preconditions after taking an action,
or the most-constrained-variable heuristic known from CSP’s (take the
open condition that can be satisfied in the fewest possible ways). All in all,
coming up with a heuristic for partial-order planning is hard, because there
is no real measure of how far away we are from the goal state, since we’re
dealing with plans, not with real actions in the world.

4.5.5 STRIPS

Russel and Norvig, p. 379 presents a figure which summarizes STRIPS well.
Actions are defined by a signature (e.g.“Fly(P,A,B)” = fly plane P from A
to B), a conjunction of preconditions (e.g. “At(P,A)”) and a conjunction of
effects (e.g. “At(P,B)”). Both the preconditions and the effects must consist
of function free positive literals.

Closed-world assumption

Goals are conjunctions of ground literals.

No equality function, no types.

ADL - Action Description Language adds equality test, typing, goals
can be mixed conjunctions/disjunctions and be quantified, Plus: open world
assumption, allows negative literals in states.

5 Expert Systems - CSCI 8050

5.1 Overview

5.1.1 What Are Expert Systems?

An Expert System is a computer program that represents and reasons with
knowledge of some specialist subject with a view to solving problems or giv-
ing advice (Jackson).
May either completely substitute the human expert or play the role of an

35

assistant.
It is a part of AI, because it is concerned with the design and implementa-
tion of programs capable of emulating human cognitive skills.

Characteristics:
Simulates human reasoning.
Performs reasoning over representation of human knowledge.
Solves problems using heuristics.
Deals with realistic complexity normally requiring human expertise.
Must exhibit high level of performance
Must be capable of explaining/justifying its behavior

Knowledge-Based System:
Any system which performs a task by applying rules of thumb to a symbolic
representation of knowledge instead of employing mostly algorithmic meth-
ods (Jackson).

Knowledge Engineering:
The process of constructing an expert system

Knowledge Acquisition:
The transfer and transformation of potential problem solving expertise from
some knowledge source to a program/machine.

Knowledge Representation:
Mostly concerned with finding ways in which large bodies of useful infor-
mation can be formally described for the purposes of symbolic processing.
Main issues are logical adequacy (= you can capture all logic relations in the
KB), heuristic power (= quick way to solve problems and perform searches
in the KB) and notational convenience (= easy of use / accessibility, struc-
tured objects).

Expert Systems encode the domain-dependent knowledge of an expert and
use it to solve problems.

Metaknowledge - Knowing what one knows and knowing when and how
to use it is an important part of expertise.

36

There are known knowns. These are things we know that we
know. There are known unknowns. That is to say, there are
things that we know we don’t know. But there are also unknown
unknowns. There are things we don’t know we don’t know. -
Donald Rumsfeld

An expert system is a computer program intended to embody
the knowledge and ability of an expert in a certain domain. -
McCarthy

5.1.2 Components of an Expert System

On an abstract level, Expert Systems are concerned with:
Knowledge Representation.
Knowledge Acquisition.
Control of Reasoning.
Explanation/Justification.

On the implementation level, Expert Systems consist of
1. Knowledge-base consisting of facts and production rules (knowledge)
2. Working memory (current state) which holds data and intermediate
results
3. Inference engine that reasons based on the rules stored in the knowledge-
base.

5.1.3 Deep vs. Shallow Expert Systems

Depends on the domain model and how the domain specific knowledge is
encoded into the system:
Shallow Expert Systems:
based on simple associations between things in the domain (stimulus and
response) and (empirical) heuristics (“rules-of-thumb”); limited scope; usu-
ally highly specialized; Example: MYCIN - takes for granted that the user
of the system has enough understanding of the domain;
Deep Expert Systems:
embrace much larger body of knowledge; more detailed domain model that
actually incorporates the underlying causal model of the problem in ques-
tion; Example: the CYC Project - goal is to come up with detailed causal
model which reflects upon what could be called “common sense”; ultimate
goal: explain the justifications of the reasoning process, beyond the simple
“why”-explanation of certain rule firings.

37

5.1.4 Why and When Using Expert Systems?

Typical tasks for an expert system:
Interpretation of data
Diagnoses (MYCIN)
Structural analysis of complex objects
Configuration of complex objects
Planning sequences of actions.

When to use an expert system?

1. Domain is characterized by use of expert knowledge, judgement and
expertise

2. Conventional programming approaches are not satisfactory

3. Recognized experts in solving the problem exist

4. Experts are better than amateurs in solving the problem

5. Expertise is scarce, expensive and depends on overworked experts

6. Heuristics, rules-of-thumb, dealing a lot with uncertainty make ex-
tremely large number of possibilities easy to handle

7. Amount of knowledge is large enough to make knowledge base devel-
oped interesting, but the number of important concepts is reasonable

8. Task is decomposable

9. Task is teachable and some knowledge can be acquired from text books

10. Experts could decide whether or not the results are good

5.2 Symbolic Computation

A symbol is a designator for “something” (e.g. a physical object, a concept
etc.). In symbolic computation, we need a way to define symbols, create
associations between symbols and provide operators to manipulate symbols
(syntactic rules + transformation rules).

Physical Symbol Hypothesis: Newell and Simon: “A physical symbol
system has the necessary and sufficient means for general intelligent action”

38

Structure based on logical/mathematical systems - hence we’re dealing with
sets and sequences, best represented as lists (as realized in LISP). Why?
Because these formal structures are well understood.

Pattern matching:
Can tell if two symbols are equal to each other. Advantage: thanks to
unification (substitution), it can match “wildcards” or variables to a instan-
tiation.

Why LISP isn’t good for knowledge representation:
because it lacks means to organize the use of knowledge, it just imposes a
certain structure.

5.3 Rule-Based Systems

5.3.1 Production Systems

A production system consists of:
1. A set of production rules
2. Rule interpreter that decides which rules to apply and when
3. Working memoryContains the current state of the problem: known
facts/data, current sub-goals, intermediate results. These data are used by
the rule interpreter to activate the rules.

This is similar to the tree elements of an expert system: knowledge base,
inference engine, and working memory.

Rules are triggered by this data and the interpreter controls the activa-
tion and selection of rules at each recognize-act cycle.
An advantage of Production System over regular computer language is that
they provide an immediate response

A rule is of the form P1, . . . , Pm → Q1, . . . , Qm where Pi are the premises
(antecedents) and Qi are the actions to be performed (consequents). A rule
of this form “produces” the Qi.

Example:

α1$1 . . . αm$m → β1$1 . . . βn$n

This tries to match the content of the working memory to the
premise and produces the action depicted by the right-hand side

39

of the rule.

$10 → $1STOP
$11 → $1STOP
This cuts any given binary number in half by right-shift.

CALC 1$1RESULT$2 → CALC $1RESULT$2$2

CALC RESULT $2 → $2 DONE
$10 → CALC $1 RESULT 1.
Calculates 2n by transforming any binary number into a “calc
(binary number) result 1” scheme (initialization, since 2n = 1
for n = 0).

5.3.2 Conflict Resolution

The interpreter for a set of production rules can be described in terms of
the recognize-act cycle:
1. MATCH the premise patterns against elements in working memory
2. Choose one out of all selected rules (CONFLICT RESOLUTION)
3. APPLY the rule

The computation usually halts if no more rules can fire or a rule explic-
itly issued a halt-command.

Selected rules in step 2 are called instantiations. If the rule set is designed
such that no conflicts can emerge, it is called deterministic or else non-
deterministic.

Control regimes: Global - domain-independent (refractoriness, recency, speci-
ficity); Local - domain-dependent (meta-rules, based on expert knowledge
on how to resolve those conflicts)
Control regimes have two main characteristics: sensitivity (how quickly does
it respond to conflicts) and stability (are the decisions consistent). In ad-
dition to that, we can create salience groups for rules to determine their
ordering. All this adds heuristic power to expert systems!

Appropriate Domains: Computer System Assembly, Circuit Fault Diagno-
sis, Route planning, mostly narrow domains. Inappropriate: Classification
of extremely large, complex and ambiguous data, scientific calculations, mul-
tiple fault diagnosis.

