
ImmGnosis: Architecture for a Stateless Web-based Expert System

for

Immigration Law

by

Vineet Khosla

(Under the direction of Walter D. Potter)

Abstract

This thesis documents the design and implementation of ImmGnosis, a stateless Web-

based expert system that reasons over matters involving United States immigration law. The

emphasis of this thesis is on the stateless architecture of the system which allows for mul-

tiple consultations while using minimum machine resources. This thesis also documents the

modifications made to an existing state dependent expert system shell (XSHELL) in order

to make it stateless and deployable over the Web. The system is currently capable of deter-

mining a user’s U.S. citizenship status, admissibility status, and eligibility for naturalization

and a visa recommendation module is currently under development.

Index words: Expert System, Legal Expert System, Expert System Shell,
Stateless Architecture, Portable Blackboard, Immigration Law,
Rule-Based Reasoning, Prolog, Java

ImmGnosis: Architecture for a Stateless Web-based Expert System

for

Immigration Law

by

Vineet Khosla

B.S., Pittsburg State University, 2002

A Thesis Submitted to the Graduate Faculty

of The University of Georgia in Partial Fulfillment

of the

Requirements for the Degree

Master of Science

Athens, Georgia

2005

c© 2005

Vineet Khosla

All Rights Reserved

ImmGnosis: Architecture for a Stateless Web-based Expert System

for

Immigration Law

by

Vineet Khosla

Approved:

Major Professor: Walter D. Potter

Committee: Donald Nute

Zachary Estes

Electronic Version Approved:

Maureen Grasso

Dean of the Graduate School

The University of Georgia

August 2005

Dedication

I would like to dedicate this thesis to my family. Mere words cannot express my sincere

feelings nor the gratitude I owe to them.

iv

Acknowledgments

I would like to express my gratitude to all of my committee members. I would like to thank Dr.

Nute for the invaluable advice he gave me throughout this project. Without his knowledge,

patience, and guidance this project would not be possible. I also wish to thank Dr. Potter for

not only providing me with valuable AI skills but also sharing his valuable study strategies

for maintaining the highest academic standards. Many thanks are owed to Dr. Estes for

giving his support and time to this project.

I would like to acknowledge Blair Dorminey for funding this research and providing us

with a team of domain experts. I would like to thank David Tooley, Aschalew Nigussie,

Yongnam Park, and Yannick Morgan for providing the expert knowledge for this project.

I am also thankful to my research partner Daniel Dejuan for working endless hours and

ensuring that our work is of highest quality.

I would also like to thank all the faculty and friends at the Artificial Intelligence Center

at University of Georgia for providing me with an intellectually stimulating environment.

Special thanks are owed to Makiko Kaijima for proofreading this thesis and providing me

with valuable suggestions throughout the thesis writing process.

Finally, I would like to express my gratitude to all the people who have not been a direct

part of this thesis but influenced me during my undergraduate degree at Pittsburg State

Univeristy. I thank Dr. Maeve Cummings for introducing me to the exciting field of AI. I

also thank Mr. Greg Brown and Dr. Ramon M. Figueroa-Centeno for being my teachers, my

mentors, and above all, my friends.

My sincere thanks to you all.

v

Preface

This thesis is a part of a team project done at University of Georgia’s Artificial Intelligence

center by myself and Daniel DeJuan. I have tried to include only those topics in this thesis

on which I have either worked alone or was an equal contributing member. Topics which

are not my work but are pertinent to the complete understanding of the system are clearly

marked.

vi

Table of Contents

Page

Acknowledgments . v

Preface . vi

List of Figures . ix

List of Tables . x

Chapter

1 Introduction . 1

1.1 Problem Domain . 1

1.2 Expert System Approach . 1

1.3 Description of study . 4

2 Expert System Development Lifecycle 6

2.1 Problem Identification . 6

2.2 Knowledge Acquisition . 6

2.3 Knowledge Representation and Prototyping 9

2.4 Verification and Validation 9

2.5 Testing and Implementation 12

3 System Architecture . 13

3.1 Main components of ImmGnosis (Java Server Pages, Intel-

ligence Server and Prolog Inference Engine) 14

3.2 Stateless Architecture with Portable Blackboard for

Efficient Multiple User Access 14

vii

viii

3.3 Data-flow in a Sample Interaction 18

4 XSHELL Design . 21

4.1 Inference Engine and Procedure 21

4.2 Knowledge base . 23

4.3 User Interface . 24

4.4 Explanatory Facility . 24

5 ImmGnosis System Design . 25

5.1 Inference Engine and Procedure 25

5.2 Knowledge Base . 27

5.3 User Interface . 30

5.4 Explanatory Facility . 32

6 Conclusion . 36

6.1 Evaluation . 36

6.2 Future Development . 37

References . 39

List of Figures

2.1 Work related Visa: Employee perspective . 10

2.2 Work related Visa: Employer perspective . 11

3.1 System Architecture . 15

3.2 Data-flow in a Sample Interaction . 20

5.1 User Interface . 34

5.2 Multiple Recommendations View . 35

ix

List of Tables

5.1 Properties of Sub-domains . 28

x

Chapter 1

Introduction

1.1 Problem Domain

1.1.1 Background

The domain of this expert system is immigration law. More specifically the United States

