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ABSTRACT 

 Agricultural producers suffer economic losses in crops and livestock due to frost, freeze 

and heat stress. Freezing temperatures are responsible for reduced crop yields due to damage to 

leaves and fruit, especially blueberries and peaches. Heat stress could severely impact livestock, 

and similar temperature conditions could cause heat stroke in humans. Accurate prediction of air 

temperature and dew point temperature can help managers minimize the losses to crops and 

livestock. The research presented in this thesis compares artificial neural network models 

predicting air and dew point temperatures for twelve prediction horizons. The models are 

compared, using mean absolute error and number of prediction anomaly, with current web-based 

models available on the University of Georgia’s Automated Environmental Monitoring Network 

website, www.georgiaweather.net. 
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CHAPTER 1 

INTRODUCTION 

Extreme temperature conditions and weather events are responsible for reduced crop 

production and loss of livestock in most regions across the U.S. Heat stress creates dangerous 

working conditions for the farmers, and it has also been shown to decrease dairy production in 

cows by about 20 to 30% (Jones et al., 1999). In Summer 1995, a heat wave in the Midwestern 

United States caused death of over 1000 people, and deaths were attributed to a combination of 

high air temperature and high dew point temperature (Sandstorm et al, 2004). 1n 1990, 450,000 

ha of fruit trees were impacted by frost damages resulting in $500 million in losses and damages 

(Attaway, 1997). In Florida due to frost damages the citrus industry incurred several billions of 

dollars in losses (Cooper et al., 1964; Martsolf, et al., 1984; Attaway, 1997). In April of 2007, 

50% of Georgia’s peach crop and 80% of its blueberry crop were lost due to frost. Agricultural 

producers can minimize the damages if warning was given ahead of time. Accurate prediction of 

air temperature and dew point temperatures is essential to avoid severe damages to crops.  

The University of Georgia’s Automated Environmental Monitoring Network (AEMN), 

established in 1991, collects meteorological data using the 81 solar powered weather stations 

mainly from rural areas across the state of Georgia (Hoogenboom, 2000). The stations monitor 

weather variables every second and the averages and sums were recorded until March 1996 at 

hourly intervals and since then at fifteen minute intervals. The dew point temperature monitoring 

was added to the stations in 2002. The collected data is downloaded to the AEMN server, and is 

made available through the AEMN website, www.georgiaweather.net.  
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Predictions for air and dew point temperature are made using the data available from 

AEMN and Artificial Neural Networks (ANNs). The air temperature models were developed by 

Smith et al., (2009) and were based on previous research by (Jain et al., 2003; Smith et al., 

2008). The dew point temperature models were developed by Shank et al., (2008). The predicted 

air temperature and dew point temperature are available on the AEMN website. 

The ANN models for air and dew point temperature, which produced the predictions 

available on AEMN website, were developed separately. Thus, a total of 24 individual models 

were used to obtain the air and dew point predictions for twelve hours. Under high relative 

humidity conditions the ANN models often predict air temperature lower than the dew point 

temperature. The observed air temperature may approach the observed dew point temperature 

but is never lower than the dew point temperature. Herein, this prediction error is referred to as 

the prediction anomaly.  

In Chapter 1 the need for more accurate air and dew point temperature predictions is 

discussed. The overall goal of the thesis is stated. The current web-based ANN models are 

briefly introduced. A brief review of the background information and related work is provided. 

In Chapter 2, the individual and the combined model are compared using mean absolute errors 

(MAE) and number of prediction anomalies. Also a methodology to develop the combined 

models is discussed. The combined models were developed and were compared against the 

ANNs developed using previous studies. In Chapter 3, the individual and time series models are 

compared using MAE and the number of prediction anomalies. Also a methodology to develop 

time series models for four, six and twelve hour range is discussed. The time series models were 

developed for air temperature, dew point temperature and for the combined model from Chapter 

2. The models developed in chapter were compared with ANNs developed in previous studies. In 
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Chapter 4 the research conducted in this study was summarized and possible areas for future 

work are suggested. 
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CHAPTER 2 

COMPARISON OF INDIVIDUAL AND COMBINED ANN MODELS FOR PREDICTION OF 

AIR AND DEW POINT TEMPERATURE
1
 

  

                                                 
1
 Nadig, K., G. Hoogenboom, W.D. Potter, and R. W. McClendon. To be submitted to Journal of Applied 

Meteorology and Climatology 
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2.1 ABSTRACT 

Predicted air and dew point temperatures can be valuable in decision making related to 

protecting crops from damage, avoiding heat stress on animals and humans, and in planning 

related to energy management. Current web-based artificial neural network (ANN) models on 

the Automated Environment Monitoring Network (AEMN) in Georgia predict hourly air and 

dew point temperature for twelve prediction horizons, using 24 models. The observed air 

temperature may approach the observed dew point temperature, but never goes below it. Current 

web based ANN models have prediction errors which, when the air and dew point temperatures 

are close, may cause air temperature to be predicted below the dew point temperature. Herein 

this error is referred to as a prediction anomaly. The goal of this research was to improve the 

prediction accuracy of existing air and dew point temperature ANN models by combining the 

two weather variables into a single ANN model for each prediction horizon. The objectives of 

this study were to reduce the mean absolute error (MAE) of prediction and to reduce the number 

of prediction anomalies. The combined models produced a reduction in the air temperature MAE 

for ten of twelve prediction horizons with an average reduction in MAE of 1.93%. However, the 

combined models produced a reduction in the dew point temperature MAE for only six of twelve 

prediction horizons with essentially no average decrease in MAE. The combined models showed 

a marked reduction in prediction anomalies for all twelve prediction horizons with an average 

reduction of 34.1%. The reduction in prediction anomalies ranged from 4.6% at the one-hour 

horizon to 60.5% at the eleven-hour horizon. 
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2.2 INTRODUCTION 

Dew point temperature is the temperature at which humid air, under constant barometric 

pressure, will cause the water vapor to condense into liquid water. The dew point is the 

saturation temperature at which water vapor forms droplets on a solid surface. Hence, dew point 

temperature is always less than or equal to the air temperature. Air and dew point temperature 

predictions could be used to prepare for events such as frost, freeze and heat stress. Frost occurs 

when water vapor in the air gets deposited on a solid surface as ice without turning into liquid 

water during the transition (Perry, 1998). Freeze event occurs when the temperature drops below 

the freezing point of water. Frost damage is caused by the sharp ice crystals which form on the 

surface of the leaves. The crystals damage the cuticle and epidermis of the leaves, making the 

plant vulnerable to a further decrease in air temperature. Frost damage is mainly due to 

crystallization of liquid inside the individual cells (Perry, 1998). Freeze damage occurs when the 

temperature remains below 0°C and the amount of damage depends on the length of the freeze 

event. However, frost damage is usually noticeable due to visible physical impact on the plants. 

Freeze damage mainly impacts tender parts of the plants such as buds and shoots. This damage 

may not be evident immediately (Perry, 1998). Heat stress occurs when the body of a human or 

animal becomes overheated and the body is unable to regulate the temperature to cool down 

(Fauci, 2008). Severe cases of heat stress can cause heat stroke and could lead to death if proper 

and immediate treatment is not provided (Grundstein et al., 2012). Occurrence of heat stress 

could be estimated using dew point temperature (Sandstrom et al., 2004). 

Low temperature conditions reduce crop yields due to frost damage to leaves and fruit, 

which could severely affect fruit crops such as blueberries and peaches. The duration of the 

extreme temperatures also determines the severity of damage that could be caused by the event. 
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Predicting weather variables gives sufficient time to minimize the loss of crops through the use 

of preventive measures such as orchard heaters and irrigation (Hochmuth et al., 1993). In Spring 

of 2002, a large area of blueberry and peach crops in South Georgia was destroyed due to 

unusually severe and unexpected low temperature conditions. In early April of 2007, 50% of 

Georgia's peach crop and 87% of blueberry crop were lost due to frost (Fonsah et al., 2007; 

Warmund et al., 2008). Crop managers can minimize these damages by using orchard heaters, 

irrigation or wind machines if they are given a warning with sufficient time. Accurate weather 

prediction thus plays a crucial role in managing crops.  

Dew point temperature can be used to estimate the amount of moisture in the air, near-

surface humidity, evapotranspiration, relative humidity, and frost. Each of these can have an 

effect on crop production. Plants in arid regions which do not receive frequent rainfall rely on the 

dew formation. The dew point temperature could also give an insight into the long-term climatic 

changes (Robinson, 2000).  

Irrigation is a common method of frost protection, in which a layer of ice forms on the 

flowers insulates the peach and blueberry blossoms from damages due to frost. To effectively 

apply these preventive measures the farmers need accurate predictions about weather events 

several hours in advance. A prediction that fails to indicate the occurrence of a frost event could 

lead to extensive damages to crops. Similarly, a false frost event prediction could cause 

economic loss due to the cost of the frost damage prevention procedures.  

Prediction of air and dew point temperature relies on prior observations of weather 

variables, such as air temperature, relative humidity, rainfall, wind speed, solar radiation, vapor 

pressure, vapor pressure deficit. The infrastructure needed to record the observations is provided 
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by the University of Georgia’s Automated Environment Monitoring Network (AEMN), which 

takes observations every second and calculates an average or total every 15 minutes 

(Hoogenboom, 2000; Hoogenboom et al., 2003). This network of weather stations collects data 

and records essential information required to keep track of the weather conditions, or perform 

analysis and prediction (Hoogenboom, 2005). The Georgia AEMN network currently has over 

80 sites and the data for all the sites are accumulated at a central server located at Griffin, 

Georgia. Previous research has determined the variables needed for prediction of air temperature 

and dew point temperature, amount of historical data needed for accurate prediction and other 

such dependencies (Smith et al., 2009; Shank et al., 2008). The accumulated data are used as 

inputs to currently deployed individual ANN models to predict air and dew point temperature for 

the next twelve hours at an hourly interval. The accumulated data are parsed and the values of 

the weather variables are extracted from the data which includes current and prior values. This 

process is applied to both air and dew point temperature models for each of the twelve horizons. 

The predictions of air temperature and dew point temperature from the 24 models are updated 

every 15 minutes and made available on the AEMN website www.georgiaweather.net website 

(Hoogenboom, 2000). 

The ANN models were initially designed to predict air temperature between Winter and 

early Spring (Jain et al., 2003). The inputs to the air temperature ANNs included five weather 

variables, temperature, relative humidity, wind speed, solar radiation and rainfall. The models 

were developed using data from the first 100 days of the year. The observations were also 

restricted to those in which the temperature at the time of prediction was less than or equal to 

20°C. In addition to the current values for each observation, prior data for 24 hours spaced at one 

hour intervals were also included. Hourly first difference terms for the current and prior weather 
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variables were also included. The models needed 24 hours of prior observations, time of day, 

seasonal terms as input, and the models had 120 neurons in the hidden layer and they predicted 

air temperature for a particular horizon (Jain, 2003). The ANN models were improved by Smith 

(2008) by adding the time of day and day of year as a part of the input, after transforming them 

using fuzzy logic membership functions, with a resulting decrease in MAE ranging from 6% to 

14% for the twelve prediction horizons. However their models were only designed to predict 

between Winter and early Spring and had the same limitations of the previous models. A model 

was developed for each of the twelve prediction horizons. Air temperature ANN models were 

developed to predict year-round by Smith et al. (2009) and implemented on the AEMN website. 

These ANN models were used to generate short term air temperature predictions by the AEMN. 

The ANNs were based on Ward-style network architecture (Ward System Group, 1993) and 

were trained using the error back-propagation (EBP) (Haykin, 1999). The input layer of the 

model consisted of 258 neurons for inputs. The hidden layer of the model consisted of 120 nodes 

equally distributed among the three slabs with hyperbolic tangent, Gaussian and inverse 

Gaussian as the activation functions. The prediction accuracy of the year-round models was 

comparable to the previous Winter models, yet was developed to predict air temperature 

throughout the year. It was found that unanticipated cooling events were the most significant 

obstacle with the year-round models. Several ANN parameters such as the activation function of 

output, number of hours of prior data, additional values and rate of change for observations at 15 

min intervals and the data scaling ranges for both input and output, were varied. However, no 

improvement in accuracy was produced. Bagging and boosting only slightly improved the 

accuracy, but at a high computational cost (Smith et al., 2009).  
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Support Vector Machine (SVM) based regression models were also developed to predict 

air temperature and the accuracy was compared with the existing ANNs (Chevalier et al., 2011). 