40

5.3.3 Forward vs. Backward Chaining

Forward-Chaining is data-driven: we chain forward from true/satisfied con-
ditions towards the goal and use newly added facts to further chain forward
if possible.

Backward-Chaining is goal-based: we look for the satisfaction of the premises
that conclude our goal and take it further from there (sub-goaling).

Example:
FC = generate palindromes from a given start;
BC = recognize palindromes from a given one.

5.4 Turing Machines - Computational Power and Expres-
siveness

It can be shown that Turing Machines and Production Systems are equally
expressive. That is, any computation that can be performed by a Turing
Machine can be translated to a production system and vice versa.
A language that is accepted by a TM that halts on all inputs is known as a
recursive set.
Recursive languages are decidable.
Recursively enumerable languages are not (if word is in language, then TM
halts, if not, then the TM might run halt or run forever).
Halting Problem: Is there an algorithm which can determine whether a TM
eventually halts on input w? (No, as proved by Turing in 1936.)
(see 3.1.3 for more on decidability)

Non-deterministic Turing Machine:
A TM that allows a number of possible transitions instead of only one.
DTMs have a single computation path, while NTMs have a computation
tree. Apparently, NTMs seem to be more powerful than DTMs, but ev-
ery NTM can be transformed into a DTM, which would compute the same,
but takes a lot longer. How much longer is not known in case of the open
NP = P? question.

5.4.1 Time Complexity

P: Class of problems that can be solved in polynomial time on a determin-
istic TM - usually taken as the group of tractable problems, or problems for
which an efficient algorithm exists.

41

NP: Class of problems that can be verified in polynomial time on a Non-
deterministic Turing Machine. This class contains many problems that peo-
ple would like to be able to solve effectively, including the Boolean satisfia-
bility problem, the Hamiltonian path problem and the Vertex cover problem.
All the problems in this class have the property that their solutions can be
checked effectively.
A P-problem (whose solution time is bounded by a polynomial) is always
also NP

NP-complete: Most difficult problems in NP; A problem is NP-complete
if it is in NP and every other problem in NP is reducible to it (reduction
= there is an transformation algorithm that runs in polynomial time and
transforms any problem to the current problem).
A problem which is both NP (verifiable in nondeterministic polynomial time)
and NP-hard (any other NP-problem can be translated into this problem).
Examples of NP-hard problems include the Hamiltonian cycle and traveling
salesman problems.
For example, given a logical expression, is there an assignment of truth val-
ues to the variable which will make the expression true?
Another example of an NP-complete problem is the subset sum problem
which is: given a finite set of integers, determine whether any non-empty
subset of them sums to zero. A supposed answer is very easy to verify for
correctness, but no one knows a significantly faster way to solve the problem
than to try every single possible subset, which is very slow.

NP-hard:A problem is NP-hard if an algorithm for solving it can be trans-
lated into one for solving any other NP-problem (nondeterministic poly-
nomial time) problem. NP-hard therefore means ”at least as hard as any
NP-problem, ” although it might, in fact, be harder.
All problems that are NP-complete or harder (formally: all NP-problems
can be reduced to it, but it is not necessarily in NP itself, so it must be
outside P, if P 6= NP).

5.5 Dealing With Uncertainty

5.5.1 MYCIN-Style Certainty Factors

Certainty factors can be used to

1. Guide program reasoning.

42

2. Prune unpromising goals.

3. Rank hypotheses after all evidence has been considered.
endenumerate They should not be viewed as probabilities.

Certainty factor (CF) : (Measure of Belief in hypothesis H based on
evidence E) − (Measure of Disbelief in hypothesis H based on this
evidence)
Increase in degree of belief:

P (h | e)− P (h)
1− P (h)

Increase in degree of disbelief:

P (h)− P (h | e)
P (h)

Problem with this method:
P(d1) = 0.8 , P(d1|e) = 0.9 , P(d2) = 0.2 , P(d2|e) = 0.8
Increase in belief in d1

0.9− 0.8
0.2

= 0.5

Increase in belief in d2

0.8− 0.2
0.8

= 0.75

We should have favored d1 intuitively, but d2 is the winner.

Post-1977 MYCIN focused on CFs.

Antecedent Rule - combine user’s certainty on the provided evidence.

Serial Rule - combine aggregated user’s certainty and the expert’s
certainty, to give a fired rule a overall CF.

Parallel Combination Rule - if several rules support the same hypoth-
esis, their respective CFs have to be combined using this rule. Any
good parallel combination rule should be associateive (so order of the

43

arguments is unimportant), commutative (so the sequence order is
unimportant), and symmetric (so equal but opposite evidence cancels.
Given CF1 and CF2, certainty factors for two rules,

CF =

CF1 + CF2 − CF1 ∗ CF2, CF1, CF2 > 0
CF1 + CF2 + CF1 · CF2, CF1, CF2 < 0

(CF1 + CF2)/(1−min(| CF1 |, | CF2 |), CF1 · CF2

.

5.5.2 Fuzzy Sets (Possibility Theory)

Possibility theory is a theory dealing with non-random type of uncer-
tainty. Based on the concept of membership instead of simple switch-
off/switch-on approach

1. Fuzzify input
2. Apply logical rules
3. Apply implication (min)
4. Aggregate Results
5. Defuzzify (Centroid, Bisector, Maximum...).

5.5.3 Conditional Probabilities (Bayesian)

P(A given B) = P (A∧B)
P (B) . Probability tree useful to come up with the

cases (see Bob-Example: P (A ∧ B) is 0.15 (0.9 x 1
6), whereas P (B)

also takes into account the cases where initially no six came up, and
Bob lied.

This is different from Certainty Factors, because here a belief in some-
thing commits one to disbelief in the negated hypothesis.

Bayesian methods can be used to determine the most probable hy-
pothesis, in a sense that no other hypothesis is more likely.

5.5.4 Dempster-Shafer

Based on belief functions, rather than pure probabilities, they resemble
the MYCIN certainty factors and are believed to combine probabili-
ties with the flexibility of rule-based systems. Dempster-Shafer theory
allows us to specify a degree of ignorance, the likes of which are not

44

allowed in Bayesian theory. Also not that the measure of belief and
disbelief of an outcum need not equal one.

First, uncertainties are sorted into independent items of evidence.
Then Dempster’s rule is applied computationally.

Based on two things: computing belief functions and combining belief
functions derived from different pieces of evidence

“m” is a basic probability assignment; m(0) = 0 and m(sumofall hypotheses-
subsets) = 1; Total belief in any focal element A (a subset containing
a number of hypotheses) is the sum of all bpa’s (m’s) of its subsets
B1 . . . Bn. Lower bound is the “support” of A, which is the total belief
in A; Upper bound is the “plausibility” of A, given by 1−Bel(Ac) -
(Ac being the complement of A) - i.e. this is the degree to which we
don’t believe in ∼ A, hence Pls(A) = 1−Bel(∼ A).

Belief interval: from “total belief in A” (support) up to “the extent
that A could possibly be true” (plausible).

Demptser’s combination rule: computes new belief function based on
two existing belief functions derived from different evidence.

Doesn’t distinguish between prior and posterior probabilities like Bayesian
belief. Belief in something doesn’t mean that the remaining belief is
committed to its negation (P (H) = 1−P (∼ H)). In Dempster-Shafer,
belief in some subset A (focal element) does not force the remaining
belief to be committed to its complement. Hence Bel(A)+Bel(∼A) can
be less than 1. The remainder is the degree of ignorance concerning
A.

5.6 Knowledge Representation

5.6.1 Frames

Minsky’s theory of frames - how the mind works: A frame is a data
structure for representing stereotyped situations. Attached to each
frame are several kinds of information (usage, predictions, exceptions,
etc.). The human mind stores this kind of situational information in
memory structures called frames, which are to be adapted to fit reality

45

by changing the details as necessary (frame problem: how to deter-
mine which things remain the same in a changing environment).

We can think of a frame as a network of nodes and relation (in fact,
they are a subset of semantic networks). Collections of related frames
are linked together in frame-systems. Actions lead to transformations
between the frames of a system. A frame’s terminal slots are normally
filled with default assignments - presumptions and expectations. These
are replaced once new and better information comes in.

Scripts are a type of frame. They specify a sequence set out in time.