Immigration and Nationality Act Title 8 of the U.S. Code (8 USC), which was first created

in 1952 and subsequently amended over the years. This act along with other immigration

laws, treaties, and conventions of the United States relates to the immigration, temporary

admission, naturalization, and removal of aliens. This act applies to all United States citizens

and people wishing admission to the United States for any reason.

1.1.2 Problem Statement

The Immigration and Nationality Act is a labyrinth of laws, bylaws, and amendments, which

make the task of researching a case rather time intensive. It is hard even for a legal profes-

sionals to ensure whether a case has been researched completely and no important informa-

tion is left out. By automating this process, not only the temporal cost of research will be

reduced, but it will also ensure a more thorough and valid research.

1.2 Expert System Approach

1.2.1 Expert Systems: A Brief Overview

An expert system is a computer program that incorporates the specialist’s knowledge in order

to solve problems or give advice. An expert system may either completely replace the human

1

2

expert or play the role of an assistant. Expert systems consist of five parts: a knowledge base,

an inference engine, a blackboard, an explanation facility, and a user interface. The knowledge

base contains an expert’s knowledge (facts) and problem-specific heuristics (rules or cases).

The inference engine enables step-by-step logical reasoning about this information. During

this logical operation, the intermediate results are kept on the blackboard (working memory).

The contents of the blackboard are updated if a new (intermediate) result is derived. The

explanatory facility justifies the conclusions reached by displaying the reasoning or the rules

used for reaching a conclusion. The user interface facilitates all communication between the

user and the system by obtaining necessary information from the user through queries and

by displaying recommendations and any information supplied by the explanatory facility.

Of all the components mentioned above, only the knowledge base is dependent on the

domain while all the other components can be developed irrespective of the domain of the

expert system. This feature is particularly important in constructing an expert system,

because it allows programmers to construct “expert system shells” which then allows knowl-

edge engineers to construct fully functional expert systems rather quickly.

1.2.2 Case-Based vs. Rule-Based Expert Systems for Law

Though law has long been a popular domain for expert systems, it is also a difficult domain

due to the complexity of legal reasoning. The arguments made in the court are either based

on specific laws or previous cases. Previous cases are especially valuable when the laws are

not precise and the only way to reason is to cite previous cases. Based on their reasoning

mechanisms, the majority of legal expert systems can be classified in two categories, case-

based reasoning systems and rule-based reasoning systems.

Like a human expert, a case-based expert system uses previously known cases from its

knowledge base to reason about the present case, by comparing the present case with them.

Case-based reasoners store abstract knowledge of cases such as the facts of the case, the

result, and possibly the reasons for reaching that result. SHYSTER, developed by Popple

3

(1993), reasons over Australian law and represents the newest of case-based statistical legal

reasoning systems. One of the advantages of using case-based reasoning in a legal expert

system is that it can deal with a case, about which laws are not clearly defined or which

allow for various interpretations when applied. However in case-based reasoning, there is

considerable difficulty in obtaining a sufficiently large number of cases and there are often

no predetermined criteria for deciding which features of a case are most important and

should be included in its feature set. Case-based reasoners also have less sophisticated conflict

resolution mechanisms and their performance has been noted to degrade, when reasoning

with a large number of cases in their knowledge base (Jackson 1999).

In rule based systems, knowledge gathered from the experts of the domain is stored as

rules in “IF - THEN” format and reasoning is done by matching these rules to data written

to the working memory or the blackboard. In rule-based reasoning systems we can either

do backward chaining or forward chaining to reach a conclusion. In backward chaining we

start with a goal state and then try to look for all the relevant, supporting processes that

will lead us to achieve our goal state. On the other hand, forward chaining is a more data

driven approach where we try to see what conclusion can we draw with the current data.

Rule-based legal systems have been applied to domains like immigration law and property

law where laws are precisely defined and do not leave space for various interpretation. One

of the earliest rule-based legal expert systems, JUDITH, was created by Popp and Schlink

(1975) at Stanford University. The JUDITH system is a general legal expert system designed

for use by a lawyer. Its primary use was for researching open-textured terms1 using a rule

based approach. This was followed by TAXMAN, a system created by McCarty (1977) that

focuses on the taxation of corporate restructuring as legislated in subchapter C of chapter I

of the Internal Revenue Code of 1954 in the United States of America. Rule-based reasoning

systems are more popular owing to the general notion that intelligent behaviour is rule

governed and experts find it extremely useful to present their knowledge as a set of rules.