For a reduced training set with 300,000 patterns, the SVM models were slightly more accurate 

than the ANN models. However, the ANN models predicted more accurately when the number 

of training patterns was increased to 1.5 million. 

ANN models for twelve hour prediction of dew point temperature were developed by 

Shank et al. (2008) and are included on the AEMN website. Inputs to the dew point ANNs 

included the same weather variables used in the existing air temperature models, plus weather 

variables vapor pressure and vapor pressure deficit, and their hourly rates of change. The models 

were developed similarly to those developed by Smith et al. (2009). Ensemble artificial neural 

network were developed by Shank et al. (2008) to improve the prediction accuracy. 

Approximately four years of weather data were available that included the additional weather 

variables (Shank et al., 2008). The twelve ANN models to predict dew point were implemented 

on the AEMN site similar to the air temperature models. 

A fuzzy expert system, Georgia Extreme-weather Neural-network Informed Expert 

(GENIE), was developed to interpret the predicted air temperature, predicted dew point 

temperature and the observed wind speed in order to generate frost and freeze warning levels 

(Chevalier et al., 2012). The numeric warning levels generate by GENIE provide higher 

granularity than the textual warnings provided by the National Weather Service (NWS). A web 

interface was developed for GENIE to provide a convenient means of access to the warnings. 

The air temperature and dew point temperature models have prediction errors measured 

in terms of mean absolute error (MAE). The MAE for the twelve air temperature models varies 
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between 0.516°C and 1.873°C. Similarly the MAE for dew point temperature models varies 

between 0.508°C and 2.081°C. Under high relative humidity conditions the observed air 

temperature will approach the observed dew point temperature, but never goes below it. Under 

these conditions the predicted air temperature will frequently drop below the predicted dew point 

temperature. Herein this prediction error is referred to as a prediction anomaly. Further 

improvement of the ANN models for air and dew point temperature involves not only reducing 

the MAE but also reducing the number of prediction anomalies. The architecture of the ANNs 

plays a key role in the prediction capabilities of the ANNs. Previous research explored the ANN 

parameters such as the nodes in the hidden layers, varying the number of inputs, and larger 

datasets. Another possible ANN architecture parameter is the number of outputs. Impact on each 

output according to the inputs for ANN based models was examined by Gevrey et al. (2003), and 

the influence of outputs on learning in ANN models was examined by Narendra et al. (1994). 

The current implemented air and dew point temperature ANN models have only one output. 

Additional output could be any weather variable or other prediction horizons. A model that 

predicts more than one weather variable is herein referred to as the combined model. Such a 

model could predict air and dew point temperature for a single or multiple prediction horizons. 

Predicting multiple values in a single model provides an opportunity for interaction among the 

outputs. 

The goal of this research was to improve the prediction accuracy of air temperature and 

dew point temperature ANN models by developing combined models to predict both air and dew 

point temperature for each prediction horizon. The research objectives are as follows: (1) to 

determine if MAE for predicted air temperature and predicted dew point temperature are reduced 

for the combined model in comparison with the individual models, and (2) to determine if the 
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number of occurrences of the prediction anomaly can be reduced using the combined models. 

The hypothesis is that by predicting air and dew point temperature for a single prediction horizon 

in a single combined model, the prediction MAE may be reduced and the number of prediction 

anomalies may decrease. The air and dew point temperature are related weather variables, thus 

predicting both in a single model might aid in reducing the MAE and decreasing the number of 

prediction anomalies. These anomalies do not occur in the observed data thus training the 

combined models might decrease the number of prediction anomalies. 

2.3 METHODOLOGY 

2.3.1 DATA SETS 

The AEMN measures weather variables each second and then stores the averages or 

totals of the values every 15 minutes. Data from the initial sites were available from 1991. 

However, the data selected for this research were from 2002 to 2010 because the dew point 

temperature observations were initiated in 2002. Routines were developed to perform error 

checking on the raw data to remove missing variables, incomplete records, instrument 

malfunctions and erroneous records. The data were partitioned into a model development set and 

a model evaluation set. The two sets were chosen so that they were mutually exclusive of years 

and locations, as shown in Table 1. The model development set was further partitioned into a 

training set and a selection set. The training set was used to train the ANN models using resilient 

propagation (Riedmiller et al., 1993) to adjust the ANN weights. The selection set was presented 

to the ANNs in feed forward mode only to choose the model with the lowest MAE. The chosen 

model was treated as the final model for a given prediction horizon. The training set and 

selection set were mutually exclusive by locations. The model evaluation set was presented to 

the ANNs in feed forward mode and the resulting MAE was used as a metric to compare with 
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other models. The training set consisted of 297,974 patterns, the selection set had 306,972 

patterns and the evaluation set included 507,347 patterns. This would be strongest evaluation of 

the models, since the final ANNs will be evaluated with data from sites and years which were not 

used in model development. The approach to partitioning the data was modified from the 

partitioning used to develop the current web-based ANN temperature models in order to include 

the additional sites and years. The current web-based ANN air temperature models were 

developed with data from 1997 to 2005, and over 20 locations (Smith et al., 2009). The current 

web-based ANN dew point temperature models were developed with data from 2002 to 2005, 

with over 20 locations (Shank et al., 2008). Additional years from 2006 to 2010 and locations 

were included herein to provide for more robust models. 

The data partitions were subjected to constraints to ensure a fair distribution of patterns. 

The locations and years involved in the partitioning were chosen to minimize the difference in 

the range and average air temperatures between model development and evaluation. The years 

and locations were distributed among the sets until the difference in the range and average air 

temperatures among the three sets was minimized. This was done to ensure that the model 

development set and the model evaluation set were representative of the population. 

Input and output patterns were generated from each of the datasets by transforming and 

scaling the data. The input patterns consisted of current and 24-hours of prior hourly values of air 

temperature, relative humidity, rainfall, wind speed, solar radiation, vapor pressure, vapor 

pressure deficit and their hourly rates of change. Each input pattern also had the time-of-day and 

day-of-year cyclic values obtained by using fuzzy membership functions (Smith et al., 2008). 

The pattern included observed air and dew point temperature as target for the twelve prediction 

horizons. All the values in the pattern were scaled to the range [-0.9, 0.9] since the domain of 
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operation of the activation functions used in the ANNs was in the range [-1, 1]. The range [-0.9, 

0.9] was chosen since it captured the range of values for each of the variables and transformed 

them to the domain of the activation functions. Inverse scaling was used to transform value of 

prediction from the domain of the activation function to the domain of the predicted variable. 

There were a total of 358 inputs and two output values per pattern. Patterns were generated for 

each of the twelve prediction horizons and the three data partitions. 

2.3.2 MODEL DEVELOPMENT 

 All models were developed using the Ward-style network architecture (Ward System 

Group, 1993), consisting of a three layered neural network with input, hidden and output layers. 

The input layer consisted of neurons with linear activation functions. The hidden layer consisted 

of 120 neurons in three equally sized slabs of 40 neurons. The neurons in the slabs had 

hyperbolic tangent, Gaussian and inverse Gaussian activation functions. The output layer 

neurons used the symmetric sigmoid activation function. Only the number of inputs or outputs 

varied with the models. 

Ten instances of each model were trained. Each instance is an ANN whose initial weights 

were selected randomly. Although all the model instances were presented with the same set of 

patterns the order was randomized. This provided the training algorithm a different starting point 

for each instance. Thus the training process took a different path while searching for the set of 

weights which could minimize the prediction error and improve the accuracy of the model. 

Selecting among multiple instances made it more likely that the training algorithm will approach 

the optimal set of ANN weights (Smith et al., 2009). 
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Resilient propagation (R-Prop) training algorithm was used to train the models 

(Riedmiller et al., 1993). R-Prop tends to converge faster and is more stable in comparison with 

the back-propagation algorithm (Anastasiadis et al., 2005; Igel et al., 2003). Resilient 

propagation is similar to back-propagation algorithm except that the error update in R-Prop is 

dependent on a constant value. This constant value exists for each synapse and is updated by 

increasing or decreasing the constant based on the sign of the error value. If the sign of the error 

value changes frequently then the magnitude of the constant value is decreased. If the sign does 

not change, then the magnitude of constant value is increased. Resilient propagation does not 

depend on the derivative of the activation function (Riedmiller et al., 1993). EnCog 3.0.0.0 

(runtime v2.0.50727) package was used to develop and train the models.  

All models were trained using the training dataset until the change in error was less than 

0.01%. After training the models, the ten instances were presented with the selection set in feed 

forward mode to obtain the selection set MAEs. The instance with the lowest selection set MAE 

was chosen. That completed the model development part of the process. The selected models 

were then presented with the evaluation set once in feed forward mode to obtain the evaluation 

set MAE.  

Individual ANNs to predict air temperature and dew point temperature were developed 

using the partitioned data as a base line for the prediction accuracy in terms of MAE. These 

individual models correspond to the existing air temperature and dew point temperature ANN 

models currently implemented on the AEMN. However, they take advantage of additional years 

and sites. The individual models have only one output since they were designed to predict either 

air temperature or dew point temperature. Each model was developed to predict a single weather 

variable for a single horizon. Hence, there were a total of 24 models, twelve for air temperature 
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and twelve for dew point temperature. The individual air temperature model had 258 input 

neurons and one output neuron based on Smith et al. (2009). The dew point temperature model 

had 358 input neurons and one output neuron, based on Shank et al. (2008). In this research only 

combined model that predict air and dew point temperature for a single prediction horizon are 

considered. The combined model had 358 input neurons and the two outputs predicted air 

temperature and dew point temperature. The MAEs for individual and combined models were 

calculated and compared. 

While obtaining the evaluation set MAEs for both individual and combined models, the 

occurrence of prediction anomalies was recorded. The predicted air temperature and the 

predicted dew point temperature obtained from the individual models of corresponding 

prediction horizon were compared. The number of instances where the predicted air temperature 

was lower than the predicted dew point temperature was calculated for each prediction horizon. 

Similarly the number of instances of the anomaly was computed for the combined model. The 

number of instances of anomaly for individual and combined model was calculated and 

compared. The day of the year was used to compare prediction anomalies by seasons. The count 

of prediction anomalies was grouped by seasons and prediction horizons to analyze the seasonal 

variation in the ANN models. 

2.4 RESULT AND DISCUSSION 

The air temperature and dew point temperature MAE values were obtained by presenting 

the evaluation dataset to the individual and combined ANNs in feed forward mode only as 

shown in Table 2. For air temperature, ten of twelve combined models produced an MAE lower 

than the individual models. The combined model showed an average reduction in MAE for air 

temperature by 1.93%. The two prediction horizons in which the individual model provided a 
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lower MAE were the seven and eleven hour horizons. The Figure 1 shows the generally observed 

trend of increasing MAEs for longer horizons, with a slight decrease in MAEs for air 

temperature prediction from the combined model. This suggests that the combined model was 

able to predict the air temperature with a lower MAE when predicting both air temperature and 

dew point temperature. From Table 2, six of twelve combined models predicted the dew point 

temperature with lower MAE than the individual dew point temperature models. The combined 

model produced a slight increase in MAE and the average % increase in MAE was 0.08%. Both 

the individual and the combined models maintained the expected trend of increasing MAE with 

longer horizons as shown in Figure 2. From Table 2, of the ten combined models with lower 

MAE for air temperature, five also produced a lower MAE for dew point temperature in 

comparison with individual models.  