5.6.2 Semantic Networks / Associative Nets

Semantic Networks are a subset of associative networks. They consist
of nodes and links between nodes that express a relationship between
each other. Basic idea is that the meaning of concepts come from
their semantic relationship to other concepts. This meaning can be
illustrated using nodes and labeled connections. SNs are a way to
represent knowledge.

5.6.3 Ontologies

Explicit specification of some topic; formal and declarative represen-
tation which includes the names for referring to the terms in that
domain and logical statements that describe what the terms are, how
they are related to each other and how they can or can’t be related
to each other. (In philosophy the term accounts for what exists - in
AI: what ”exists” can be represented; knowledge can be represented
in a declarative formalism and the set of objects is what’s called the
universe of discourse). An ontology is used to share domain knowledge
among applications, agents, etc.

5.6.4 Belief Revision / Truth Maintenance Systems

Rule-based systems consist of a set of rules, which contribute to achiev-
ing a certain hypothesis. We keep adding supporting knowledge and
evidence. TMS on the other hand keep better track of the reasoning
process:

46

dependencies between rules and pieces of evidence - newly added evi-
dence not only supports or negates a hypothesis, but can also have an
impact on other hypotheses via a dependency network;
Facilities to maintain and revise current knowledge about the world -
monotonic (always increasing the set of beliefs) or non-monotonic (al-
lows retraction of beliefs). The former is what rule-based systems do,
the latter is a system for knowledge justification, which allows com-
monsense reasoning;
Detects inconsistencies and contradictions in interdependent hypothe-
ses and can make justified assumptions or retract justifications for
pieces of knowledge.
This kind of information is propagated to all nodes of the network,
making the reasoning a less straight-forward process.

5.7 Knowledge Acquisition

“Transfer and transformation of potential problem solving expertise
from a knowledge source to a program”

Knowledge Acquisition is a generic term, which is neutral in respect to
how this knowledge is gathered. Knowledge Elicitation is knowledge
extraction from a human expert.

In general, the idea is to elicit knowledge in some way (e.g. pro-
vide example cases), then store the knowledge by designing a domain
model of sorts, then compile the knowledge into production rules.

Identification - Identify problem characteristics
Conceptualization - find concepts to represent knowledge
Formalization - design structure to organize knowledge (domain model)
Implementation - formulate rules to embody knowledge
Testing - validate rules by validating the results

Testing leads to refinements of the rule base, redesigns of the domain
model and reformulations of the initial concepts and characteristics.

Note that this should be an ongoing process as the system goes over to
the maintenance phase after being deployed. Hence the expert system
should allow to easily modify the rules and the domain model.

47

5.8 Case-Based Reasoning

Rule-based reasoning relies on “rules of thumb”, i.e. heuristic knowl-
edge acquired from an expert. Another method to solve problems is
to remember how we solved it in the past: case based reasoning. Ex-
amples: Law - based on precedence; Medicine - based on previously
experienced sets of symptoms.

Current “case” is matched to the most similar existing case (using
vector algebra) and a decision is being made. The new case is then
stored into the case database. The new case can also be modified to
reflect differences from the existing cases. Case-based decisions also
encompass decision tree instance based learning - coming across a new
case can be seen as learning from example: something rule-based KBS
cannot do; on the other hand - instead of modeling the domain and
have a thorough understanding of it (i.e. a theory), case-base reason-
ing is rather dull/blind.

5.9 Explanation

Some facility to store the WHY and the HOW of the reasoning pro-
cess. The user can ask, why the system is asking a certain question
and the system should respond with some insight in the current line
of reasoning. The user can ask how the system came to a certain con-
clusion and the system should respond with the inferences that lead
to the current situation.

5.10 Famous Problems

5.10.1 Monty-Hall Problem

Always go for the switch, it doubles your chances of winning.
Initially: pick one from 3 doors gives your 1

3 of a chance of winning
the car. Now Monty opens one of the doors with the goats. Since he
knows where the car is, he just gave you an important hint: Consider
the other two doors as one entity of something you didn’t pick. The
chance that the car is behind one of those two doors is 2

3 (+1
3 of your

selection adds up to 1.0, so far so good) - hence this “entity” containing
these two doors has a 2

3 chance of winning. As soon as Monty opens

48

one of the doors of that “entity”, you know that the chances that the
car is behind that particular door becomes 0, but the “entity” still has
a 2

3 chance of winning. Hence, the remaining door in that “entity” has
a 2

3 chance of winning, whereas your original selection remains at 1
3 –

SWITCH!

Variant: The Big Deal
Monty invites 2 players to play the big deal: each player picks a door
(different ones); Monty ejects the player with the goat behind his or
her door or one of them randomly if both picked a goat-door (but
he won’t tell the players that of course); he then offers the remaining
player to switch – should he accept? NO! In 2

3 of the cases, the sticker
will already have selected the door with the car. Only in the case that
both players selected a goat-door will the sticker lose.

5.10.2 3 Glasses of Water

3 glasses of water - the first is potable with probability of 0.9, the sec-
ond one is potable with certainty factor 0.9 and the third one is potable
with possibility or fuzzy membership 0.9. Which one should you drink?
Answer: the third one. Why? The issue is that probabilities and fuzzy
memberships convey a totally different type of information. The 0.9
probability tells us that over a long run of experiments, 1 out of 10
bottles would contain a deadly poison. Essentially, you have a 10% of
dying after choosing this bottle. The fuzzy number on the other hand
quantifies the similarity of an object to imprecisely defined properties.
A 0.9 membership means that the liquid in that bottle contains a liq-
uid that is fairly similar to a perfectly potable liquid. The membership
for a poisonous liquid would not be that high, so the risk of dying is
completely ruled out. Hence this is the better choice.

5.11 Intelligent Information Systems

5.11.1 Blackboard Architecture

Addresses the issues of information sharing among multiple problem-
solving agents in a heterogeneous environment. The blackboard is the
central repository for all shared information and knowledge. Agents
are considered to be some sort of expert that uses information from

49

various knowledge sources to contribute to the solution of the problem.
An ”arbiter” controls the access to the blackboard, allowing only the
most promising contributions to be written to it (this process goes on
until a solution has been found). The blackboard can therefore be
thought of as the working memory of a problem-solver.

5.11.2 Intelligent Software Agents

Program designed for performing specific tasks on behalf of the user
or other agents (in collaborative multi-agent environments).

5.11.3 Data Warehousing

Integrating multiple heterogeneous information sources into a single
repository that can be accessed and queried directly in order to per-
form analysis or manipulate data through a single interface.

It is usually used for accessing databases with different formats and
data models (oftentimes legacy databases) in order to provide a ”single
version of the truth”, i.e. a single way to represent data and make it
available to the global system

5.11.4 Active Database

Regular databases that embed situation-action-rules (i.e. react to a
certain situation occurring)

5.11.5 Data Mining

Data mining essentially is a knowledge discovery mechanism for data
bases (e.g. customer data). Uses statistics and pattern recognition as
its main tools. It extracts implicit, previously unknown and poten-
tially useful information from large data sets. The “patterns” that are
searched for are usually hidden causal links between data.

50

6 Genetic Algorithms - CSCI(ENGR) 8940,
CSCI(ARTI) 8950

6.1 Overview

6.1.1 What is a Genetic Algorithm

GAs model genetic evolution based on the Theory of Evolution.

6.1.2 Components of a Genetic Algorithm

Problem encoded in some way (chromosome); Population containing a
large number of chromosomes; Genetic operators (selection, crossover,
mutation); additional operators (elitism, seeding); Fitness function
(encoding the optimization goal).

6.1.3 Why Using Genetic Algorithms?

Noisy, discontinuous, non-differentiable problems seem to be appropri-
ate for GA/EAs, whereas continuous and differentiable problems are
more suitable for traditional optimization.

Difference between traditional approach and evolutionary approach:
Traditional optimization uses deterministic rules to browse the search
space, does a sequential search from one particular starting state, care-
fully adjusting this state to move towards the goal. TO is guided by
some derivative information (e.g. logic)
Evolutionary optimization uses probabilistic transition rules, does a
parallel search from various initial starting states. EO is guided solely
by the fitness values of individuals.