1A term is open-textured if the system of rules does not contain an explicit definition of the
term

4

Consequently, there are more expert system shells available that use rule-based reasoning

rather than case-based reasoning. The biggest disadvantage of rule-based systems comes from

the inconsistency in the rules supplied by the experts.

1.3 Description of study

1.3.1 Purpose and significance

Dealing with immigration law is complicated and practitioners would benefit from an auto-

mated system to efficiently search statutes applicable to a particular case. Immigration law

can be effectively broken down into smaller and more manageable sub-domains such as cit-

izenship status of an individual, citizenship by naturalization, admission qualifications for

aliens, travel control of citizens and aliens, immigrant and non-immigrant visas, etc.

Trying to use only case-based reasoning or only rule-based reasoning for the entire domain

of law is an inappropriate approach. There are some sub-domains of law, in which case-based

reasoning would better serve the purpose because laws in that area are not precisely defined;

hence, the only way to reason is to cite previously decided cases. Yet for other sub-domains

where laws are extremely precise, a rule-based system would be a better approach. Since

immigration laws are fairly precise, a rule-based system would be a better approach than

case-based reasoning. Additionally, case knowledge in immigration law is not far removed

from the actual Immigration and Nationality Act statutes and since the laws are extremely

precise, all the cases would look the same. Consequently, rules derived from the Immigration

and Nationality Act offer a better representation for our domain knowledge.

Hence ImmGnosis, which is a rule-based legal expert system, was designed and developed.

Such a system has several potential practical applications. It can be employed as an in-house

tool for immigration law firms that replaces the traditional preliminary consultation and

removes the temporal cost of individually evaluating each new case that presents itself. This

allows potential clients to make an initial determination of the worth of pursuing their cases

while circumventing, or at least minimizing, the financial and temporal costs associated with

5

initiating a traditional consultation with a human attorney. Alternatively, a firm could offer

public access to such a system over the Web, allowing a far greater number of users to access

the system. For this second application, the system would diagnose a potential client’s case

and if the system concludes that the case is worth pursuing, it can refer the user to the firm

providing the service and can store his or her consultation in a database for future reference.

It also benefits legal practitioners by automatically sorting potential cases at a lower cost to

the firm (Dejuan et al. 2005).

The goal of this study is to develop an efficient expert system shell and build a Web-based

expert system using that shell which will reason over various facets of American immigration

law.

1.3.2 Organization of Study

This thesis documents the design and implementation of an expert system shell and

ImmGnosis, a stateless Web-based expert system built using that shell that reasons over

matters involving United States immigration law. Chapter 2 documents the expert system

development lifecycle with emphasis on knowledge acquisition. Chapter 3 documents the

system architecture and the physical setup of the system. Chapters 4 and 5 discuss the var-

ious components of the expert system and describe the original shell and the modified shell

on which this expert system has been built. Chapter 6 concludes the thesis by presenting

the results of preliminary evaluation and suggests future plans for ImmGnosis.

Chapter 2

Expert System Development Lifecycle

The development life cycle for ImmGnosis followed the life cycle suggested by Awad (1996)

which is itself derived from the Buchanan life cycle (Buchanan et.al 1983). Awad’s life cycle

involves five steps: problem identification, knowledge acquisition, knowledge representation

and prototyping, verification and validation, and testing and implementation. Note that

this lifecycle is not purely sequential. Knowledge acquisition is a unique step since it runs

parallel to all the other steps. Knowledge acquisition is not a one time step where complete

knowledge of the domain is obtained before the development of the expert system. Whenever

new knowledge is obtained from the expert, it is then represented as a rule (step 3), verified

by the expert (step 4) and finally implemented in the system (step 5).

2.1 Problem Identification

In this first stage, the characteristics of the problem were identified. Emphasis was placed

on understanding the problem domain, scope of the problem and what resources would be

available to solve the problem. In this stage, there were a series of informal meetings with

the expert where indepth knowledge about the domain and the problem were obtained.

2.2 Knowledge Acquisition

In the second stage, the knowledge engineer either interviews the expert in order to elicit

knowledge or elicits knowledge from other credible sources. This is unarguably the toughest

stage for the knowledge engineer. In some expert systems, the task of knowledge elicitation

has been assigned to cognitive psychologists in order to ensure high quality knowledge is

6

7

gathered from the experts. Unfortunately such luxury was not available for this system and

the task of knowledge acquisition was pursued by myself and the co-creator of this system,

Daniel DeJuan.

2.2.1 Knowledge Acquisition Methods

The knowledge was obtained from experts either through direct interview or from documents

prepared by them. The experts would write their interpretations or directly take statues from

the Immigration and Naturalization Act and write them in an “IF - THEN” format. These

rules were then transformed into knowledge base rules which the inference engine could

interpret.