Second approach to assess the accuracy of the ANNs was performed by determining the 

number of prediction anomalies found with individual and combined models, as shown in Table 

3. The models were presented with the evaluation set in feed forward mode to count the number 

of prediction anomalies. The evaluation set had 507,347 patterns, and the number of prediction 

anomalies for the worst case was 6.55% of the evaluation set patterns. Twelve of twelve 

combined ANNs model showed a reduction in the number of prediction anomalies over the 

individual models. The average reduction in prediction anomalies for the combined model was 

34.1%, and the reduction ranged from 4.6% at the one-hour horizon to 60.5% at the eleven-hour 

horizon. The Figure 3 shows a comparison between the number of prediction anomalies found in 

individual and combined models for each prediction horizon. The highest number of prediction 

anomalies occurred at the one hour horizon for both individual and combined models. The 
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combined models provided a slight reduction in the number of prediction anomalies for the one-

hour horizon. Other horizons showed a marked reduction in the number of prediction anomalies. 

The models were further examined to compare the occurrence in prediction anomalies by 

seasons. The prediction anomalies were classified into following seasons: Winter (Dec – Feb), 

Spring (Mar – May), Summer (Jun-Aug) and Fall (Sep – Nov). Figure 4 compares the prediction 

anomalies for individual and combined models for all twelve prediction horizons, classified by 

seasons. The highest number of prediction anomalies occurred in the Winter season, with 

reduction in prediction anomalies of 23.3%. The lowest number of prediction anomalies occurred 

in the Spring season, with a reduction of 41.6%. In Summer, the combined models produced the 

highest reduction in the number of prediction anomalies with a value of 43.1%. In Fall, the 

number of prediction anomalies was slightly higher than the number of prediction anomalies 

produced during both Spring and Summer, and the combined models produced a reduction in the 

number of anomalies by 34.6%. The number of prediction anomalies for the individual and 

combined ANNs by season and horizons is shown in Table 4. In Winter, eleven of twelve 

combined models reduced the number of prediction anomalies in comparison with the individual 

models. During the Spring season only nine of twelve combined models showed reduction in the 

number of prediction anomalies. Consistent reduction was produced in Summer where twelve of 

twelve combined models showed reduction and in Fall ten of twelve combined models showed 

reduction. The total row shows sum of the number of prediction anomalies that occurred for all 

prediction horizons for each season using the evaluation set.  

The anomalies from the combined models were further analyzed to determine the extent 

to which the air temperature prediction dropped below the predicted dew point temperature or 

severity. The severity of the prediction anomaly was classified using increments of 0.25°C as 
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shown in Table 5. Green indicates few or no prediction anomalies. Yellow indicates that the 

number of prediction anomalies is in the range greater than 95 and less than or equal to 2000. 

Red or orange indicates that the number of prediction anomalies is greater than 2000. The Table 

5 shows that a large portion of the anomalies are between 0°C and 1.5°C. The combined models 

produced a total of 146,466 prediction anomalies. The number of prediction anomalies with 

severity greater than 1°C was 11395, or 0.2% of the number of predictions in the evaluation set 

for all prediction horizons. The two-hour, four-hour and twelve-hour horizon models did not 

generate any anomalies greater than 2.25°C. The one-hour, eight-hour and nine-hour horizon 

models did not generate any anomalies greater than 3.25°C. Only 105 of the 146,466 prediction 

anomalies, for the combined models across all twelve prediction horizons, had severity greater 

than 3°C. The Table 6 shows a similar analysis of the individual models. Green indicates few or 

no prediction anomalies. Yellow indicates that the number of prediction anomalies is in the range 

greater than 95 and less than or equal to 2000. Red or orange indicates that the number of 

prediction anomalies is greater than 2000. The individual models showed higher prevalence of 

prediction anomalies, produced a total of 216,142 prediction anomalies. Approximately 10.7%, 

or 23067 prediction anomalies, of the total number of prediction anomalies across all twelve 

prediction horizons had severity greater than 1°C. However, 310 of the 216,142 prediction 

anomalies, for the combined models across all twelve prediction horizons, had severity greater 

than 3°C. The combined models showed an overall reduction of 32.2% in the total number of 

prediction anomalies across all twelve horizons. Since the combined models produced similar 

MAEs as the individual models and the combined models considerably reduced the prediction 

anomalies, based on these two metrics the results suggests that combined models are more 

accurate than individual models. 



 

20 

 

The Figure 5 shows the scatter plot for the air temperature predictions using the 

combined model for the prediction horizons of one, three, six, nine and twelve. As expected the 

observed scatter about the 1:1 line increases and the R2 value decreases as the prediction horizon 

increases. The plot for the one hour horizon, Figure 5.a, shows a narrower scatter, which 

indicates a large portion of the predicted air temperatures are in close proximity to the observed 

value. The regression line had a slope of 0.96, the intercept was 0.69 and the R2 was 0.98. At 

low observed temperatures the model tends to over-predict and at high observed temperatures the 

model tends to under-predict. This trend is observed in other horizons as well. The scatter plot 

for three-hour horizon model, shown in Figure 5.b, the regression line had a slope of 0.97, the 

intercept was 0.63 and the R2 was 0.97. The scatter plot for six-hour model had a slightly greater 

distribution about the 1:1 line as compared with the plot for three-hour horizon model, as shown 

in Figure 5.c. The regression line had a slope of 0.94, and the intercept was 1.21, and the R2 was 

0.95. The nine hour scatter plot had observably greater distribution about the 1:1 line, as shown 

in Figure 5.d. The regression line had a slope of 0.91, and the intercept was 1.6, and the R2 was 

0.92. This was expected as the MAEs of the six and nine models are higher than that of the one 

hour model. Lastly, the twelve hour scatter plot had markedly greater distribution about the 1:1 

line, as shown in Figure 5.e, and it was the highest distribution among the other horizons. The 

regression line had a slope of 0.9, and the intercept was 1.8, and the R2 was 0.91.  

Dew point temperature predictions from the combined model were used to generate the 

scatter plots shown in Figure 6, for the prediction horizons one, three, six, nine and twelve. The 

low observed temperatures were over-predicted and high observed temperatures were under-

predicted. The plots show a similar trend that was observed in air temperature scatter plots. The 

one hour horizon plots, Figure 6.a, shows a narrow dense region but a much greater distribution 
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about the 1:1 for the low density region as compared with the scatter plot of one hour horizon air 

temperature model shown in Figure 5.a. In the scatter plot for one-hour horizon dew point 

temperature model, as shown in Figure 6.a, the regression line had a slope of 0.97, the intercept 

was 0.4 and the R2 was 0.98. In the scatter plot for three-hour horizon model, as shown in Figure 

6.b, the dense region was similar to dew point temperature scatter plot for the one-hour horizon 

model, but showed greater distribution about the 1:1 line for the low density region. The 

regression line had a slope of 0.97, the intercept was 0.26 and the R2 was 0.97, for the three-hour 

horizon model. Both the scatter plots of one and three hour horizons for dew point temperature 

are narrow compared to the six, nine and twelve hour horizons scatter plots. The scatter plot for 

the six-hour model, as shown in Figure 6.c, had greater distribution about the 1:1 line as 

compared to that of the three-hour model. The regression line had a slope of 0.94, the intercept 

was 0.64 and the R2 was 0.94. The scatter plots for nine and six hour model were similar in the 

distribution about the 1:1 line. However, the nine-hour model, as shown in Figure 6.d, had 

slightly greater distribution about the 1:1 line and the regression line had a slope of 0.91, the 

intercept was 0.95 and the R2 was 0.91. Lastly, the scatter plot for twelve-hour model, as shown 

in Figure 6.e, had the highest distribution about the 1:1 line. The slope of 0.88 was the lowest 

and the intercept of 1.23, was the highest among the other horizons. The R2 for the twelve-hour 

horizon model was 0.88, which was lowest among the other horizons. The dew point temperature 

scatter plots had greater distribution about the 1:1 line as compared with the corresponding air 

temperature scatter plots possible because of higher MAEs of the dew point temperature models. 
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2.5 SUMMARY AND CONCLUSIONS 

Combined air temperature and dew point temperature models were developed for the 

twelve prediction horizons. The air temperature predictions from the combined model showed 

reduction in MAE for ten of twelve prediction horizons over the corresponding individual 

models, with a corresponding average reduction in MAE of 1.9%. The dew point temperature 

predictions from the combined model showed reduction in MAE for six of twelve prediction 

horizons over the corresponding individual models. However, averaging over the twelve 

prediction horizons showed that there was essentially no difference in MAE for the dew point 

temperature predictions. The combined models showed a marked reduction in the number of 

prediction anomalies as compared with the individual models. Also, experiments showed that the 

anomalies occurred most often in Winter and least frequently in Spring season for individual and 

combined models. The combined models reduced prediction anomalies for each season, with 

reduction ranging from 23.3% in Winter to 43.1% in Summer. 

In this research, the ANN architecture used was based on previous work by Smith et al. 

(2009) and Shank et al. (2008). In future research the ANN parameters such as activation 

functions, number of nodes in the hidden layer, and distribution of nodes between the slabs of the 

Ward-style model could be explored for improvement in MAE or reduction in the number of 

anomalies. Also, longer duration of prior data, the inclusion of other weather variables, and 

different resolution of input data could be explored. Alternate architectures such as recurrent 

neural networks, hybrid neural networks, and alternative training algorithms such as scaled 

conjugate gradient propagation, quick-propagation, Manhattan-propagation, Lavenberg-

Marquardt algorithm and evolutionary training algorithms could be applied. The training data 

could be further examined so that the patterns are distributed evenly for the various temperature 
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values. Future work could also be focused on combining the models for various prediction 

horizons into a single model. This could include combining a time series of one through twelve 

prediction horizons for air temperature or dew point temperature or both into a single model. 
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Table 1: Locations used for training, selection and evaluation datasets. 

Model Development Model Evaluation 

2002, 2003, 2004, 2005, 2007, 2009 2006, 2008, 2010 

Training Set Selection Set Evaluation Set 

ATLANTA ALMA ALAPAHA 

BRUNSWICK ARABI ALPHARETTA 

CALLAWAY BLEDSOE ARLINGTON 

COVINGTON BOWEN ATTAPULGUS 

DALLAS DEMPSEY BLUE RIDGE 

DAWSON DIXIE BYROMVILLE 

DEARING EATONTON CAIRO 

DULUTH GEORGETOWN CALHOUN 

HOMERVILLE GRIFFIN CAMILLA 

OAKWOOD HOWARD CLARKS HILL 

SHELLMAN JEFFERSONVILLE CORDELE 

TIFTON LAFAYETTE DANIELSVILLE 

TIGER PLAINS DOUGLAS 

WOODBINE SPARTA ELLIJAY 

- TENNILLE HHERC
*
 

- - MOULTRIE 

- - NAHUNTA 

- - NEWTON 

- - ODUM 

- - OSSABAW 

- - SASSER 

- - SAVANNAH 

- - VALDOSTA 

- - VIDALIA 
*
Hooks-Hanner Environmental Resource Center (HHERC) 
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Table 2: Comparison of the individual ANN models for air and dew point temperature 

with combined models, evaluation dataset. 

Horizons Air Temperature MAE °C Dew Point Temperature MAE °C 

Individual Combined % Reduction 

in MAE 

Individual Combined % Reduction 

in MAE 

1  0.889 0.846 4.84 0.818 0.842 -2.93 

2  0.959 0.942 1.77 0.890 0.880 1.12 

3  1.170 1.080 7.69 1.073 1.081 -0.75 

4  1.262 1.256 0.48 1.261 1.264 -0.24 

5  1.413 1.383 2.12 1.424 1.416 0.56 

6  1.565 1.543 1.41 1.600 1.585 0.94 

7  1.617 1.621 -0.25 1.711 1.720 -0.53 

8  1.707 1.705 0.12 1.836 1.809 1.47 

9  1.825 1.787 2.08 1.954 1.965 -0.56 

10 1.848 1.830 0.97 2.052 2.030 1.07 

11 1.916 1.918 -0.10 2.155 2.151 0.19 

12 2.016 1.975 2.03 2.247 2.276 -1.29 

Models 2/12 10/12 (Avg.) 1.93 6/12 6/12 (Avg.) -0.08 
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Table 3: Number of prediction anomalies for individual and combined model, model 

evaluation dataset.
2
 

Horizon 
Individual Combined 

% Reduction 
# % # % 

1 33252 6.6 31723 6.3 4.6 

2 21161 4.2 12857 2.5 39.24 

3 14367 2.8 7331 1.4 48.97 

4 18775 3.7 11142 2.2 40.66 

5 17885 3.5 11394 2.2 36.29 

6 16593 3.3 11989 2.4 27.75 

7 19345 3.8 15054 3.0 22.18 

8 15595 3.1 13292 2.6 14.77 

9 11845 2.3 8281 1.6 30.09 

10 12815 2.5 9061 1.8 29.29 

11 21833 4.3 8619 1.7 60.52 

12 12676 2.5 5723 1.1 54.85 

Total 216142  146466  (Average) 34.10 

 

  

                                                 
2
 The prediction anomalies were obtained after presenting the models with all 507,347 patterns from the evaluation 

set. 
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Table 4: Comparison of number of anomalies in individual (indv.) and combined (comb.) 

models by seasons, model evaluation dataset.
3
 

Horizons 

Winter Spring Summer Fall 

Indv. Comb. Indv. Comb. Indv. Comb. Indv. Comb. 