6.1.4 No Free Lunch Theorem

For any algorithm, any elevated performance on one class of problems
is paid for in performance on another class. Generally speaking, even
if there’s something like a “free lunch” on an individual basis, someone
will have to pay for it.

51

6.1.5 Intractable Problems

A class of problems is called intractable, if the time required to solve
instances of the class grows at least exponentially with the size of
instances. This is important, because it means that even mid-sized
instances of a problem class cannot be solved in reasonable time. Gen-
erally speaking, a problem is intractable if no algorithm exists that can
compute all instances of it in polynomial time

One should try to divide an intractable problem into tractable sub-
problems or reduce a given problem to an already solved one (prin-
ciple of reduction).

How to recognize an intractable problem class? NP-completeness the-
orem: any problem class to which an NP-complete problem class
can be reduced is likely to be intractable.

6.2 Fundamentals

6.2.1 Theory of Evolution - Survival of the Fittest

Guess what...

6.2.2 Schemata

Schema theorem: It indicates the expected number of individuals con-
taining schema H in the next generation.

m(S, nextGen) ≥ m(S, thisGen) · f(S)
f(all) · 1−surviving crossover and

mutation

The selection factor f(S)
f(all) expresses the fact that above average schemata

have a higher chance of being in the next generation than below av-
erage schemata. This factor (selective term) is responsible for expo-
nential growth of above average schemata, and exponential decay of
below average schemata.

The loss term (surviving-stuff at the end) filters some of these schemata
from the exponential selective process. Schemata that are short and of

52

low order and are emphasized by the selective term have a high prob-
ability of passing this filter. This is due to two things: crossover is less
likely to destroy low-order schemata with few crosspoints; mutation is
less likely to destroy a low-order schema if the defining length is short.

These schemata are called “building-blocks”.

6.2.3 Building-Block Hypothesis

The GA favors certain building blocks (short, low order schemata)
through selection and applies the genetic operators on them. The as-
sumption is, that combining short, low order schemata leads to highly
fit larger building blocks and eventually highly fit complete designs.

6.2.4 Implicit Parallelism

The GA processes way more schemata than it’s population size. The
challenge is to come up with an accurate number of schemata the
GA usefully processes. However, in a chromosome, there are many
schemata encoded. And even if not all of them are useful building
blocks, so many get processed that the GA approach becomes really
useful. The examination of schemata goes on implicitly and in parallel.

The number of schemata that are evaluated, selected and recombined
is atleast O(n3) when n structures are processed for a moderate pop-
ulation size.

It shows that although not all building blocks do conform to the build-
ing block hypothesis, the GA looks at a large number of them. It will
find one of many paths to a highly fit solution.

6.2.5 Importance of Diversity

Diversity makes sure that we’re still looking at numerous places in the
search space. The diversity should be high in the beginning, when
we’re scanning the search space and should decrease when the fitness
gets close to the optimal, because then we’re near the global maximum.

53

6.2.6 Premature Convergence

Often prevents finding the global maximum, because the chromosomes
converge to a local maximum and give up the search of the remaining
search space.

6.2.7 Exponential Growth of “Good” Solutions

The GA processes schemata (building blocks) and looks at a large
number of them implicitly and in parallel. In addition to that, the
GA also makes a large number of decisions between schemata. Each
schema belongs to a partition of schemata - * * d encodes the schemata
* * 1 AND * * 0 for example. Hence the GA is implicitly selecting
between schemata based on average fitness. The GA will exponentially
assign all individuals to a given schema within a partition (ie. focuses
on one particular, highly fit building block).

6.2.8 Deception

A problem contains deception if the winner of some partition has a bit
pattern that is different from the bit pattern of the winner of a higher-
order subsumed partition. For example, if the winner of the schema
11 is different from the subsumed partition *110 (the winner being
the schema with the highest average fitness).

A problem is fully deceptive at order N if, given an order-N partition
P, the winners of all subsuming lower-order partitions lead toward a
deceptive attractor, a hyper- plane in P that is different from the win-
ner of P. For example, given the schema *ddd (order-3 partition), all
subsuming partitions (e.g. *dd*) point to a different direction, the
deceptive attractor.

A problem is consistently deceptive at order N if, given a order-N
partition P, the various winners of all subsuming lower-order parti-
tions lead toward hyperplanes that are different from the winner of P.

GAs containing deception are sometimes labeled “GA-hard”, even
though it is not the only thing that makes a problem hard (other
factors are: number of local optima in the fitness landscape, sampling

54

error, relative differences in disjoint desirable schemata).

Decption can lead to poor performance of the GA, because the low-
order schemata do not contain enough information, such that crossover
would gradually improve the average fitness - i.e. crossover is rendered
ineffective.

6.2.9 Baldwin Effect

If some trait is LEARNED by an individual, then the fact that learning
was used to extend the chances of survival, then the ability to learn
something is passed on to the offspring.

6.3 Genetic Operators

6.3.1 Chromosome Representation

There is evidence that it should be binary, but continuous or discrete
values would work too (as we’ve done it in the MSE project).

6.3.2 Population

Bunch of chromosomes, each encoding a possible solution to the prob-
lem.

6.3.3 Selection

Selection is based on the fitness value of an individual chromosome.
The more fit it is, the higher should be the chances to be selected. This
can be achieved by roulette wheel selection, which assigns a portion
of the roulette wheel according to the fitness. This might lead to
premature convergence, when fit guys take over a huge portion of the
r-wheel. Other options include tournament selection and rank-based
selection.

6.3.4 Crossover

1-point, 2-point, uniform crossover, or other crossover techniques that
are cleverly adjusted to suit the problem.

55

6.3.5 Mutation

Just as in biological evolution, there is a slight chance that some gene
within a chromosome mutates (e.g. flipping the bit value). Some
say that mutation is everything, and crossover is not that important.
Other say it the other way round.

6.4 Advanced Genetic Algorithms

6.4.1 Elitism

Keeping the best guy as part of the next generation to preserve the
currently best known solution.

6.4.2 Seeding

Either feed previously acquired partial/not-optimal solutions to start
the search from “better” positions within the search space or use do-
main knowledge to initialize the first generation in a way that it reflects
this knowledge, i.e. create chromosomes that contain a guess regarding
the solution

6.4.3 Hill Climbing / Steepest Ascent

Start somewhere, then evaluate the fitness values of all neighbors and
proceed to the best one. Problem: might get stuck at local maxima
easily. Solution: Random restart, increase “neighborhood size”.

6.4.4 Taboo Search

Mark positions you already searched or that are not worth to be eval-
uated to begin with. Maintain a list of those nodes and exclude them
from the search. Nodes on that list might be allowed to put back into
the search space under certain conditions.

6.4.5 Simulated Annealing

Based on the annealing in metallurgy - The goal there is to achieve a
state of the internal structure of the steel that has the lowest energy

56

level possible. The goal is to bring the system from a arbitrary state
to an optimal state (optimization problem). SA considers a range of
neighboring states in the search space at each step. If the step it could
take is better, it will take it, if it is worse, then there is a chance of
taking that step based on the temperature function. Initially, the odds
are pretty high, and decreases over time until reaching zero.

The metropolis algorithm defines the probability of taking a worse
step: initially, the probability to make a step towards a better so-
lution is 1 and the probability to make a worse step e

−δE
kT (k is the

Boltzmann constant). It’s easy to see that the lower the temperature
is, the smaller the chances to take a worse step. When T approaches
0, only steps that are better are taken (changing the whole thing to a
hill-climber). Eventually, the system “freezes” in a steady state.

The decrease in temperature is carefully planned and laid out in the
annealing schedule, which decreases the temperature after each step a
little bit.

SA can be part of a GA. How about letting the metropolis algorithm
decide if a given solution can be part of the next solution; i.e. a better
solution (chromosome with above average fitness) is always accepted,
a worse solution is accepted with some probability based on difference
in fitness and current temperature.

6.5 Other Evolutionary Strategies

6.5.1 Genetic Programming

GP represents individuals as executable programs (as trees). For each
generation, each evolved program is executed to measure its perfor-
mance within the problem domain (= quantify the fitness of that pro-
gram).