The primary knowledge acquisition method used for ImmGnosis was the later method

of extracting rules from documents written by experts. This method is better suited than

direct interview for the domain of immigration law since most of the knowledge that the

experts had came from the Immigration and Naturalization Act. Direct interviews with the

experts consisted of resolving ambiguities in these documents.

2.2.2 Knowledge Acquisition Results

The experts identified four distinct yet interdependent sub-domains of immigration law to

be pursued first. These are not the only sub-domains which together constitute immigration

law, but were the ones which were identified by the client to be more important than other

possible sub-domains. These four sub-domains are listed below.

1. Citizenship status: This sub-domain dealt with finding out whether a user was already

a citizen of the United States of America.

2. Citizenship by naturalization: This sub-domain dealt with finding out whether an indi-

vidual was eligible for United States citizenship by way of naturalization.

8

3. Admission qualifications for aliens: This sub-domain dealt with finding out whether an

individual alien was eligible to enter the United States or not.

4. Visa recommendation: This sub-domain dealt with recommending the type of entry

visa appropriate for an alien visitor.

Breaking the domain into smaller sub-domains allowed for development of knowledge bases

in parallel which were later combined to form a complete and comprehensive knowledge base

in a relatively short period of time. Knowledge acquisition and development of knowledge

bases for the first three sub-domains was pursued by Daniel DeJaun while the author mainly

dealt with the Visa recommendation sub-domain. More detailed discussion about the first

three sub-domains can be found in (Dejuan 2005).

The Visa recommendation sub-domain is a unique sub-domain since an individual can

be eligible for more than one type of Visa; hence multiple recommendations are possible.

On the other hand, a decision from other sub-domains like “citizenship status” would be

a “yes” or a “no” decision. This sub-domain is also one of the bigger sub-domains; hence

there was a need to evaluate it thoroughly and identify relationships between the objects in

order to build an efficient system. Figure 2.1 and Figure 2.2 present a brief overview of the

scope of this sub-domain and how a consultation in this sub-domain proceeds. Representing

the sub-domain as a tree helped facilitate exchange of knowledge between the knowledge

engineer and the domain expert. It also helped to ensure that the sub-domain was covered

completely and in an efficient manner.

For the sub-domain of visa recommendation, the experts identified seven possible reasons

why a potential client will initiate contact with an immigration attorney. These seven reasons

are exhibited at Level 1 of Figure 2.1 and are the starting grounds for a consultation in this

sub-domain. When a user starts a consultation, the first question they are asked is “What is

the purpose of your consultation?” The choices available to them are: to obtain a new visa,

to sponsor a visa for an employee, to change status of an existing visa, to reinstate an expired

visa, to get an extension on an existing visa, to determine the validity of a visa, or to apply

9

for legal permanent residence. If they choose “to obtain a new visa”, then the next question

will enquire about the purpose of their stay in the United States. The responses available

to the users are all the nodes in Level 2 of Figure 2.1. If the users chooses “entertainment

or athletic competition”, then the expert system will try to determine whether a P1 or P2

visa is appropriate for them. Figure 2.2 displays a similar process for an employer wishing

to sponsor an individual for work in the United States.

Note that the levels in these trees don’t imply the depth of the search tree for this sub-

domain, but are used to understand and model the domain better. The terminal nodes of the

tree in Figure 2.1 and Figure 2.2 marked in bold font indicate those visa categories whose

rule sets are complete and have been tested. In the current state, this sub-domain has 55

rules in it.

2.3 Knowledge Representation and Prototyping

The main objective of this stage is to map key concepts and relations on to formal rep-

resentations and to select appropriate tools. In this stage the knowledge engineer designs

structures to organize knowledge such that the inference engine can use it to draw conclu-

sions. For ImmGnosis, this stage ran in parallel to stage 2 and the decision to use and modify

XSHELL (Covington et al. 1997), an existing expert system shell for Prolog was made. The

original XSHELL is a rudimentary shell which uses prolog’s built in inference engine. It

provides a limited text interface and explanatory facility and is not built to handle multiple

users. The modifications to the shell included improving all those features and also allow for

consultations by multiple users.

2.4 Verification and Validation

For the fourth stage the verification and validation for ImmGnosis rules was done in two

steps. First the domain experts verified the rules by reading them. Since the rules of the

ImmGnosis knowledge base have an “IF - THEN” structure, the experts could easily read

10

F
ig

u
re

2.
1:

W
or

k
re

la
te

d
V

is
a:

E
m

p
lo

ye
e

p
er

sp
ec

ti
ve

11

F
ig

u
re

2.
2:

W
or

k
re

la
te

d
V

is
a:

E
m

p
lo

ye
r

p
er

sp
ec

ti
ve

12

the rules and verify them. Once these rules were verified by the expert, they were added to

the knowledge base and then they were validated by running the system and evaluating its

response against the expert’s own responses to the given case. This process was informal and

no written record was kept since the aim was to catch obvious errors in the knowledge base.