1 17570 21310 2610 1581 5565 4842 7507 3990 

2 9168 7570 1002 575 5060 1433 5931 3279 

3 6814 3985 1109 402 2037 1233 4407 1711 

4 6267 4490 1296 133 5619 2911 5593 3608 

5 7709 6068 554 899 5405 1347 4217 3080 

6 6897 4797 1373 808 4231 2176 4092 4208 

7 6975 5262 705 322 5239 4283 6426 5187 

8 4795 3883 433 815 4103 4073 6264 4521 

9 5571 2714 977 310 1971 1415 3326 3842 

10 6345 3201 527 919 2009 1623 3934 3318 

11 7106 2399 987 396 5037 1297 8703 4527 

12 3704 2515 863 107 1138 333 6971 2768 

Total 88921 68194 12436 7267 47414 26966 67371 44039 

 1/12 11/12 3/12 9/12 0/12 12/12 2/12 10/12 

 

  

                                                 
3
 The prediction anomalies were obtained after presenting the models with all 507,347 patterns from the evaluation 

set. 
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Table 5: Distribution of prediction anomalies by severity of error, combined models, model 

evaluation dataset.
4
 

Horizons 

1 2 3 4 5 6 7 8 9 10 11 12 (
°
C)       (Hr) 

TDP – TA 

0.00 - 0.25 10034 7164 4439 7536 5814 5830 6283 6008 4742 4306 3967 3366 

0.25 - 0.50 7678 3176 1705 2563 2694 3036 3996 3510 2183 2419 2334 1520 

0.50 - 0.75 5279 1515 710 712 1258 1534 2279 2009 769 1177 1188 547 

0.75 - 1.00 3645 631 267 204 631 732 1153 996 244 544 577 167 

% severity 

0.00 - 1.00 
5.25 2.46 1.40 2.17 2.05 2.19 2.70 2.47 1.56 1.66 1.59 1.10 

1.00 - 1.25 2320 267 117 76 327 391 616 454 166 292 261 66 

1.25 - 1.50 1424 75 44 35 241 205 313 175 81 155 137 28 

1.50 - 1.75 780 19 22 11 126 114 161 75 29 77 62 20 

1.75 - 2.00 372 8 10 4 97 67 99 41 31 42 39 8 

% severity 

0.00 - 2.00 
6.22 2.53 1.44 2.20 2.21 2.35 2.94 2.62 1.63 1.78 1.69 1.13 

2.00 - 2.25 137 2 1 1 68 37 59 11 16 15 21 1 

2.25 - 2.50 32 0 4 0 39 18 38 8 9 17 10 0 

2.50 - 2.75 16 0 6 0 26 11 20 2 3 4 13 0 

2.75 - 3.00 5 0 2 0 19 8 11 2 7 7 4 0 

% severity 

0.00 - 3.00 
6.25 2.53 1.44 2.20 2.24 2.36 2.96 2.62 1.63 1.78 1.70 1.13 

3.00 - 3.25 1 0 2 0 19 0 9 1 1 2 3 0 

3.25 - 3.50 0 0 2 0 14 4 5 0 0 3 0 0 

3.50 - 3.75 0 0 0 0 6 1 3 0 0 0 3 0 

3.75 - 4.00 0 0 0 0 8 1 3 0 0 1 0 0 

4.00 - 4.25 0 0 0 0 6 0 0 0 0 0 0 0 

4.25 - 4.50 0 0 0 0 0 0 5 0 0 0 0 0 

4.50 - 4.75 0 0 0 0 1 0 0 0 0 0 0 0 

4.75 - 5.00 0 0 0 0 0 0 1 0 0 0 0 0 

Total 31723 12857 7331 11142 11394 11989 15054 13292 8281 9061 8619 5723 

 

  

                                                 
4
 The prediction anomalies were obtained after presenting the models with all 507,347 patterns from the evaluation 

set. 
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Table 6: Distribution of prediction anomalies by severity of error, individual models, model 

evaluation dataset.
5
 

Horizons 

1 2 3 4 5 6 7 8 9 10 11 12 (°C)      (Hr) 

TDP – TA 

0.00 - 0.25 11105 10227 9349 8464 7660 7635 7626 6080 5334 4836 6366 5941 

0.25 - 0.50 8125 5816 2517 5065 4682 4741 5243 4112 2531 2994 4757 2567 

0.50 - 0.75 5583 2853 1168 2596 2572 1357 3168 2529 1990 1740 3472 1513 

0.75 - 1.00 3725 1276 973 1311 1380 1422 1550 1399 1029 1108 2445 1143 

% severity 

0.00 - 1.00 
5.62 3.98 2.76 3.44 3.21 2.99 3.47 2.78 2.15 2.10 3.36 2.20 

1.00 - 1.25 2220 555 257 658 770 851 861 656 551 716 1659 752 

1.25 - 1.50 1250 231 83 327 405 417 432 342 222 474 1148 571 

1.50 - 1.75 634 118 15 185 198 115 237 183 109 332 654 116 

1.75 - 2.00 295 46 4 108 88 42 108 110 61 220 461 51 

% severity 

0.00 - 2.00 
6.49 4.16 2.83 3.69 3.50 3.27 3.79 3.04 2.33 2.45 4.13 2.49 

2.00 - 2.25 158 27 0 38 52 9 65 68 12 144 321 11 

2.25 - 2.50 79 5 1 14 26 3 24 48 3 100 176 7 

2.50 - 2.75 32 4 0 8 23 0 17 20 0 67 128 3 

2.75 - 3.00 16 1 0 1 10 1 6 16 2 30 82 1 

% severity 

0.00 - 3.00 
6.55 4.17 2.83 3.70 3.52 3.27 3.81 3.07 2.33 2.52 4.27 2.50 

3.00 - 3.25 12 2 0 0 5 0 3 15 1 15 52 0 

3.25 - 3.50 6 0 0 0 4 0 2 9 0 10 37 0 

3.50 - 3.75 5 0 0 0 3 0 2 3 0 8 28 0 

3.75 - 4.00 7 0 0 0 0 0 1 4 0 8 12 0 

4.00 - 4.25 0 0 0 0 2 0 0 1 0 4 13 0 

4.25 - 4.50 0 0 0 0 5 0 0 0 0 3 8 0 

4.50 - 4.75 0 0 0 0 0 0 0 0 0 2 3 0 

4.75 - 5.00 0 0 0 0 0 0 0 0 0 1 5 0 

5.00 - 5.25 0 0 0 0 0 0 0 0 0 0 1 0 

5.25 - 5.50 0 0 0 0 0 0 0 0 0 1 1 0 

5.50 - 5.75 0 0 0 0 0 0 0 0 0 0 2 0 

5.75 - 6.00 0 0 0 0 0 0 0 0 0 1 0 0 

6.00 - 6.25 0 0 0 0 0 0 0 0 0 0 1 0 

6.25 - 6.50 0 0 0 0 0 0 0 0 0 0 1 0 

6.50 - 6.75 0 0 0 0 0 0 0 0 0 1 0 0 

Total 33252 21161 14367 18775 17885 16593 19345 15595 11845 12815 21833 12676 

                                                 
5
 The prediction anomalies were obtained after presenting the models with all 507,347 patterns from the evaluation 

set. 
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Figure 1. Comparison of air temperature MAEs for prediction horizons, individual and 

combined models, model evaluation set. 

 

 
Figure 2. Comparison of dew point temperature MAEs for prediction horizons, individual 

and combined models, model evaluation dataset. 
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Figure 3. Comparison of number of prediction anomalies for individual and combined 

models, model evaluation dataset.
6
 

 

 
Figure 4. Comparison of anomalies by season, summed over the twelve prediction horizons, 

model evaluation dataset.
6
 

  

                                                 
6
 The prediction anomalies were obtained after presenting the models with all 507,347 patterns from the evaluation 

set. 
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Figure 5. Predicted and observed air temperature, combined model, model evaluation 

dataset. 
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Figure 6. Predicted and observed dew point temperature, combined model, model 

evaluation dataset. 
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CHAPTER 3 

AIR AND DEW POINT TEMPERATURE PREDICTION USING TIME SERIES OUTPUT 

ARTIFICIAL NEURAL NETWORKS
7
 

  

                                                 
7
 Nadig, K., W. D. Potter, G. Hoogenboom and R. W. McClendon. To be submitted to Environmental Modelling & 

Software 
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3.1  ABSTRACT 

Decision making in the management of agricultural production often depends on 

accurately predicted weather condition. Frost, freeze and heat stress are few examples of weather 

related events which are of interest to people involved in agricultural production. Currently use 

24 models to predict Hourly air and dew point temperatures up to 12 hours ahead, on the 

Automated Environment Monitoring Network (AEMN) in Georgia using web-based artificial 

neural network (ANN) models. Individual models predict each temperature variable at each 

prediction horizon. The current 24 web-based ANN models have errors associated with the 

predictions. Under high relative humidity conditions, the air temperature approaches but does not 

go below the observed dew point temperature. A prediction anomaly occurs when the predicted 

air temperature is lower than the predicted dew point temperature. The goal of this research was 

to improve the prediction accuracy of existing air and dew point temperature ANN models by 

predicting the time series output for various prediction horizons using a single ANN model. The 

research objectives of this study were to determine if the time series models could reduce the 

mean absolute error (MAE) of prediction and to reduce the number of prediction anomalies. The 

time series considered were four-hours, six-hours and twelve-hours. The combined four-hour 

time series models produced lowest mean absolute error (MAE) for four of twelve prediction 

horizons for air temperature, with average reduction of 2.63% and the MAEs ranged from 

0.65°C at one-hour to 1.98 at twelve-hour horizon. It produced lowest MAEs for five of twelve 

prediction horizons for dew point temperature, with average reduction of 2.22% and the MAEs 

ranged from 0.6°C at one-hour to 2.23°C at twelve-hour horizon. The combined four-hour time 

series models produced lowest number of prediction anomalies for two of twelve models, with 
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average reduction of 25.7%. The combined four-hour time series model produced overall 

improvement in reduction of both MAEs and prediction anomalies. 

3.2 INTRODUCTION 

Air temperature is the ambient temperature indicated by a thermometer exposed to the air 

but sheltered from direct solar radiation. The dew point temperature is the temperature at which 

the water vapor in humid air under constant barometric pressure is condensed into liquid, 

resulting in formation of droplets on solid surface. Air and dew point temperature predictions 

could be used to anticipate weather events. Frost is a type of weather event which occurs when 

water vapor gets deposited, on solid surfaces, as ice without transitioning into liquid (Perry, 

1998). The surface of the leaves is damaged by the formation of sharp ice crystals due to frost. 

Damages to the epidermis of leaves and the epidermal cuticle can make the plants susceptible to 

low air temperature conditions. Crystallization of liquid inside the individual cells causes the 

frost damage (Perry, 1998). Freeze is another type of weather event which occurs when the 

temperature drops below the freezing point of water. If the air temperature remains below 0°C it 

can cause freeze damage and the duration of the freeze event determines the amount of damage. 