6.5.2 Evolutionary Programming

Instead of aiming at the genotypic evolution that GAs and GP deal
with, EP focuses on the phenotypic evolution, ie. EP is derived from
the simulation of adaptive behavior in evolution. The goal is to find

57

a set of optimal behaviors from a space of observable behaviors. The
fitness function therefore measures the “behavioral error” with respect
to the environment.

Originally designed to evolve finite state machines.

6.5.3 Evolutionary Strategies

Idea: biological processes have been optimized by evolution. But evo-
lution itself is a biological process. Hence evolution must also optimize
itself. That’s what ES are shooting for: evolution of evolution.

6.5.4 Swarm Intelligence

A swarm is a structured collection of interacting organisms (e.g. Ant
colonies, Fish schools, Bird flocks...). For example, in ant colonies,
individuals specialize in one set of simple tasks and altogether, the
swarm maintains a large set of complex tasks; i.e. the global behavior
of a swarm emerges from the behavior of all individuals. Interaction is
determined genetically or through social interaction. Changes to one
individual in a swarm is influenced by the experience/knowledge of its
neighbors.

7 Neural Networks - CSCI(ENGR) 8940, CSCI(ARTI)
8950

7.1 Overview

7.1.1 What is a (Artificial) Neural Network?

A network made of artificial neurons that provide a learning method
that is robust to noise in the training data. It can learn real-valued
and vector-valued functions over continuous and discrete attributes.

7.1.2 Components of a Neural Network

Inputs, Neurons, Hidden Layer, Output Layer, weights for each con-
nection, bias node, activation function, net input, sigmoid activation

58

function, feed-forward, backpropagation algorithm, gradient descent
to minimize the error; learning rate; momentum; recurrent networks,
self-organizing maps (unsupervised learning)

7.1.3 Why Using Neural Networks?

Good at pattern recognition and classification of all kinds.

7.2 Fundamentals

7.2.1 Concept of a Perceptron

A artificial neural “unit” is called a perceptron. It takes a vector of
inputs, calculates a linear combination of them and outputs 1 if the
activation value is above a certain threshold or -1 otherwise. The input
to the perceptron is called net input and the output is called activation.

A perceptron can classify any training set in which the individual
instances are linearly separable. This allows it to learn stuff like the
AND function, but not functions like XOR.

7.2.2 Inductive Bias

7.2.3 Learning From Example

Training takes place by comparing the error to the desired target and
adjusting the weights accordingly. There are various ways to do that.
The most popular being the gradient descent / backpropagation
algorithm, which requires the activation function to be sigmoid (such
that it is continuous and differentiable, because we use partial differ-
entials to come up with the weight change). The steepest descent in
the error surface can be found by computing the derivative of E with
respect to each component in the weight-vector:

∇E(−→w) ≡
[

δE
δw0

, δE
δw1

, . . . , δE
δwn

]
.

So for each weight wi, the weight change is ∆wi = −η δE
δwi

.

If we change the weights after each training example, we’re doing

59

stochastic gradient descent. This can lead to quicker convergence.
Otherwise we change weights only after all training examples have
been checked.

In multi-layer networks, we have to use backpropagation, because it
is easy to see how the weights have to be changed for the incoming
weights at the output layer (they’re directly related to the output and
the error respectively) – but determining the weight change for the
hidden layer is more of a challenge. That’s when we need the sigmoid
function:

σ(y) = 1
1+e−y , where y is the input.

Learning Rate : Learning rate is how much of the calculated er-
ror is applied to the NN.
Smaller learning rate is preferred because even though more iterations
are required to reach the local minimum, the search path resambles a
gradient.
With a high learning rate, it is highly probable that we keep oscillating
without ever touching the local minimum.
With a very small learning rate we can get stuck in the first local min-
imum with no mechanism to move out.
Momentum : Momentum is how much of the previous weight change
influences the current weight change. The key idea is to average the
weight changes so that the search path is in the average downhill di-
rection. It helps us avoid local optima.
Stopping Criteria :
1. Maximum number of epochs have been reached.
2. Mean Squared Error (MSE) on training set is small enough.
3. When overfitting is observed, i.e. when training data is being mem-
orized.

7.2.4 Noisy Data

Some training examples might be erroneous and misleading. Neural
Networks are very robust regarding those kind of things.

60

7.2.5 Overfitting

Same as decision tree - training set error gets “too” good and the
performance on the test set and any unseen examples will get worse.

7.3 Structure

7.3.1 Layers

Input layer; Hidden Layer; Output Layer;
Recurrent Networks permit feedback loop from hidden (Elman) or
output layer (Jordon).

7.3.2 Net Input

y = w1x1 + w2x2 + . . . + wnxn

7.3.3 Activation Function

Step-Function is the simplest; We use sigmoid or logistic function since
it is differentiable and hence it allows to use the backpropagation al-
gorithm and gradient descent (delta rule).

7.4 Types of ANN (Supervised Learning)

7.4.1 Feed-Forward NN

A standard FFNN has three layers: input, hidden and output, with
direct connections between the input layer and output layer.
They can represent any boolean function, bounded continuous function
and approximate arbitrary functions to some extent. Feed-forward
provides the hypothesis space for the backpropagation algorithm.

7.4.2 Backpropagation NN

Changes the weights in the network with respect to the determined
error from the feed forward stuff. Each combination of weights rep-
resents a hypothesis than could be considered. The inductive bias of
this algorithm is to find a smooth interpolation between data points.

61

7.4.3 Functional Link NN

7.4.4 Product Unit NN

7.4.5 Simple Recurrent NN

7.4.6 Time Delay NN

7.5 Hidden Units - What Are They Good For?

They are used to form decision boundaries in the search space. If it is
known that we have 5 different possible classifications, one should use
at least 5 hidden units to take this into account. If less hidden units
are used, the classification error will increase.

7.6 Unsupervised Learning

7.6.1 Self-Organizing Maps

Developed by Kohonen. They take the input and effectively cluster
them through a competitive learning process, while maintaining the
topological structure of the input space. The map is usually a 2D
grid. Then the magic happens and the SOM will cluster similar input
patterns in the map.

8 Machine Learning - CSCI(ARTI) 8950

8.1 Overview

8.1.1 What is (Machine) Learning?

A computer program is said to learn from experience with respect to
some task and a performance measure, if its performance at the task
improves the more experience it has.

Issues: how much training is needed; what algorithms can we use;
how can we use prior knowledge.

62

8.2 Concept Learning

Inferring a boolean-valued function (does the example belong to the
concept class - yes or no) from training examples of its input and
output. We learn a concept over a set of items (instances). We map
each instance to either 1 or 0 (belongs to concept, or doesn’t). Now
we have a set of hypotheses - all possible mappings from the available
inputs to the output (concept). The goal is to find a hypothesis h
that correctly maps all training examples to the concept function (and
hopefully all unseen examples too).

8.2.1 Inductive Learning Hypothesis

If we find a hypothesis that covers a large enough set of training exam-
ples well enough, then this hypothesis will do well for unseen examples
too.

8.2.2 Concept Learning As Search

Can be seen as a search for a specific hypothesis within a large space
of possible hypothesis (usually just the consistent ones - the Version
space). The goal of the search is to find the hypothesis that best fits
the training set.

8.2.3 General-To-Specific Ordering of the Hypothesis Space

A hypothesis hg is more general than or equal to a hypothesis hj if
and only if any instance that satisfies hs also satisfies hg.

8.2.4 Find-S Algorithm

Initialize h to the most specific hypothesis in H.
For each positive training instance x: for each feature constraint ai in
h, if it is satisfied by x, cool, if not, then replace ai in h by the next
more general constraint that is satisfied by x.
Output hypothesis h.

This will find the maximally specific hypothesis.

63

8.2.5 Version Space

The Version Space is the set of hypotheses that are consistent. A
hypothesis is consistent with a set of training examples if and only if
h(x) = c(x) for each example. That is, it correctly classifies all the
training examples. The version space is a subset of the hypothesis
space.

8.2.6 Candidate Elimination

We start with the set of maximally general hypotheses G (all positive)
and the set of maximally specific hypothesis S (all negative). For each
positive example, we remove from S and G inconsistent h’s and make
S a little bit more general. For each negative example, we remove from
S and G inconsistent h’s and make G a little bit more specific.