2.5 Testing and Implementation

In this last stage, the rules that embody the knowledge are validated by user testing, peer

reviews; and any other testing method that the client may desire. Since this is a yet to

be launched commercial product, comprehensive testing by peer review was not allowed.

The completed system was tested by the domain experts who supplied the expertise for the

development of the knowledge base.

Chapter 3

System Architecture

A rule-based expert system that deals with immigration laws (ImmGnosis) was designed and

implemented in order to efficiently evaluate the legal merits of a case and reduce the time

required for research by legal professionals . ImmGnosis is a Web-based system which allows

multiple users to access the system simultaneously. The advantages of using a Web-based

system are that it

1. can handle multiple users efficiently;

2. can store proprietary information securely; and

3. permits immigration law stored in the knowledge base to be updated easily.

Another option to a Web-based system was a downloadable program, but that would have

made the task of securely maintaining the proprietary information difficult. Furthermore,

a downloadable program would have made updating the immigration law knowledge base

difficult and time consuming because immigration laws change often. In order to provide

accurate up-to-date recommendations, we need to modify the knowledge base at the central

server only once instead of requiring the users to constantly install updates. All the above

mentioned considerations, plus the need to store user consultations in order to monitor the

accuracy of the system and identify areas of future research based on user trends, led to a

Web-based system with major client side load.

13

14

3.1 Main components of ImmGnosis (Java Server Pages, Intelligence Server

and Prolog Inference Engine)

As shown in Figure 3.1, the three important server components of ImmGnosis includes Java

Server Pages (JSP), the Intelligence Server (IS), and a Prolog inference application (i.e.,

knowledge base and inference engine). JSP at the front end, deployed on an Apache Tomcat

5.0 Web server1, governs the user interface.

JSP, a part of the Java technology family, allow Web designers and developers to develop

and maintain dynamic Web pages. JSP are created using syntax very similar to HTML and

have Java embedded in them. They are an extension of Java Servlet technology and are

configured to work with an HTTP server that passes CGI complaint input parameters to it

(McPherson 2000). The role of JSP is to retrieve the inputs provided by the user using the

GET evocation and display the response from the Prolog-based inference application.

Logic Programming Associates’ IS at the back end is an integral part of the system

and facilitates the interaction between the server and the system’s Prolog-based inference

application. The IS provides a simple text interface between Java and the Prolog language

instead of requiring a direct mapping between their complex data structures. In this model,

Java sends queries to Prolog and receives output from the by Prolog programs as text strings

(Westwood and Steel 2004).

The LPA WIN-Prolog application at the back end is the knowledge base and inference

engine of the expert system and it is explained more in detail in Chapters 4 and 5.

3.2 Stateless Architecture with Portable Blackboard for Efficient Mul-

tiple User Access

ImmGnosis allows multiple users to access the system at the same time with minimum server

side load by incorporating a portable blackboard in a stateless architecture. We benefited

1The Apache Jakarta Project. Web: http://jakarta.apache.org/tomcat/

15

Figure 3.1: System Architecture

16

from reading Jennings (2002), which describes an earlier implementation of a stateless archi-

tecture for Web-based expert systems. This is the most efficient method since only a single

instance of the knowledge base and inference engine can support multiple users.

3.2.1 Stateful Architecture

An expert system can be stateful or stateless. In a stateful system, a current state and

preceding events (i.e., history of user’s interaction with the system) are used to determine

the next query or to make a recommendation. One of the major disadvantages of using a

stateful architecture for ImmGnosis is that it cannot handle multiple users at the same time.

If only one user is using the system, the interactions between the user and the system are

easily tracked by just updating the working memory or blackboard where the dynamic facts

of that interaction are being stored. Hence, the system is able to provide appropriate query

and proceed to the next state without a problem. However, if multiple users are accessing

the system simultaneously, this will be a problem since facts from different users will be

written to the same working memory thereby generating inappropriate conclusions. Hence

it is impractical to use a stateful architecture for a Web-based expert system that needs to

process multiple clients’ queries in parallel.

3.2.2 Stateless Architecture with Portable Blackboard

ImmGnosis is a stateless system designed around a portable blackboard architecture.

ImmGnosis incorporates features which allow for distinguishing each user while using a

single inference engine and knowledge base to support multiple users hence using minimum

machine resources.

In a stateless system, neither the current state nor the previous events are stored.