Noticeable or visual damage to the plants is caused by frost. Freeze damage usually occurs in the 

tender regions of the plants, and may not show any visible signs (Perry, 1998). Heat stress causes 

temperature regulation issues due to overheating in humans or animals (Fauci, 2008) and under 

extreme circumstances may cause death (Grundstein et al., 2012). The dew point temperature is 

useful in estimating the occurrence of heat stress (Sandstrom et al., 2004). 

Predicting weather variables could give sufficient time to managers to minimize frost 

losses through the use of preventive measures such as orchard heaters and irrigation (Hochmuth 

et al., 1993). A large area of blueberry and peach crops in South Georgia was destroyed due to 



 

41 

 

unusually severe and unexpected low temperature conditions in spring of 2002. In early April of 

2007, 50% of Georgia's peach crop and 87% of blueberry crop were lost due to frost (Fonsah et 

al., 2007; Warmund et al., 2008). Orchard heaters, irrigation and wind machines are few of the 

techniques used by the crop produces to reduce the damage to the crops. In crop management, 

accurate prediction of weather variables crucial to the decision making process.  

The estimation of the amount of moisture in the air, near-surface humidity, 

evapotranspiration, relative humidity, frost could be done using air and dew point temperature. 

Dew formation is especially important to plants which thrive in the arid regions. The dew point 

temperature could also give an insight into the long-term climatic changes (Robinson, 2000). 

One of the common modes of crop protection against frost is irrigation, especially for 

peach and blueberry blossoms. The water from the irrigation process forms a layer on the surface 

of the blossoms insulating them from the dropping air temperature, protecting the blossoms from 

damage due to frost. Crop managers could benefit from the predictions as it allows them to take 

preventive measures and reduce the damages. Thus, accurate prediction of weather events is 

essential and must be provided several hours in advance. Failure to predict a weather event or 

false positives can also lead to losses due to damages to crops or expenses incurred applying the 

frost damage prevention.  

Air and dew point temperature predictions are based on current and prior observations of 

weather variables, such as air temperature, relative humidity, rainfall, wind speed, solar 

radiation, vapor pressure, vapor pressure deficit. Monitoring, tracking and recording weather 

variables require equipment and data transfer medium. The Georgia Automated Environment 

Monitoring Network (AEMN) provides the needed infrastructure. AEMN keeps track of weather 
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variables by collecting measurement every second and the averages and sums are recorded at 15 

minute intervals (Hoogenboom, 2000; Hoogenboom et al., 2003). The network transfers data 

from 81 sites to a server at Griffin, Georgia, and accumulated data is used by AEMN for 

analysis, predictions, and tracking weather conditions (Hoogenboom, 2005). The variables 

needed for prediction of air temperature and dew point temperature, amount of historical data 

needed for accurate prediction and other such dependencies were determined in previous 

research (Smith et al., 2009; Shank et al., 2008). Current web-based ANN models use the 

accumulated data as inputs to generate predicted air and dew point temperature values for next 

twelve hours at hourly intervals. The weather variables are extracted from the accumulated data 

which includes current and prior observations. The predicted air and dew point temperature 

values are disseminated through the AEMN website. The predictions are updated every 15 

minutes (Hoogenboom, 2000). 

Current web-based ANN models for air temperature were developed by Smith et al. 

(2009) and implemented on the AEMN website. Weather variables of temperature, relative 

humidity, wind speed, solar radiation and rainfall were used as the inputs to the air temperature 

ANNs. Prior data for 24 hours and current values for each observation at one-hour intervals were 

also included as inputs. The inputs also included hourly first difference terms for the current and 

prior weather variables, time of day and day of the year. The ANN models predicted air 

temperature for a particular horizon, and a model was developed for each of the twelve 

prediction horizons (Smith et al., 2009). Ward-style network architecture was used to develop the 

ANN models (Ward System Group, 1993) and they were trained using the error back-

propagation (EBP) (Haykin, 1999). The input layer of the model consisted of 258 neurons for 

inputs, the hidden layer had 120 neurons and the output layer had one neuron. In the hidden layer 
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of the model equally distributed the types of activation functions among the three slabs with 

hyperbolic tangent, Gaussian and inverse Gaussian. Several ANN parameters including the 

activation function of output, number of hours of prior data, additional values and rate of change 

for observations at 15 min intervals and the data scaling ranges for both input and output, were 

varied, no reduction in MAE was produced, and bagging and boosting only slightly reduced the 

MAE (Smith et al., 2009). Chevalier et al., (2011) used Support Vector Machines (SVM) to 

develop air temperature prediction models and compared their accuracy with the implemented 

ANN models. The SVM models showed improvement when trained with 300000 patterns and 

the ANN models predicted with higher accuracy when trained with 1 million patterns. 

Hourly dew point temperature prediction models for up to twelve hour prediction 

horizons were developed by Shank et al. (2008) and are included on the AEMN website. Inputs 

to dew point temperature models were same as the inputs as to the existing air temperature 

models, plus weather variables vapor pressure and vapor pressure deficit, and their hourly rates 

of change. The models were developed similarly to those developed by Smith et al. (2009). 

Ensemble artificial neural network, were also developed by Shank et al. (2008) to improve the 

prediction accuracy.  

Georgia Extreme-weather Neural-network Informed Expert (GENIE), a fuzzy expert 

system, was developed to interpret the predicted and observed to generate frost and freeze 

warnings (Chevalier et al., 2012). The system produced numeric warnings and a web-based 

interface was developed to interact with the system. 

The prediction errors in MAE for the twelve air temperature models varied between 

0.516°C and 1.873°C. For the twelve dew point temperature models the MAE varied between 
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0.508°C and 2.081°C. The observed air temperature approaches the observed dew point 

temperature under high relative humidity conditions. However, air temperature never goes below 

the dew point temperature. Given the MAE values, the predicted air temperature will frequently 

drop below the predicted dew point temperature under high relative humidity conditions. Herein 

this prediction error is referred to as a prediction anomaly. To reduce the number of prediction 

anomalies, combined models were developed which could predict both air and dew point 

temperature in a single model (Nadig et al., 2012). The combined models produced a reduction 

in the number of prediction anomalies of about 34%. The combined models produced slight 

reduction in air temperature MAEs and no reduction is dew point temperature MAEs. However, 

the research did not focus on predicting multiple horizons in a single model. It is possible that the 

models could be further improved by including more values to the output of the ANNs. One way 

could be to include multiple prediction horizons, since the air temperature or dew point 

temperature data represent a time series (Chakraborty et al., 1992; Zhang et al., 2005). This could 

further reduce prediction anomalies and the MAEs. The models, herein, are referred to as the 

time series models. The time series models could provide an opportunity for interaction among 

the output during training.  

The goal of this research is to improve the prediction accuracy of existing air temperature 

and dew point temperature ANN models by developing time series ANN models for prediction 

of air and dew point temperature for each prediction horizon from one to twelve hours. The 

research objectives are as follows: (1) to determine if MAE for predicted air temperature and 

predicted dew point temperature are reduced for the time series models in comparison with the 

individual models, and (2) to determine if the number of occurrences of the prediction anomaly 

can be reduced using the time series models. 
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3.3 METHODOLOGY 

3.3.1. DATA SETS 

The data were partitioned into a model development set and a model evaluation set using 

the same locations and years as the study by Nadig et al, (2012). The two sets were chosen so 

that they were mutually exclusive of years and locations, as shown in Table 1. The model 

development set was further partitioned into a training set and selection set. The training set was 

used to train the ANN models. The models were chosen based on the lowest selection set MAE 

which was obtained by presenting the models the selection set in feed forward mode. The chosen 

model was treated as the final model for a given prediction horizon. The training set and 

selection set were mutually exclusive of only locations. The model evaluation set was used to 

evaluate the models in feed forward mode and the resulting MAE is used as a metric to compare 

with other models. The training set consisted of 297,974 patterns, the selection set had 306,972 

patterns and the evaluation set had 507,347 patterns. The input and output patterns were 

generated from each of the datasets and normalized and scaled to the range [-0.9, 0.9]. There 

were a total of 358 input values per input pattern and twenty four output values per output 

pattern. Patterns were generated for each of the twelve prediction horizons and the three data 

partitions. 

3.3.2. MODEL DEVELOPMENT 

Ward-style network architecture (Ward System Group, 1993) was used to develop all 

models. It was a three layered neural network, which includes input, hidden and output layers. 

The input layer consists of neurons with linear activation function. The hidden layer was made of 

120 neurons, in three equally sized slabs with 40 neurons each. The neurons in the slabs had the 

following activation functions, hyperbolic tangent, Gaussian and inverse Gaussian. The output 
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layer was made of neurons with symmetric sigmoid activation function. Only the number of 

inputs or outputs varied with the models. 

To improve the chances of reducing the MAEs ten instances of each model were created. 

The initial weights for each of the models were randomly selected. This randomization allowed 

the training to start from a different location. The models were presented with patterns from the 

same datasets but in random order during training. This randomization ensured different path 

during the training process. Selecting among multiple instances makes it more likely that the 

training algorithm will approach the optimal set of ANN weights. The combined models 

developed in the previous research by Nadig et al., (2012) used resilient propagation algorithm 

for training to benefit from its faster convergence and stability in comparison with the back-

propagation algorithm (Anastasiadis et al., 2005; Igel et al., 2003). The same development 

package EnCog 3.0.0.0 (runtime v2.0.50727) was used to develop and train the models.  

All models were trained using the training dataset until the change in error was less than 

0.01%. After training the models, they were presented with the selection set in feed forward 

mode to obtain the selection set MAEs. The instance with the lowest selection set MAE was 

chosen. The selected models were then presented with evaluation set once in feed forward mode 

to obtain the evaluation set MAE.  

The result of the individual models and combined models from Nadig et al., (2012) were 

used for comparison. The individual models served as analogues of the current web-based 

models. The individual models were developed to predict only one weather variable at one 

prediction horizon hence the models had only one output. To predict twelve hours of air and dew 

point temperature 24 models were needed. The individual air temperature model had 258 input 
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neurons and one output neuron, based on Smith et al. (2009). The dew point temperature model 

had 358 input neurons and one output neuron, based on Shank et al. (2008).  

The time series output air temperature models predict only air temperature for four, six 

and twelve hour horizon groups. The four-hour time series ANN models predict air temperature 

for the following horizon groups, one through four, five through eight, and nine through twelve 

hours. Therefore, three four-hour time series models are needed to predict air temperature for all 

twelve of the prediction horizons. Each four-hour time series ANN model for air temperature 

prediction had four output neurons. The six-hour time series ANN models predict air temperature 

for the following horizon groups, one through six, and seven through twelve. So, two six-hour 

time series models are needed to predict air temperature for all twelve of the prediction horizons. 

Each six-hour time series ANN model for air temperature had six output neurons. The twelve-

hour time series ANN models predict air temperature for all twelve prediction horizons, and only 

one twelve-hour time series model is needed. The twelve-hour time series ANN model for air 

temperature had twelve output neurons. All the time series output air temperature models had 

258 inputs and 120 hidden layer neurons. The time series dew point temperature models were 

also developed is a similar manner. The dew point temperature models had 358 inputs. 

The combined models developed by Nadig et al., (2012) predicted air and dew point 

temperature for a single prediction horizon. Except for the number of outputs all other ANN 

architecture parameters were identical to individual dew point temperature models for single 

horizon. The combined time series models predicted both air and dew point temperature in a 

single model for four, six and twelve hour horizon groups. The architecture of the ANNs was 

similar to that of the time series dew point models. However, combined four-hour time series, 

combined six-hour time series and the combined twelve-hour time series ANN models had eight, 
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twelve and 24 outputs respectively, because the combined time series models predicted air and 

dew point temperature for each prediction horizon in a single model. 