This algorithm converges to the right hypothesis if there are no er-
rors in the training set and there actually is some hypothesis that
describes the target concept correctly.

8.2.7 Inductive Bias

Inductive bias includes anything that allows a system to generalize
on unseen examples. The number of unseen examples over which a
learning algorithm generalizes increases along with the strength of the
bias. Induction bias includes representational bias (the assumption
that the representation scheme used is capable of expressing a true
model) and preferences as to a superior form of the solution (e.g.,
Occam’s razor or the maximum specificity of the Find-S algorithm.

8.2.8 Futility of Bias-Free Learning

No bias - no learning. Exception: memorization → deduction

8.3 Decision Trees

Requirements:
Instances are represented by attribute-value pairs
Target function has discrete output values

64

Training data may contain errors.
Might contain examples with missing attributes.

Best classifier - use ID3 (C5) algorithm: it selects the attribute that is
the most useful for classifying examples, based on the information gain.

Bias for decision tree: small trees and maximum information gain.

Decision Tree Learning does a search over the hypothesis space in
form of a simple hill-climbing search until it finds a tree that correctly
classifies the training data. The evaluation function that guides this
search is based on the information gain.

Overfitting is an issue for training decision trees.

8.3.1 Why prefer short hypotheses?

Occam’s Razor.

8.3.2 Overfitting

Doing better and better on the training set is not always helpful, be-
cause at some point, the decision tree, or the hypotheses or the neural
net will start to perform worse on other (unseen) data. That’s why we
use test sets to double check the results: if the error in the test data
starts getting worse, it’s time to stop the search, because overfitting
has occurred.

8.3.3 Entropy and Information Gain

Entropy is a measure of the heterogeneity of the classifications of a
collection of examples. If each possible classification has an equal
number members within the set, entropy is maximized. Entropy is
zero when the entire collection belongs to a single class. The formula
for entropy of a collection S is given by

Entropy(S) =
∑

i

pi · log2 pi,

65

where pi is the proportion of the elements of S that are members of
class i.

The information gain of subdividing the elements of a set S along
attribute A is given by

InfoGain(S, A) = Entropy(S)−
∑
v

|Sv|
|S| · Entropy(Sv),

where v are the values, or classes, of attribute A, Sv is the set of the
elements of S which are members of the class v, and |S| is the size of
set S. When ID3 is deciding what attribute to branch its decision tree
on next, it selects the attribute that maximizes the information gain.

8.4 Bayesian Learning

8.4.1 Bayes’ Rule

Mitchell, Machine Learning, p. 156-158

T he posterior probability of a hypothesis h given a data set D,
P (h|D), is given by

P (h|D) =
P (D|H · P (h))

P (D)
.

P (h) is the prior probability of the hypothesis h, P (D) is the prior
probability of a data set D being observed, and P (D|h) us the proba-
bilty of the data set D being observed if h is true.

T he maximum a posteriori (MAP) hypothesis, hMAP , in the hy-
pothesis space H is simply the hypothesis which maximizes the poste-
rior probability, P (h|D). By applying Bayes’ rule, we see that

hMAP = argmaxh∈HP (D|h) · P (h).

F inding the maximum liklihood hypothesis requires specifying the
priors. If we assume that the priors of all hypotheses are equal, then
the MAP hypothesis is the same as the maximum liklihood (ML) hy-
pothesis,

hML = argmaxh∈HP (D|h).

66

8.4.2 Bayes Optimal Classifier

Mitchell, Machine Learning, p. 174-176

If we are interested in predicting the probability of a classification
value, v, given some training data set D, and set of hypotheses, we
calculate

P (v|D) =
∑

h

P (v|h) · P (h|D).

The P (v|h) may well be 1 or 0, which occurs in the case of a deter-
ministic hypothesis. The Bayes optimal classifier assigns from a set of
classifications V , the one which maximizes this value.

vBOC = argmaxv∈V

∑

h

P (v|h) · P (h|D).

The Bayes classifier is known to be optimal over any method employing
the same hypothesis space.

B ut the optimality comes with a cost. It is necessary to calculate
the effect of each hypothesis on each classification value.

8.4.3 Gibbs Classifier

Mitchell, Machine Learning, p. 176

If the cost of applying the posterior probabilities of the hypothoses
to all of the classifications is too high, introducing an element of ran-
domness can speed the process along, albeit at a cost on performance.
The Gibbs classifier simply makes a weighted random draw (roulette
wheel selection) from the set of hypotheses on the basis of the posterior
probabilities. The classification is simply that given by the randomly
selected classifier.

8.4.4 Naive Bayes Classifier

Mitchell, Machine Learning, p. 177-179

If the optimal classifier is too expensive and Gibbs sampling not accu-
rate enough, the naive Bayes classifier may be a Goldilocks contender.

67

If the classification instance can be described by a set of attributes,
then the probability of a particular classification given the attributes,
by Bayes’ rule is

P (v|ai...) =
P (ai...|v) · P (v)

P (ai)
.

Since, given a particular input instance, the denominator of the right
hand side is the same, finding the classification that maximizes the
probability is a mattre of maximizing the numerator. The classifier is
”naive” because, in estimating P (ai...|v), it assumes that all attributes
are independent. So the probability of their conjunction in light of
a classification v is simply the product of the probabilities of each
attribute in light of v. So the formula for the naive Bayes classifier is

vNB = argmaxv∈V P (v) ·
∏
a

P (a|v).

A s an example consider spam detection. The possible classifications
are vspam or vmail. The attributes are words or strings of words. In
this case

P (vspam) =
Numberofspammessages

Numberofmessages

and P (”GrandPrizeWinner”|vspam) is equal to the percent of all
spam messages with that phrase occuring.

N ote that the result of P (v) ·∏a P (a|v) is not to be interpreted as
a probability. To calculate the conditional probabilty of a particular
classification vx given an instance

P (vx) =
P (vx) ·∏a P (a|vx)∑

v P (v) ·∏a P (a|v)
.

9 Philosophy of Language PHIL(LING) 4300/6300

This class gave an overview on the achievements in analytical philos-
ophy during the last century. We started with Frege, who tried to
analyze the question of how we refer to things in a more formal way.
Hence he developed a general framework, which later served as the
basis of what we call first order logic today. He claimed that reference

68

takes place on different levels - any proposition has a referent and a
sense. The referent is the actual object in the real world, the sense is
an intermediate step between that and our subjective apprehension.
The sense expresses the commonly shared features of a proposition
(e.g. “The Morning Star” has the planet Venus as its referent, and it’s
sense is something like “the celestial object that is the last to be seen
in the morning, before sunrise”). Russell rejected senses, and favored
a more formal method using a completely logical framework to express
the senses (e.g. “the present King of France is bald” can be formally
expressed by ∃x such that x is the present king of France, and no other
x is the present king of France, and x is bald”; as you can see, since
it is a conjunction and the first term is false, the whole proposition is
false.

Five Puzzles about reference:
1 - Reference to Nonexistent (e.g. King of France)
2 - Negative Existentials (e.g. The present king of France does not
exists)
3 - Identity Statements (e.g. Mark Twain = Sam Clemens)
4 - Substitutivity of co-referring terms in belief contexts
5 - Law of Excluded Middle (e.g. Santa Clause is obese vs. Santa
Clause is not obese - problem: there is no referent, so Santa Clause
seems to be neither)

We then went on to analyze definite descriptions further. Strawson
objected Russell’s theory to some extent by claiming that the speaker’s
intentions and the context in which a proposition is expressed play a
crucial role regarding its truth value (e.g. the above example might
have been true if uttered in the 17th century). Strawson sees referring
as being something the speaker DOES while uttering a proposition,
whereas Russell thought referring is more like making an existential
claim about some object (i.e. denoting)

Donnellan distinguished between attributive and referential use of def-
inite descriptions. Attributive use = implies uniqueness of a certain
object; e.g. “the murderer of Smith is insane” refers to that one person,
whoever it may be, who killed Smith. Referential use = directly pick
out an object, e.g. during a conversation, I point to Jones who is the
alleged killer standing in the dock and utter the same sentence “The
murderer of Smith is insane”, this time directly referring to Jones,

69

even if it turns out he is not guilty. Russell rebutted this furiously.