The statelessness of ImmGnosis is derived from its portable blackboard. In its structure,

a portable blackboard is just like a regular system blackboard, which is permanently located

inside the system. The differences between the portable blackboard and system blackboard

17

are that a portable blackboard is assigned to each user and it travels back and forth between

the user and the system. Each portable blackboard contains all the facts pertaining to the

consultation and is copied to the system blackboard when the system receives new inputs

from a user. When the system has satisfied the current query either by generating a con-

clusion or a new question, the information in the system blackboard is copied back to the

portable blackboard and the information in the system blackboard will be deleted in order

to process inputs from other users.

The blackboard assigned to each individual was made portable in order to avoid server

clutter and reduce server side load. If the blackboard is maintained at server side and the

internet connection gets disconnected or the user decides to leave the consultation in the

middle, the server would maintain the user’s blackboard in its last state indefinitely, and

eventually the server will get cluttered with inactive blackboards. Additionally it will have

to distinguish between all incoming requests and find the appropriate blackboard to add new

information obtained from the user.

In ImmGnosis, each user is tracked over the period of a consultation using a unique

Java Session ID2 assigned during the initial consultation. This is necessary because HTTP

is a stateless protocol that opens a separate connection to the Web server each time a user

retrieves a Web page. The server does not automatically maintain contextual information

about a client. Session ID was also used to distinguish portable blackboards assigned to

different individuals.

“Stateful” and “stateless” are derived from the usage of state as a set of conditions at

a moment in time. Computers are inherently stateful in operation; so these terms are used

in the context of a particular set of interactions, not of how computers work in general. It

is important to note that the claim to statelessness applies only to the expert system and

not to the Website through which the system is delivered. The Website is indeed stateful

and it keeps track of users moving from one page to another and performing actions other

2User tacking by Session ID is a mechanism provided by JSP to maintain states about series of
requests originating from the same Web browser.

18

than conducting a consultation with the expert system. It is the expert system which does

not need to store previous knowledge of interactions with the user in order to successfully

process their query.

3.3 Data-flow in a Sample Interaction

Data flow in ImmGnosis is presented in Figure 3.2. Whenever a new consultation is started,

the user fills out a generic form, which asks for the user’s date of birth, place of birth, and

the sub-domain of immigration law that the user wants to explore. When the user submits

the initial form, Java assigns the user a unique Java Session ID and generates a portable

blackboard for the individual. Java then takes the user’s answers from the original form and

packages them as a text string. This text string is then sent to the IS, where it is converted to

a Prolog query string. This query string is then sent to Prolog and the retrieved information

is posted on the blackboard. The Prolog inference engine then tries to reach a conclusion

based on the information currently on the blackboard. If the information is not sufficient for

reaching a recommendation, then Prolog generates a new JSP file (i.e., Web page) and writes

a question (along with its possible answers) in a form. In addition, Prolog copies the contents

of the system blackboard to a portable blackboard, which is inserted in the JSP file as a

hidden control field. The memory address where this file is stored is sent to the IS, JSP, and

passed back to the Web server. Then the Web server displays the page to the appropriate user

based on the Session ID associated with this file. When a user answers a new question, Java

appends the answer to the hidden blackboard string and sends it to Prolog where the whole

process is repeated until a conclusion is reached. When Prolog finally reaches a conclusion, it

creates a new JSP file that has the conclusion and the answers to all the previous questions

in it. This JSP file is then sent back to the Web server. At this point the user has the option

of either saving their consultation to a database or permanently deleting it from the system.

If a user chooses to save their consultation, their current blackboard is saved to the database

and in subsequent visits they can retrieve it and view or edit that consultation. Note that,

19

in either case, Prolog deletes all the facts about that user from its blackboard after sending

the JSP files to the Web server in order to handle requests coming in from other users.

20

F
ig

u
re

3.
2:

D
at

a-
fl
ow

in
a

S
am

p
le

In
te

ra
ct

io
n

Chapter 4

XSHELL Design

An expert system shell typically consists of an inference engine, a user interface, and some-

times an interface to build knowledge bases, but has no knowledge base. Shells provide a

platform to build a knowledge base by simply filling in the domain knowledge. Hence, using a

shell is an efficient way of building an expert system because it takes the burden of writing an

inference engine and user interface away from the knowledge engineers and system developer.

There are many commercial shells available, such as CLIPS1, EXSYS2, and FLEX3.

ImmGnosis was developed using XSHELL (Covington et al. 1997), which is a shell written

in Prolog and is freely available. It does not have several features found in other high end

shells. But an advantage of XSHELL is that it can be modified easily, because usually it

is hard to modify commercial shells. The rest of this chapter briefly describes the design

of XSHELL, while Chapter 5 documents the changes made to XSHELL. A more detailed

discussion about XSHELL can be found in Covington et al. (1997).