3.4 RESULTS AND DISCUSSION 

The air temperature MAE values were obtained by presenting the evaluation dataset to 

the individual and series air temperature ANNs in feed forward mode only with results as shown 

in Table 2. The four-hour time series models predict the twelve hourly horizons in three groups, 

the six-hour time series models predict in two groups and the twelve-hour time series in a single 

model. The individual air temperature MAEs were used as a base line for comparison because 

this is the architecture of the currently implemented ANN models. Three of twelve individual 

models produced the lowest MAEs, in comparison with four-hour time series, six-hour time 

series and twelve-hour time series models. The four-hour time series air temperature model 

produced lowest MAE for seven of twelve prediction horizons, in comparison with individual, 

six-hour time series and twelve-hour time series models. The percent change if compared with 

the individual models ranged from 30% reduction at one-hour horizon to 2.1% increase at eight-

hour horizon. The four-hour time series models produced an average reduction in MAE of about 

4.28% across all twelve prediction horizons. The six-hour time series air temperature model 

produced lowest MAE for two of the twelve prediction horizons, in comparison with individual, 

four-hour time series and twelve-hour time series models. The percent change if compared with 

the individual models ranged from 29.5% reduction at one-hour horizon to 2.4% increase at 

seven-hour horizon. The six-hour time series model produced an average reduction in MAE of 

about 3.69% across all twelve prediction horizons. The twelve-hour time series air temperature 

model did not produce lowest MAE when compared with individual, four-hour time series and 

six-hour time series models. The percent change if compared with the individual models ranged 
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from 20.5% reduction at one-hour horizon to 1.8% increase at four-hour horizon. The twelve-

hour time series model produced an average reduction in MAE of about 1.74% across all twelve 

prediction horizons. From Table 2 four-hour time series air temperature model produced the 

largest average reduction in MAE for air temperature in comparison with the individual models. 

The air temperature MAE values were obtained by presenting the evaluation dataset to 

the combined and combined series ANNs in feed forward mode only as shown in Table 3. The 

result of the individual models is repeated from Table 2 for comparison. The combined model 

produced lowest air temperature MAE for six of twelve prediction horizons, in comparison with 

individual, combined four-hour time series, combined six-hour time series and combined twelve-

hour time series models. The percent change if compared with the individual models ranged 

from about 4.8% reduction at one-hour horizon to 0.25% increase at seven-hour horizon. The 

combined models produced an average reduction in air temperature MAE of about 1.93% across 

all twelve prediction horizons. The combined four-hour time series model produced lowest air 

temperature MAE for four of twelve prediction horizons, in comparison with individual, 

combined, combined six-hour time series and combined twelve-hour time series models. The 

percent change if compared with the individual models ranged from about 27.4% reduction at 

one-hour horizon to 2.7% increase at four-hour horizon. The combined four-hour time series 

models produced an average reduction in air temperature MAE of about 2.63% across all twelve 

prediction horizons. The combined six-hour time series model produced lowest air temperature 

MAE for only one of twelve prediction horizons, in comparison with individual, combined, 

combined four-hour time series and combined twelve-hour time series models. The percent 

change if compared with the individual models ranged from about 23.1% reduction at one-hour 

horizon to 4.07% increase at four-hour horizon. The combined six-hour time series models 
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produced an average reduction in air temperature MAE of about 2.26% across all twelve 

prediction horizons. The combined twelve-hour time series model did not produce lowest air 

temperature MAE for any of twelve prediction horizons, in comparison with individual, 

combined, combined four-hour time series and combined six-hour time series models. The 

percent change if compared with the individual models ranged from about 17.5% at one-hour 

horizon to 8.8% increase at four-hour horizon. The combined twelve-hour time series model 

produced on average increased the air temperature MAE by 0.47%. From Table 3 combined 

four-hour time series models produced the largest average reduction in MAE for air temperature 

in comparison with the individual models. However combined models produced lowest MAE for 

more horizons than combined four-hour time series. 

The air temperature MAEs from Table 2 for individual, four-hour time series, six-hour 

time series and twelve-hour time series, and from Table 3 for combined, combined four-hour 

time series, combined six-hour time series, and combined twelve-hour time series are 

consolidated into Table 4 for an overall comparison. The individual models produced lowest 

MAE only for the seven-hour horizon. The four-hour time series air temperature models 

produced lowest MAE for four of twelve prediction horizons, from one through four hour 

horizons. The six-hour time series air temperature models produced lowest MAE only for the 

six-hour horizon. The twelve-hour time series air temperature model did not produce lowest 

MAE for any of the twelve prediction horizons. The combined models produced lowest MAE for 

four of twelve prediction horizons. The combined four-hour time series models produced lowest 

MAE only for the eleven-hour horizon. The combined six-hour time series models produced 

lowest MAE only for the twelve-hour horizon. Finally, the combined twelve-hour time series 

model did not produce lowest MAE for any of the twelve prediction horizons. Thus the four-hour 
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time series air temperature models and the combined models both produced lowest MAE for four 

of twelve prediction horizons.  

The dew point temperature MAE values were obtained by presenting the evaluation 

dataset to the individual and series dew point temperature ANNs in feed forward mode only as 

shown in Table 5. The four-hour time series models predict the twelve horizons in three groups, 

the six-hour time series models predict in two groups and the twelve-hour time series in a single 

model. The individual dew point temperature MAEs were used as a base line for comparison. 

Individual models produced lower MAEs for nine of twelve horizons, in comparison with four-

hour time series, six-hour time series and twelve-hour time series models. The four-hour time 

series dew point temperature model produced lowest MAE for three of twelve prediction 

horizons, in comparison with individual, six-hour time series and twelve-hour time series 

models. The percent change if compared with the individual models ranged from 18.1% 

reduction at one-hour horizon to 4.5% increase at three-hour horizon. The four-hour time series 

models on average increased the MAE by about 0.04% across all twelve prediction horizons. The 

six-hour time series dew point temperature model did not produce lowest in MAE for any of the 

twelve prediction horizons, in comparison with individual, four-hour time series and twelve-hour 

time series models. The percent change if compared with the individual models was 17.7% 

reduction at one-hour horizon to 5.52% increase at three-hour horizon. Except for the one-hour 

horizon there was no reduction for other horizons. The six-hour time series model on average 

increased the MAE by 1% across all twelve prediction horizons. The twelve-hour time series 

dew point temperature model did not produce reduction in MAE when compared with individual, 

four-hour time series and six-hour time series models. The percent change if compared with the 

individual models was 7.8% reduction at one-hour horizon to 10.4% increase at two-hour 
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horizon. Except for one-hour there was no reduction for other horizons. The twelve-hour time 

series model on average increased the MAE by 3.26% across all twelve prediction horizons. 

From Table 5 individual dew point temperature model produced the lowest MAE for dew point 

temperature for most horizons.  

The dew point temperature MAE values were obtained by presenting the evaluation 

dataset to the combined and combined series ANNs in feed forward mode only as shown in 

Table 6. The result of the individual models is repeated from Table 5 for comparison. The 

combined model produced lowest dew point temperature MAE for three of twelve prediction 

horizons, in comparison with individual, combined four-hour time series, combined six-hour 

time series and combined twelve-hour time series models. The percent change if compared with 

the individual model ranged from about 1.5% reduction at eight-hour horizon to 2.9% increase at 

one-hour horizon. The combined models on average increased the dew point temperature MAE 

by about 0.08% across all twelve prediction horizons. The combined four-hour time series model 

produced lowest dew point temperature MAE for five of twelve prediction horizons, in 

comparison with individual, combined, combined six-hour time series and combined twelve-hour 

time series models. The percent change if compared with the individual models ranged from 

about 26.6% reduction at one-hour horizon to 3.4% increase at four-hour horizon. The combined 

four-hour time series models produced an average reduction in dew point temperature MAE of 

about 2.22% across all twelve prediction horizons. The combined six-hour time series model did 

not produce lowest dew point temperature MAE for any of twelve prediction horizons, in 

comparison with individual, combined, combined four-hour time series and combined twelve-

hour time series models. The percent change if compared with the individual models ranged 

from about 18.5% at increase one-hour horizon to 2.1% increase at three-hour horizon. The 
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combined six-hour time series models produced an average reduction in dew point temperature 

MAE of about 1.08% across all twelve prediction horizons. The combined twelve-hour time 

series model produced lowest dew point temperature MAE for two of twelve prediction horizons, 

in comparison with individual, combined, combined four-hour time series and combined six-

hour time series models. The percent change if compared with the individual models ranged 

from about 17.4% reduction at one-hour horizon to 4.9% increase at three-hour horizon. The 

combined twelve-hour time series model produced an average reduction in dew point 

temperature MAE of about 0.23%. From Table 6 combined four-hour time series models 

produced the largest reduction in MAE for dew point temperature. 

The dew point temperature MAEs from Table 5 for individual, four-hour time series, six-

hour time series and twelve-hour time series, and from Table 6 for combined, combined four-

hour time series, combined six-hour time series, and combined twelve-hour time series are 

consolidated into Table 7 for an overall comparison. The individual models produced lowest 

MAE for two of twelve prediction horizons. The four-hour time series, six-hour time series and 

twelve-hour time series dew point temperature models did not produce lowest MAE for any of 

the twelve prediction horizons. The combined models produced lowest MAE for three of twelve 

prediction horizons. The combined four-hour time series models produced lowest MAE for four 

of twelve prediction horizons. The combined six-hour time series models did not produce lowest 

MAE for any of the twelve prediction horizons. Finally, the combined twelve-hour time series 

model produced lowest MAE for two of twelve prediction horizons. Thus the combined four-

hour time series dew point temperature models produced lowest MAE for five of twelve 

prediction horizons. 
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The prediction anomalies for individual, four-hour time series, six-hour time series and 

twelve-hour time series models were obtained by presenting the model evaluation dataset to the 

models in feed forward mode, as shown in Table 8. The evaluation set contained 507,347 

patterns for each prediction horizon. The largest number of prediction anomalies for the 

individual models occurred at the one hour prediction horizon with a value of 33252. This would 

be an occurrence of approximately 6.55% of the total patterns in the evaluation set. The 

individual models had the lowest number of prediction anomalies for eight of twelve prediction 

horizons. The four-hour time series models produced lowest number of prediction anomalies for 

three of twelve prediction horizons. The percent change if compared with individual models 

ranged from 37.6% reduction at one-hour horizon to 55% increase at six-hour horizon. On 

average the four-hour time series models produced an increase in the number of prediction 

anomalies by 14.98%. The six-hour time series models produced lowest number of prediction 

anomalies only for the two-hour horizon. The percent change if compared with individual 

models ranged from 35.6% reduction at one-hour horizon to 183% increase at nine-hour horizon. 

On average the six-hour time series models produced an increase in the number of prediction 

anomalies by about 61.54%. The twelve-hour time series models did not produce lowest number 

of prediction anomalies and on average increased the prediction anomalies by about 81.7%. 

From Table 8 the series models did not produce any improvement in the reduction of prediction 

anomalies as compared to the individual models. 

The prediction anomalies for combined, combined four-hour time series, combined six-

hour time series and combined twelve-hour time series models were obtained by presenting the 

model evaluation dataset to the models in feed forward mode, as shown in Table 9. The 

combined models produced lowest number of prediction anomalies in seven of twelve prediction 
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horizons. The percent change if compared with individual models ranged from 60.5% reduction 

at eleven-hour horizon to 4.6% reduction at one-hour horizon. The combined models produced 

an average reduction in prediction anomalies of about 34.1%. The combined four-hour time 

series models produced lowest number of prediction anomalies in two of twelve prediction 

horizons. The percent change if compared with individual models ranged from 68.3% reduction 

at one-hour horizon to 35.5% increase at nine-hour horizon. The combined four-hour time series 

models produced an average reduction in prediction anomalies of about 25.7%. The combined 

six-hour time series models produced lowest number of prediction anomalies in three of twelve 

prediction horizons. The percent change if compared with individual models ranged from 

69.96% reduction at eleven-hour horizon to 30.86% increase at three-hour horizon. The 

combined six-hour time series models produced an average reduction in prediction anomalies of 

about 27.5%. The combined twelve-hour time series model did not produce lowest number of 

prediction anomalies for any of the twelve prediction horizons, in comparison with individual, 

combined, combined four-hour time series and combined six-hour time series. The percent 

change if compared with individual models ranged from 22.25% reduction at one-hour horizon 

to 72.3% increase at six-hour horizon. The combined twelve-hour time series model on average 

increased the number of prediction anomalies by about 36.66%. From Table 9 combined models 

produced the lowest number of prediction anomalies for the largest number of prediction 

horizons in comparison with individual, combined four-hour time series, combined six-hour time 

series and combined twelve-hour time series models. 