This gave way to a new discussion about speaker’s intentions and
speaker’s reference. However, Kripke criticized Donnellan’s theory,
because it relied on semantic ambiguity, where there should be none.
The word “the” seems to be pretty straight-forward, and there is no
indication of when it is used referentially and attributively according
to Donnellan. That’s why Kripke distinguished between speaker’s ref-
erence and semantic reference instead, which was seen as a more prag-
matic approach (speech acts). Neale did the same thing and came
up with definitions of propositions expressed and propositions meant,
which essentially try to cover Donnellan’s discoveries with Russell’s
original theory of definite descriptions.

Another interesting discussion was about Externalism: how does the
external world, a speaker’s environment etc. have an impact on his in-
ner mental states. In other words - to what extent does the real world
really exists independently from a human mind. Kripke came up with
a new Theory of Causal Reference, in which he claimed that in order
successfully refer to something, a causal link has to be established from
the origin of the name to the current use. The name has to be intro-
duced by a “mental ceremony of naming” like baptizing. This causal
link is external to the mind, yet determines the inner mental state in
some way. Then Putnam came up with the whole Twin Earth crap:
even though both people from Earth and Twin Earth use “water” for
that clear liquid, they actually refer to different chemical structures
(H20 and XYZ). For Putnam, that means that meaning of natural
kind terms like water are external to the mind - the term “water” has
different extensions on each planet (H20 and XYZ), even though the
intensions are the same (clear liquid, thirst-quenching...).

Extension of a proposition is the set of referents of that proposition;
Intension is the meaning or the set of characteristics of a given proposi-
tion. Extension usually happens externally, whereas Intension is some-
thing that happens within the human mind (according to Putnam).

The second part of the semester dealt with propositional attitudes
like beliefs and also belief reporting and the problems related to this -
Londres est jolie vs. London is pretty; Paderewski has musical talent
vs. Paderweski has no musical talent; the phone booth situation.

70

10 Fuzzy Logic - CSCI(ENGR) 8940

10.1 Overview

10.1.1 What is Fuzzy Logic?

It is a superset of boolean logic, which deals with the concept of “par-
tial truth” or degrees of truth (instead of just yes/no, 1/0, black/white
as in classical logic). It was introduced by Latfi Zadeh. Mathemati-
cians criticize it because it seems to contradict the principle of biva-
lence (any statement must be either true or false).

10.1.2 Components of Fuzzy Logic

Fuzzy input functions, rule logic, output function, defuzzification method.

10.1.3 Why Using Fuzzy Logic?

It is more expressive than classical logic. It can handle imprecise
properties like coldness easily. It is a way of dealing with uncertainty
- that’s why their not only used in fuzzy controllers, but also in expert
systems.

10.2 Fuzzy Systems

10.2.1 Fuzzy Sets / Membership Functions

Depicts the degree of membership for a given object to a general con-
cept. E.g. “tall” might be a continuous curve going up to 6’, where
it reaches 1 - this means that the closer you get to 6’, the closer you
are to being part of the concept “tall” (e.g. 0.9 tall might be 5’9”).
Everybody taller than 6’ is a definite member of this concept.

Fuzzy sets are characterized by the membership function which de-
termines if a given item of the UD should be in the set to a certain
degree (instead of just yes/no).

71

10.3 Fuzzy Inference

1. Fuzzify according to the membership functions; For example in the
water tank controller, there is an input from the sensor that measures
how full the tank is. This could be projected onto two membership
functions: Fullness and Emptyness. If the tank is 0.5 full, it is right in
the middle between those two concepts, so emptyness could be 0.2 and
fullness could be 0.2 as well. Draw diagrams, which can take various
shapes.

Apply logic: IF ... THEN rules. If premises are ANDed, we take the
minimum fuzzy membership value of all included memberships. Let’s
say the rule is IF old-car AND american-car THEN piece-of-junk. And
the fuzzy value of old-car is 0.4 and the one for american-car is 0.8,
then the piece-of-junk conclusion is 0.4 (the MIN of the two values).
If the premises are ORed, we take the maximum, if they are negated,
we take the complement.

Apply implication: this essentially is applying the MIN function to
the fuzzy output membership function. Let’s say in the above exam-
ple, the implication yields 0.4 piece-of-junk, and the output function
is some sort of singleton (cone in the middle of the diagram), then we
mark that cone at 0.4 and cut off the tip. Easy as pie.

Aggregate outputs: In case there are more than one rules firing for
the same output (e.g. the water tank has 2 rules that each say some-
thing about the valve output function, the first says something about
how OPEN it should be, the other one about how CLOSED it should
be, then we put both results into one diagram).

Defuzzify: Take the centroid of the combined output graphs to get
a crisp output value (e.g. in the water tank example, we get a definite
value for the valve position).

10.4 Fuzzy Controllers

10.4.1 Mamdani

Inputs are fuzzizied, then the logical operators are applied. The im-
plication is projected onto a fuzzy output membership function which

72

is usually singleton (like single cone in the output diagram). After ag-
gregating all outputs of the rule firings, the result is defuzzified usually
using the centroid of the area that the output function covers.

10.4.2 Sugeno

Same as Mamdani, except for the way it deals with the output. Instead
of having fuzzy output functions, the output is a linear function of the
inputs. So if P1, P2 and P3 are my fuzzy inputs, the the output is not
the centroid of some dubious output area, but a function f(P1, P2, P3)
that leads to a crisp output value.

11 Knowledge Representation - PSYC 8290

This class was all about reading papers, so I imagine it might be dif-
ferent from year to year. These are the major competing theories to
explain human intelligence.

Intelligence with or without representation?
According to Rodney Brooks, representation is not paramount to in-
telligence. His problem with representation is that it is something we
give, not what exists. We can have intelligent behavior in robotics
which rely on simple response-to-stimuli mechanism. Steels is pretty
much in the same category. He believes in emergent intelligence....intelligence
is in the eye of the observer, not in the system itself. Keywords ... Em-
bodiment and Dynamics, Situatedness and Ecology, Emergent behav-
ior. He builds layers upon layers of behaviour which seem intelligent.

The vision binding problem :
How do we recognize an object? How is it stored in our brain? Then
what happens when we want to retrieve it? So when I look at a coffee
mug, do I take the cylinder body, and the hooked arm and then bind
them together in some way to make it a coffee mug? That is do I have
a dynamic binding of elemental shapes or do I have static image of
a complete coffee mug. Hummel etc believe in static-dynamic bind-
ing. When I am attending to the object, then it is dynamic, else static.

Categories and Hierarchies : Humongous paper by Humphreys

73

and Forde which explores all the category specific disorders in the hu-
man brain and asks, are there any real categories or is it simply that
same region of brain is used for similar functions, hence leading us to
believe in categories. As with everything in psychology and philoso-
phy, there is no right or wrong; pick your side of the fence.

Physical Symbol System : Newell’s PSS. Physical Symbol Hy-
pothesis states that the physical symbol systems performing symbol
manipulation is a necessary and sufficient condition for intelligence.
The SS consists of a memory, a set of operators, a control, an input
and a output.
Grounding problem : How do we ground these symbols to reality? Are
these symbols just arbitrary meaningless symbols? Harnard’s response
is to look at symbols from ground up and not top down, i.e symbols
arise from the nature of objects and our interaction with them. They
are not arbitrary, hence computers will never get it.

Connectionist Network a.k.a NN : Pros:
1. Look like our brain.
2. Have the power to learn from examples which makes them dynamic.
Cons:
1. Cannot generalize outside the training space, hence have no concept
of “Universals”; something which occurs naturally in SS.

Perceptual Symbol Systems They define symbol not as byte of
sound or marks on paper, but as a sum of all our senses. So a symbol
for an object would include representation of its shape, touch, smell
etc. This is the most effective way to get over the symbol grounding
problem. But is it? Now we have to deal with how the binding of so
many different regions of brain happen to produce a symbol or recog-
nize a symbol.