4.1 Inference Engine and Procedure

XSHELL employs a depth-first backward-chaining inference mechanism, which is built into

Prolog. A backward-chaining system starts its inference from a goal state and tests if all

the relevant supporting facts can be obtained. The inference engine picks a rule in lexical

order and tries to match the antecedent of the rule to the information in the current working

memory in order to determine if the premises of the rule are satisfied. If the premises are

1CLIPS. Web: http://www.ghg.net/clips/CLIPS.html
2EXSYS. Web: http://www.exsys.com/
3Logic Programming Associates. Web: http://www.lpa.co.uk/flx.htm

21

22

not satisfied, the inference engine will start looking for another rule that can be used. This

process continues until either all the premises of some rule are satisfied or the inference

engine runs out of rules. Note that inefficient ordering of rules can result in a longer path to

the conclusion because rules are traversed lexically.

In XSHELL, a single query to the inference engine leads to a sequential building of the

blackboard by searching through the entire knowledge base. A query to an expert system

developed upon XSHELL would lead to the display of introductory text followed by a call to

xkb_identify/24 “The two place predicate xkb_identify defines the knowledge component

of XSHELL” (Jenning 2002). Each xkb_identify/2 clause is a rule that defines an answer

to a set of user inputs. Prolog tries to satisfy each clause in the order it appears in the rule

base. A query on a rule results in a query on the clauses in that rules body in order. Each

clause represents a certain condition, which is checked by the inference engine to identify

whether that condition is already satisfied or negated according to previous user input. If the

condition is satisfied, then the inference engine continues on to the next one. If the condition

is negated, then the rule fails and the engine backtracks to the next rule (if present). Once

all conditions for some rule are satisfied, the rule succeeds and returns an answer to the user.

However, if no rule succeeds given the user input, the system simply reports that no further

conclusion can be reached.

Hence a single query to the system starts a process, which will be terminated when the

system reaches a conclusion. During this process, every action by the system is dependent

upon the previous state of the system, thereby making it stateful. A direct consequence of

the stateful architecture of an expert system developed using XSHELL is that it can support

only one user at a given time.

4This is standard Prolog notation where the number “2” indicates the arity of the predicate.

23

4.2 Knowledge base

Since XSHELL is an expert system shell and does not contain actual knowledge of a domain,

the discussion in this section is limited to the structure of rules only.

Rules in XSHELL’s knowledge base are xkb_identify/2 clauses. The first argument of

this clause is an integer that represents the rule number. In XSHELL, this number is not

used in computation and simply provides an identification for the system developer. These

numbers have to be unique and sequential; however, the order of rules in the knowledge base

does not matter. The second argument is a list of atoms that the inference engine uses to

display appropriate output if the rule succeeds.

Every xkb_identify/2 clause can have eight types of predicates in its body. These

predicates are prop/1, parm/3, parmrange/3, parmset/4 and their negations. prop/2 is

used to define Boolean properties. parm/3 represents multi-valued properties, which can be

a menu choice, an atom, or a number as specified in their second argument. parmrange/3

and parmset/4 specify that a value must fall within a certain range or a value is a member of

a specified set, respectively. The rule can also have something called a “complex condition”,

which is itself defined in terms of the above mentioned four predicates and their negations.

Complex conditions are useful because they allow programmers to take repetitive knowledge

and put it in one clause, thereby making rules neater and more manageable.

An XSHELL knowledge base contains clauses for two other predicates: xkb_question/4

and xkb_menu/4. Both predicates contain information that is used to formulate a question as

well as generate rule explanations. The first argument of xkb_question/4 is an atom, which is

used by the inference engine to match against the argument of prop/1 when xkb_identify/2

is processed. The second argument of xkb_question/4 is a list, which contains a question

asked to the user in order to obtain information about the argument of prop/1. The third

argument of xkb_question/4 clause is a short piece of text string stating that the subject of

the consultation has the property, while the fourth argument is a text stating that the subject

of the consultation does not have the property. The first argument of xkb_menu/4 is an atom,

24

which is matched against the first argument of parm/3 when the body of xkb_identify/2 is

processed. The second argument of xkb_menu/4 is a list which contains a question asked to a

user in order to obtain information about the first argument of parm/3. The third argument

of xkb_menu/4 is a list of strings each of which states a menu item. The fourth argument of

xkb_menu/4 is a text string which is used by the explanatory facility of the system.

The structure of rules in XSHELL’s knowledge base is not far removed from the structure

of rules in ImmGnosis’ knowledge base because all the above mentioned predicates are used

to create ImmGnosis’ rules too. An example of an ImmGnosis rule is given in the next

chapter.

4.3 User Interface

XSHELL provides a basic text-based interface. The user is required to type in their response

to a question displayed on the screen. This interface is Prolog’s own user interface with the

additional capability of taking predefined inputs from users.