The number of prediction anomalies from Table 8 for individual, four-hour time series, 

six-hour time series and twelve-hour time series and from Table 9 for combined, combined four-

hour time series, combined six-hour time series, and combined twelve-hour time series are 
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consolidated into Table 10 for comparison. The individual, four-hour time series, six-hour time 

series, twelve-hour time series and combined twelve-hour time series models did not produce the 

lowest number of prediction anomalies for any of the twelve prediction horizons. The combined 

models produced the lowest number of prediction anomalies for seven of twelve prediction 

horizons. The combined four-hour time series model produced a reduction in two of twelve 

prediction horizons. The combined six-hour time series model produced a reduction in three of 

twelve prediction horizons. 

The model development approach that is most accurate overall is determined by the two 

metrics of MAE and prediction anomalies. These metrics could be addressed separately or 

together. An approach could be chosen on greatest reduction in air temperature or dew point 

temperature MAE. Also, an approach could be chosen based on greatest reduction in the number 

of prediction anomalies. To address both MAE and prediction anomaly, an approach could be 

chosen such that it produced the largest reduction in MAE and prediction anomalies through 

some arbitrary combination of the two metrics. However, such a model may not produce greatest 

reduction when considering the metrics of MAE and prediction anomalies individually. 

From Table 4, the four-hour time series model and the combined models both produced 

lowest MAEs for four of twelve prediction horizons for air temperature prediction. However, the 

four-hour time series model produced larger average reduction in MAE in comparison with 

combined model. Thus the four-hour time series model predicted air temperature more 

accurately than other model development approaches.  

From Table 7, the combined four-hour time series model produced a reduction in dew 

point temperature MAE in the largest number of prediction horizons in comparison with other 
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approaches. It also produced the largest reduction in average MAE. Thus, the combined four-

hour time series model predicted dew point temperature more accurately than other model. 

From Table 10, the four-hour, six-hour and twelve-hour time series models did not 

produce a reduction in the number of prediction anomalies for any prediction horizon. The 

combined model produced the largest reduction in the number of prediction anomalies. If 

reduction in prediction anomalies was more important than either or both air and dew point 

temperature MAEs then combined model would be chosen.  

Overall, considering results from Table 4, Table 7 and Table 10, there are three candidate 

solutions based on reduction in either MAE for air and dew point temperature or prediction 

anomalies: Combined model, combined four-hour time series model and combined six-hour time 

series model. The combined model produced marked reduction in number of prediction 

anomalies and average air temperature MAE, but no change in the average dew point 

temperature MAE. Although the combined four-hour time series model produced lower 

reduction in the number of prediction anomalies compared to combined or combined six-hour 

time series model, it showed marked reduction in average MAEs for air temperature and dew 

point temperature. Although the combined six-hour time series model produced slightly greater 

reduction in the number of anomalies as compared to combined four-hour time series model, it 

produced a lower reduction in MAE for both air and dew point temperature. If reduction in MAE 

is more important than reduction in prediction anomalies then combined four-hour time series 

model would be chosen. If reduction in prediction anomalies is more important than reduction in 

either or both air and dew point temperature MAEs then the combined six-hour time series 

model would be chosen. 
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Alternatively, the approaches could be compared using an overall sum of the average % 

air temperature MAE reduction, average % dew point temperature MAE reduction and average 

% reduction in prediction anomalies. The combined four-hour and six-hour time series models 

were considered, since they were the only two approaches that produced reduction in air and dew 

point temperature MAEs and prediction anomalies, as shown in Table 11. The model with 

highest value could be considered the most accurate model overall. Using the sum of % 

reductions, the combined four-hour time series model has a value of 30.6 and the combined six-

hour time series model has a value of 30.9. Based on this criterion the combined four-hour time 

series model and the combined six-hour time series model are approximately equal. 

3.5 SUMMARY AND CONCLUSIONS 

Time series models which predicted either air temperature or dew point temperature were 

developed to predict four, six and twelve hour horizons in a single model. Combined time series 

models which predicted both air and dew point temperature for four, six and twelve hour 

horizons in a single model were also developed. Four-hour time series air temperature models 

produced largest reduction in the air temperature MAEs making them possible candidate 

solutions for air temperature prediction. The combined four-hour time series models produced 

largest reduction in dew point temperature MAEs making it a possible candidate solution for dew 

point temperature prediction. Analyzing the models based only on prediction anomalies revealed 

that the combined model produced the lowest number of prediction anomalies making it a 

possible candidate for prediction of both air and dew point temperatures. The combined four-

hour time series model and combined six-hour time series model both produced overall reduction 

in MAEs and prediction anomalies.  
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In this research, the ANN architecture used was based on previous work by Smith (Smith 

et al., 2009) and Shank (Shank et al., 2008). In future research the ANN parameters such as 

activation functions, number of nodes in the hidden layer, distribution of nodes between the slabs 

of the Ward-style model, could be explored for reducing MAE or reducing the number of 

prediction anomalies. The ANN architecture could be explored using evolutionary algorithms. 

Also, longer duration of prior data, additional weather variable inputs, and different resolution of 

input data could be explored. The input data could be transformed using fuzzy membership 

functions. The training data could be sampled evenly over the prediction range and the models 

could be selectively trained for shorter range of temperatures and outputs from the models could 

be accumulated to obtain the result for the entire range. 
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Table 1: Locations and years used partitioning weather data. 

Model Development Model Evaluation 

2002, 2003, 2004, 2005, 2007, 2009 2006, 2008, 2010 

Training Set Selection Set Evaluation Set 

ATLANTA ALMA ALAPAHA 

BRUNSWICK ARABI ALPHARETTA 

CALLAWAY BLEDSOE ARLINGTON 

COVINGTON BOWEN ATTAPULGUS 

DALLAS DEMPSEY BLUE RIDGE 

DAWSON DIXIE BYROMVILLE 

DEARING EATONTON CAIRO 

DULUTH GEORGETOWN CALHOUN 

HOMERVILLE GRIFFIN CAMILLA 

OAKWOOD HOWARD CLARKS HILL 

SHELLMAN JEFFERSONVILLE CORDELE 

TIFTON LAFAYETTE DANIELSVILLE 

TIGER PLAINS DOUGLAS 

WOODBINE SPARTA ELLIJAY 

- TENNILLE HHERC
*
 

- - MOULTRIE 

- - NAHUNTA 

- - NEWTON 

- - ODUM 

- - OSSABAW 

- - SASSER 

- - SAVANNAH 

- - VALDOSTA 

- - VIDALIA 
*
Hooks-Hanner Environmental Resource Center (HHERC) 
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Table 2: Comparison of air temperature prediction by individual, individual series 4, individual series 6 and individual series 

12, evaluation dataset. 

Horizons Individual Series 4 % Reduction in MAE Series 6 % Reduction in MAE Series 12 % Reduction in MAE 

1 0.889 0.615 30.79 0.627 29.53 0.707 20.52 

2 0.959 0.865 9.78 0.886 7.60 0.952 0.73 

3 1.170 1.064 9.10 1.082 7.54 1.134 3.07 

4 1.262 1.233 2.32 1.263 -0.09 1.285 -1.84 

5 1.413 1.438 -1.77 1.391 1.53 1.432 -1.34 

6 1.565 1.544 1.35 1.522 2.73 1.543 1.43 

7 1.617 1.638 -1.33 1.655 -2.36 1.634 -1.07 

8 1.707 1.743 -2.12 1.737 -1.73 1.724 -0.97 

9 1.825 1.796 1.58 1.805 1.12 1.806 1.05 

10 1.848 1.847 0.06 1.856 -0.40 1.875 -1.45 

11 1.916 1.924 -0.40 1.945 -1.51 1.925 -0.48 

12 2.016 1.977 1.94 2.010 0.30 1.992 1.2 

 3/12 7/12 (Avg.) 4.28 2/12 (Avg.) 3.69 0/12 (Avg.) 1.74 
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Table 3: Comparison of air temperature prediction by individual, combined, combined series 4, combined series 6 and 

combined series 12, evaluation dataset. 

Horizons Individual Comb. % Reduction Comb. 4 % Reduction Comb. 6 % Reduction Comb. 12 % Reduction 

1 0.889 0.846 4.84 0.646 27.37 0.684 23.11 0.733 17.51 

2 0.959 0.942 1.77 0.922 3.85 0.932 2.87 0.988 -3.01 

3 1.170 1.080 7.69 1.135 3.02 1.132 3.27 1.157 1.15 

4 1.262 1.256 0.48 1.296 -2.73 1.313 -4.07 1.373 -8.81 

5 1.413 1.383 2.12 1.428 -1.05 1.424 -0.77 1.490 -5.46 

6 1.565 1.543 1.41 1.523 2.67 1.550 0.98 1.605 -2.53 

7 1.617 1.621 -0.25 1.631 -0.85 1.658 -2.50 1.669 -3.20 

8 1.707 1.705 0.12 1.709 -0.14 1.715 -0.45 1.721 -0.80 

9 1.825 1.787 2.08 1.834 -0.47 1.787 2.07 1.808 0.91 

10 1.848 1.830 0.97 1.893 -2.41 1.848 -0.01 1.874 -1.42 

11 1.916 1.918 -0.10 1.909 0.36 1.910 0.34 1.929 -0.68 

12 2.016 1.975 2.03 1.977 1.91 1.969 2.33 2.003 0.65 

 1/12 6/12 (Avg.) 1.93 4/12 (Avg.) 2.63 1/12 (Avg.) 2.26 0/12 (Avg.) -0.47 
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Table 4: Comparison of air temperature MAE for Individual, Combined and Series models 

Horizon Individual Series 4 Series 6 Series 12 Combined Combined 4 Combined 6 Combined 12 

1 0.889 0.615 0.627 0.707 0.846 0.646 0.684 0.733 

2 0.959 0.865 0.886 0.952 0.942 0.922 0.932 0.988 

3 1.170 1.064 1.082 1.134 1.080 1.135 1.132 1.157 

4 1.262 1.233 1.263 1.285 1.256 1.296 1.313 1.373 

5 1.413 1.438 1.391 1.432 1.383 1.428 1.424 1.490 

6 1.565 1.544 1.522 1.543 1.543 1.523 1.550 1.605 

7 1.617 1.638 1.655 1.634 1.621 1.631 1.658 1.669 

8 1.707 1.743 1.737 1.724 1.705 1.709 1.715 1.721 

9 1.825 1.796 1.805 1.806 1.787 1.834 1.787 1.808 

10 1.848 1.847 1.856 1.875 1.830 1.893 1.848 1.874 

11 1.916 1.924 1.945 1.925 1.918 1.909 1.910 1.929 

12 2.016 1.977 2.010 1.992 1.975 1.977 1.969 2.003 

 1/12 4/12 1/12 0/12 4/12 1/12 1/12 0/12 

 - 4.28 3.69 1.74 1.93 2.63 2.26 -0.47 
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Table 5: Comparison of dew point temperature prediction by individual, individual series 4, individual series 6 and individual 

series 12, evaluation dataset. 