Latent semantic Analysis This theory uses statistical models to
explain human cognition. They believe that using this model they
can explain Plato’s problem. Plato’s problem = We know more words
than we normally encounter.

:

74

12 Decision Support Systems

This class mainly dealt with the development of Executive Informa-
tion Systems. This entailed the use of DSS and Expert Systems in
those systems. The main questions centered around how such a sys-
tem suits a company’s needs and how to deal with executives who
normally have little understanding of IT requirements. So oftentimes
the question arises: why do we need it?

EIS consits of data bases, a comprehensive and intuitive user interface
(different for different users - thin client, thick client), drill-down ca-
pability, extensive reporting, monitor performance on any detail level;
compare, analyze and highlight trends of variables etc.

This requires the extensive use of company data, so data warehousing
often is an important part of any EIS

A good EIS gives the managers are comprehensive overview of what
is going on in the company, whereas traditionally they had to rely on
paper-based reports that took longer to be created. Ideally, the execu-
tive can simply browse through the important information concerning
the company and identify areas of improvement.

EIS - Executive Information System: A computer-based system that
helps with information and decision-making of senior executives, com-
monly considered a specialized form of DSS

DSS - Decision Support System: A computer-based information sys-
tem that helps with the task of decision-making. It usually lacks the
reasoning mechanism of expert systems, even though their domain is
narrow too. DSS are more like tools that help to understand a certain
problem or domain better, such that the human expert can make a
decision more easily, instead of going through tons of data.

MIS - Management Information System: company-wide information
systems based on the network of communication channels within an
organization (includes hardware, software, people and communication
systems such as phones, email, fax etc. and of course the data itself).
It involves collecting, manipulating and disseminating data among this

75

network.

13 Rapid Application Development

Rapid application development (RAD), is a software programming
technique that allows quick development of software applications. Some
RAD implementations include visual tools for development and oth-
ers generate software frameworks through tools known as ”wizards.”
(CASE tools, code generators...)

While RAD tools significantly cut down in software development time,
they sometimes do it while sacrificing application execution speed or
efficiency. Solutions developed via RAD techniques may not be the
optimal solutions for any given problem set.

Goals: Short development time, high quality and low cost.

Fundamentals:
1. Tools - powerful enough to create “good-enough” prototypes
2. People - well-trained on using the tools and understanding of
methodology; small teams
3. Management - managed for speed; extract user’s needs quickly; it-
erative deployment
4. Methodology - activity planning and documentation; quick ways to
solutions should be formalized.

RAD is divided into stages - requirements, design, implementation and
transition. The requirements and design phase are often combined.
Implementation and transition is sometimes combined (Extreme Pro-
gramming - iterative release of prototypes, feedback loop).

Prototyping:
Acquire requirements, build prototype - review prototype - refine re-
quirements - revise prototype - review prototype loop; Allows to dis-
cover fundamental errors earlier, due to high user involvement.

Essential Analysis and Design:
Based on event tables, data flow diagrams and context diagrams (DFD
= entities, events and data storage; context diagrams are entities and

76

how they interact with the system).

Rest of the class dealt with an introduction to ASP.NET, including
connecting to a database and writing a basic web service with .NET

14 Advanced Data Management (XML)

Task was to write an XML textbook for wikibooks. Each student cre-
ated one chapter and edited another one.

We learned about how to express one-one, many-one, many-many and
recursive relationships in XML. We learned how to use XML schema
and style sheets. We learned how to use XPATH expressions. We
learned how to use Java to parse XML files and write input to a SQL
data base. We learned about XUL, a GUI scripting language based
on the Gecko engine that comes with Mozilla. We learned about Web
Services. We learned about SMIL, an XML based way of describing
animations and slide shows. We learned about RDF (resource descrip-
tion framework).

15 Actual Questions

(a) (Dr Potter): Show an assignment of variables that would make
this expression false? The expression was a sentential logic im-
plication. Can you write a computer program that could solve
this? Could you write one that could solve the problem faster
than hard crunching? What is NP/NP hard/NP complete.

(b) (Dr Nute): What is decidable/semi-decidable/undecidable and
give examples of each. Draw a Venn diagram of how they relate.
What does it mean to be decidable (more technical definition).
What does it mean for FOL to be semi-decidable.

(c) (Dr Potter): Write a tail recursive equation in prolog (factorial).

(d) (Dr Potter): How does a GA work? Why will it find an optimal
solution.

(e) (Dr Potter): Explain simulated annealing in terms of GA

(f) (Dr Potter): How GA works in general? (generational vs steady
state)

77

(g) (Dr Potter): Explain crossover (Just simple one)

(h) (Dr Potter): What is schema theory?

(i) (Dr Potter): What is implicit parallelism?

(j) (Dr Potter): How should you deal with a large number of vari-
ables when designing a GA?

(k) (Dr Potter): What is the growth rate of schemas of high fitness
from generation to generation according to the schema theorem?

(l) What is the diagonalization argument?

(m) What papers did you read in Phil lang and mind (not followed
up by any further questions).

(n) Speed round: Chineese room ; Turing test ; Name three AI guys
; Turing machine and decidability

(o) (Dr. Potter): What is the basic technique of AI?

(p) (Dr. Potter): Explain different types of search

(q) (Dr. Potter): Explain alpha-beta pruning
Explain with graph
What is min-max

(r) (Dr. Potter): Explain Iterative Deepning in detail

(s) (Dr. Potter): Explain simulated annealing in detail

(t) (Dr. Potter): Do you know D* search?

(u) (Dr. Potter): A* search
Explain
Why good?
Can it get into infinite loop?
Open List or Closed List?

(v) (Dr. McClendon): Explain why it is good to use sigmoid function
as an activation function in Neural Net? Explain it in terms of
how you change the weight.

(w) (Dr. McClendon): Explain error and weight relation (1 and 2
weights)

(x) (Dr. McClendon): Explain how to calculate change of weight
when you have 2 weights

(y) (Dr. McClendon): said ”Well we have to train NN until the error
is reduced as much as possible” So you need to stop him and then
explain.

78

a. Why this is not the case
b. How do you know when to stop the training?
c. Why do you have to use 3 different sets, not 2?
d. Do you change weights according to Testing and Production
set?

(z) (Dr. McClendon): Assume there are 2 inputs (X and Y) and 1
output
a. Draw membership functions
b. What membership function means?
c. How do you deal with AND and OR operator?
d. Does out put function have to be truncated or is there another
way to handle output? (Mamudani vs Sugeno)

() (Dr. Potter): Assume you are in dessert for a week without any
drink. Now there are 3 cups of potable drink with Certainty
Factor= 0.8, Probability = 0.8, and Fuzzy = 0.8. Which one do
you chose to drink and why.

() ” What are the major blind search strategies in AI?
What is complexity
What is the time/space complexity for the blind searches
Are they complete, optimal?
Under what condition are they complete or optimal?

() What are some informed search strategies (A*)
What is an admissible heuristic?
What is a consistent heuristic?
Are they complete, optimal?
Under what conditions?

() What is the Stroop effect?
How does this relate to Automacity?
Does a small child have the Stroop effect?

() What is encoding specificity?
() Mechanisms of memory encoding and retrival

Recall vs Recognition
() What is a clause, literal, term, function, predicate, definite clause,

negative clause, horn clause?
() What is resolution?

How does it work?
Is it complete?
How does prolog work in relation to these concepts?

79

() What is a generative grammar?

() Create an algorithm (generative grammar) for writing specific
sentences.

() Valid/Sound arguments
The syntactical structures of the arguments?
What is the line b/w the premises and conclusion called?

() Name some of the major techniques discussed in Machine learn-
ing.
You will be given specific ’consulting’ situations and asked what
machine learning techniques you would use/recommend to your
employer and why?

() Create and understand an ANN on the board.
What measure of error does back prop of error use?
How does back prop training of ANN weights compare to using
a GA to evolve the weights?
What are two problems associated with evolving ANN weights
with an evolutionary strategy (GA, EA)?
(Answer) A large number of weights might be too complex for
GA
(Answer) Aliasing

() Explain Turing Test. b. If program passed Turing Test, can you
say it is performed as well as human (Answer in terms of game
context)?

80