Horizons Individual Series 4 % Reduction in MAE Series 6 % Reduction in MAE Series 12 % Reduction in MAE 

1 0.818 0.670 18.11 0.674 17.66 0.754 7.84 

2 0.890 0.911 -2.36 0.912 -2.49 0.983 -10.4 

3 1.073 1.121 -4.46 1.132 -5.52 1.182 -10.2 

4 1.261 1.295 -2.70 1.311 -3.99 1.350 -7.03 

5 1.424 1.466 -2.94 1.479 -3.88 1.537 -7.94 

6 1.600 1.597 0.19 1.608 -0.49 1.636 -2.24 

7 1.711 1.733 -1.26 1.798 -5.11 1.762 -2.95 

8 1.836 1.833 0.18 1.893 -3.08 1.874 -2.06 

9 1.954 2.000 -2.35 1.991 -1.89 1.974 -1.04 

10 2.052 2.077 -1.21 2.091 -1.92 2.093 -2.01 

11 2.155 2.182 -1.25 2.172 -0.78 2.163 -0.38 

12 2.247 2.258 -0.47 2.259 -0.52 2.264 -0.74 

 9/12 3/12 (Avg.) -0.04 0/12 (Avg.) -1.00 0/12 (Avg.) -3.26 
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Table 6: Comparison of dew point temperature prediction by individual, combined, combined series 4, combined series 6 and 

combined series 12, evaluation dataset. 

Horizons Individual Comb. % Reduction Comb. 4 % Reduction Comb. 6 % Reduction Comb. 12 % Reduction 

1 0.818 0.842 -2.93 0.601 26.59 0.667 18.45 0.676 17.39 

2 0.890 0.880 1.12 0.866 2.73 0.900 -1.08 0.918 -3.18 

3 1.073 1.081 -0.75 1.075 -0.17 1.096 -2.14 1.125 -4.85 

4 1.261 1.264 -0.24 1.304 -3.41 1.276 -1.22 1.319 -4.59 

5 1.424 1.416 0.56 1.437 -0.89 1.430 -0.39 1.483 -4.12 

6 1.600 1.585 0.94 1.570 1.91 1.577 1.45 1.610 -0.65 

7 1.711 1.720 -0.53 1.705 0.37 1.734 -1.36 1.716 -0.27 

8 1.836 1.809 1.47 1.823 0.70 1.838 -0.10 1.835 0.06 

9 1.954 1.965 -0.56 1.977 -1.17 1.961 -0.35 1.931 1.18 

10 2.052 2.030 1.07 2.065 -0.62 2.065 -0.64 2.033 0.92 

11 2.155 2.151 0.19 2.156 -0.04 2.146 0.42 2.137 0.85 

12 2.247 2.276 -1.29 2.233 0.62 2.249 -0.08 2.248 -0.04 

 2/12 3/12 (Avg.) -0.08 5/12 (Avg.) 2.22 0/12 (Avg.) 1.08 2/12 (Avg.) 0.23 
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Table 7: Comparison of dew point temperature MAE for Individual, Combined and Series models. 

Horizon Individual Series 4 Series 6 Series 12 Combined Combined 4 Combined 6 Combined 12 

1 0.818 0.670 0.674 0.754 0.842 0.601 0.667 0.676 

2 0.890 0.911 0.912 0.983 0.880 0.866 0.900 0.918 

3 1.073 1.121 1.132 1.182 1.081 1.075 1.096 1.125 

4 1.261 1.295 1.311 1.350 1.264 1.304 1.276 1.319 

5 1.424 1.466 1.479 1.537 1.416 1.437 1.430 1.483 

6 1.600 1.597 1.608 1.636 1.585 1.570 1.577 1.610 

7 1.711 1.733 1.798 1.762 1.720 1.705 1.734 1.716 

8 1.836 1.833 1.893 1.874 1.809 1.823 1.838 1.835 

9 1.954 2.000 1.991 1.974 1.965 1.977 1.961 1.931 

10 2.052 2.077 2.091 2.093 2.030 2.065 2.065 2.033 

11 2.155 2.182 2.172 2.163 2.151 2.156 2.146 2.137 

12 2.247 2.258 2.259 2.264 2.276 2.233 2.249 2.248 

 2/12 0/12 0/12 0/12 3/12 5/12 0/12 2/12 

 - -0.04 -1.00 -3.26 -0.08 2.22 1.08 0.23 
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Table 8: Comparison of prediction anomalies produced by individual, individual series 4, individual series 6 and individual 

series 12, evaluation set.8 

Horizons 
Individual Series 4 Series 6 Series 12 

# % # % % Reduction # % % Reduction # % % Reduction 

1 33252 6.6 20743 4.1 37.62 21422 4.2 35.58 33851 6.7 -1.80 

2 21161 4.2 19725 3.9 6.79 19667 3.9 7.06 38935 7.7 -83.99 

3 14367 2.8 18713 3.7 -30.25 20647 4.1 -43.71 33783 6.7 -135.14 

4 18775 3.7 15993 3.2 14.82 21216 4.2 -13.00 34664 6.8 -84.63 

5 17885 3.5 26961 5.3 -50.75 20399 4.0 -14.06 31603 6.2 -76.70 

6 16593 3.3 25744 5.1 -55.15 17953 3.5 -8.20 30771 6.1 -85.45 

7 19345 3.8 21120 4.2 -9.18 37466 7.4 -93.67 28296 5.6 -46.27 

8 15595 3.1 22220 4.4 -42.48 34826 6.9 -123.32 29190 5.8 -87.18 

9 11845 2.3 17153 3.4 -44.81 33575 6.6 -183.45 30095 5.9 -154.07 

10 12815 2.5 15293 3.0 -19.34 29404 5.8 -129.45 27558 5.4 -115.04 

11 21833 4.3 16225 3.2 25.69 28536 5.6 -30.70 25729 5.1 -17.84 

12 12676 2.5 14284 2.8 -12.69 30615 6.0 -141.52 24364 4.8 -92.21 

 8/12 3/12 (Avg.) -14.98 1/12 (Avg.) -61.54 0/12 (Avg.) -81.69 

 

  

                                                 
8
 The prediction anomalies were obtained after presenting the models with all 507,347 patterns from the evaluation set. 
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Table 9: Comparison of prediction anomalies produced by individual, combined, combined series 4, combined series 6 and 

combined series 12, evaluation set.9 

Horizons 
Individual Combined Combined Series 4 Combined Series 6 Combined Series 12 

# % # % % Redt. # % % Redt. # % % Redt. # % % Redt. 

1 33252 6.6 31723 6.3 4.60 10524 2.1 68.35 24006 4.7 27.81 25855 5.1 22.25 

2 21161 4.2 12857 2.5 39.24 16419 3.2 22.41 15852 3.1 25.09 25754 5.1 -21.71 

3 14367 2.8 7331 1.4 48.97 9805 1.9 31.75 18800 3.7 -30.86 24558 4.8 -70.93 

4 18775 3.7 11142 2.2 40.66 10271 2.0 45.29 12586 2.5 32.96 27468 5.4 -46.30 

5 17885 3.5 11394 2.2 36.29 14931 2.9 16.52 11949 2.4 33.19 24642 4.9 -37.78 

6 16593 3.3 11989 2.4 27.75 11995 2.4 27.71 9435 1.9 43.14 28590 5.6 -72.30 

7 19345 3.8 15054 3.0 22.18 17017 3.4 12.03 15151 3.0 21.68 25733 5.1 -33.02 

8 15595 3.1 13292 2.6 14.77 14626 2.9 6.21 11000 2.2 29.46 24579 4.8 -57.61 

9 11845 2.3 8281 1.6 30.09 16047 3.2 -35.47 10893 2.1 8.04 17288 3.4 -45.95 

10 12815 2.5 9061 1.8 29.29 9589 1.9 25.17 9669 1.9 24.55 19664 3.9 -53.45 

11 21833 4.3 8619 1.7 60.52 11395 2.2 47.81 6559 1.3 69.96 17279 3.4 20.86 

12 12676 2.5 5723 1.1 54.85 7520 1.5 40.68 6917 1.4 45.43 18249 3.6 -43.96 

 0/12 7/12 (Avg.) 34.10 2/12 (Avg.) 25.71 3/12 (Avg.) 27.54 0/12 (Avg.) -36.66 

 

  

                                                 
9
 The prediction anomalies were obtained after presenting the models with all 507,347 patterns from the evaluation set. 
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Table 10: Comparison of prediction anomalies for Individual, Combined and Series models.
10

 

Horizon Individual Series 4 Series 6 Series 12 Combined Combined 4 Combined 6 Combined 12 

1 33252 20743 21422 33851 31723 10524 24006 25855 

2 21161 19725 19667 38935 12857 16419 15852 25754 

3 14367 18713 20647 33783 7331 9805 18800 24558 

4 18775 15993 21216 34664 11142 10271 12586 27468 

5 17885 26961 20399 31603 11394 14931 11949 24642 

6 16593 25744 17953 30771 11989 11995 9435 28590 

7 19345 21120 37466 28296 15054 17017 15151 25733 

8 15595 22220 34826 29190 13292 14626 11000 24579 

9 11845 17153 33575 30095 8281 16047 10893 17288 

10 12815 15293 29404 27558 9061 9589 9669 19664 

11 21833 16225 28536 25729 8619 11395 6559 17279 

12 12676 14284 30615 24364 5723 7520 6917 18249 

 0/12 0/12 0/12 0/12 7/12 2/12 3/12 0/12 

 - -14.98 -61.54 -8169 34.10 25.71 27.54 -36.66 

                                                 
10

 The prediction anomalies were obtained after presenting the models with all 507,347 patterns from the evaluation set. 
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Table 11: Comparison of average % reduction in air temperature MAE, dew point 

temperature MAE and number of prediction anomalies. 

Model Type 
Average % Reduction 

Air Temperature Dew Point Temperature Prediction Anomalies 

Series 4 4.28 -0.04 -14.98 

Series 6 3.69 -1 -61.54 

Series 12 1.74 -3.26 -81.69 

Combined 1.93 -0.08 34.1 

Combined Series 4 2.63 2.22 25.71 

Combined Series 6 2.26 1.08 27.54 

Combined Series 12 -0.47 0.23 -36.66 

 

  



 

75 

 

 

CHAPTER 4 

SUMMARY AND CONCLUSIONS 

The two goals in this research were to (1) evaluate the combined models in predicting the 

air and dew point temperatures by comparing the reduction in MAE and prediction anomalies (2) 

evaluate the time series models in predicting air and dew point temperatures by comparing the 

reduction in MAE and prediction anomalies.  

In Chapter 2, the individual and the combined model are compared using mean absolute 

errors (MAE) for air and dew point temperature and number of prediction anomalies. A 

methodology was proposed to combine the air temperature model and the dew point temperature 

model to develop a single model. Using this methodology combined models were developed. 

The MAE for air and dew point temperature, and the number of prediction anomalies were 

calculated. It was found that the combined models were able to produce considerable reduction 

in the number of prediction anomalies, meanwhile producing slight reduction in MAEs in 

comparison with the individual air temperature and dew point temperature models. In Chapter 3 

the individual and the time series model are compared using mean absolute errors (MAE) for air 

and dew point temperature and number of prediction anomalies. A methodology was proposed to 

combine the models across the prediction horizons. Using this methodology time series models 

for four, six and twelve hour prediction horizons were developed. The MAE for air and dew 

point temperature, and prediction anomalies were calculated. The four-hour time series air 

temperature model produced largest reduction in the air temperature MAEs making it a possible 

candidate solution for air temperature prediction. The combined four-hour time series model 
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produced largest reduction in dew point temperature MAEs making it a possible candidate 

solution for dew point temperature prediction. The combined model for single prediction horizon 

produced the largest reduction in the number of prediction anomalies making it a possible 

candidate solution for both air and dew point temperature prediction based only on reduction in 

prediction anomalies. The combined four-hour time series model and combined six-hour time 

series model both produced reduction in MAEs and prediction anomalies making them candidate 

solutions for air temperature and dew temperature predictions.  

Models developed in this research were based on previous work. In future research the 

ANN parameters such as number of nodes in the hidden layer could be explored for 

improvement in MAE or reduction in the number of anomalies. Also, a longer duration of prior 

data and different resolution of input data, different activation functions, and the input data could 

be transformed using fuzzy membership functions. Alternate architectures such as recurrent 

neural networks, hybrid neural networks, and alternative training algorithms such as scaled 

conjugate gradient propagation, quick-propagation, Manhattan-propagation, Lavenberg-

Marquardt algorithm and evolutionary training algorithms could be applied. The training data 

could be further examined so that the patterns are distributed evenly for the various temperature 

values.  
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