4.4 Explanatory Facility

XSHELL supports user prompted explanations and displays text extracted from the rule used

to derive the last conclusion. The third and the fourth arguments of xkb_question/4 and

xkb_menu/4 are used by the explanatory facility. As mentioned in 4.2, the third argument

is an affirmation of the presence of a property, while the fourth argument is an affirmation

of absence of a property. In the case of xkb_menu/4, the fourth argument is appended to

the text string in the third argument that corresponds to the choice made by a user. This is

explained further when I discuss the ImmGnosis explanatory facility in the next chapter.

Chapter 5

ImmGnosis System Design

ImmGnosis is a rule-based expert system that deals with immigration laws and was designed

and implemented in order to efficiently evaluate the legal merits of a case and reduce the

time required for research. ImmGnosis is a Web-based system, which allows multiple users to

access the system simultaneously. Depending upon the nature of the sub-domain, ImmGnosis

either provides a single diagnostic conclusion or multiple recommendations.

This chapter describes ImmGnosis with respect to the four major components of an

expert system and documents the changes made to XSHELL in order to make it useable for

ImmGnosis.

5.1 Inference Engine and Procedure

The inference engine of ImmGnosis also uses LPA WIN-Prolog’s depth-first backward-

chaining inference mechanism. The key difference between XSHELL and ImmGnosis lies

in how a query to the expert system proceeds. In XSHELL, a single query to the infer-

ence engine leads to a sequential building of the blackboard by searching through the entire

knowledge base. In order to handle multiple users, multiple instances of XSHELL are needed

since a single instance can support only one user. Hence XSHELL was modified as follows.

The inference process was modified such that when a Prolog query is made to the expert

system, the following steps are performed.

1. Contents of the user’s portable blackboard are written to the expert system’s black-

board.

25

26

2. The inference engine processes information in the blackboard and generates appropriate

response (another question or a conclusion).

3. Contents of the system’s blackboard are wiped from the expert system.

4. The response is displayed to the user.

A call to stateless_xshell/3 generates a call to five other predicates, culminating in

the response of the expert system being displayed to the user. The rest of this section focuses

on step 4, while steps 1 to 3 are detailed in Dejaun (2005).

The final predicate called in stateless_xshell/3 is generate_file/6. generate_file/6

is responsible for generating a new Web page which is displayed to the user as a response to

his query.

generate_file(Session_ID , flag1 , flag2 , Conclusion_Or_Question_Text ,

Possible_Answers , Portable_Blackboard)

The first argument of generate_file/6 is a unique Session ID used to identify to whom

this Web page will be displayed. The second argument of generate_file/6 is a flag obtained

from process/5 (Dejaun 2005) indicating whether a conclusion has been reached or more

information is needed from the user. The third argument of generate_file/6 is a flag indi-

cating whether a user is in middle of a consultation or simply viewing a saved consultation.

Both of these flags are used to determine the layout of the Web page being generated. If the

second argument indicates that more information is needed, then the Web page will have a

split screen. A new question and its possible answers are displayed on the left side, and all

previously obtained answers are displayed on the right side (Figure 5.1). On the other hand if

the second argument indicates that a conclusion has been reached, the Web page has a single

screen displaying an option to either save the consultation to the database or proceed for

alternate recommendations, depending upon the sub-domain of the consultation (Figure 5.2).

The fourth and the fifth arguments of generate_file/6 are also obtained from process/5.

27

The fourth argument of generate_file/6 contains the text of the conclusion or the new

question. The fifth argument of generate_file/6 contains the text of possible answers,

if applicable. The sixth argument of generate_file/6 obtained from wipe_blackboard/2

(DeJaun 2005) contains the most current version of the user’s blackboard, which is inserted

into the Web page as a “Hidden”1 control field.

Once stateless_xshell/3 succeeds, Prolog passes the control back to the Web server

which takes over the duty of displaying the newly generated Web page to the user. Prolog

is now free to process queries coming from other users.

5.2 Knowledge Base

The domain was broken into smaller sub-domains allowed for development of knowledge bases

in parallel, which were later combined to form a complete and comprehensive knowledge base

in a relatively short period of time. ImmGnosis currently has over 200 rules in its knowl-

edge base covering four sub-domains as mentioned in Section 2.2.2 (i.e., citizenship status,

citizenship by naturalization, admission qualifications for aliens, and visa recommendation).

ImmGnosis provides either a single diagnostic answer or multiple recommendations

depending upon the sub-domain. The conclusion provided by the system when dealing

with either citizenship status or citizenship by naturalization is a single diagnostic answer

indicating whether the user is a citizen or not, or eligible for citizenship or not, respectively.

On the other hand for the visa recommendation sub-domain, the system makes multiple

recommendations regarding appropriate categories of visas. The distinction lies not in the

inference procedure of the system, but in the nature of immigration law.

Table 5.1 summarizes important information related to each sub-domain.

1The “Hidden” control field of an HTML form, is neither visible to the user nor can it be
interacted with unlike other control fields on a Web page like checkboxes, radio buttons, etc.
Authors of a Web page generally use this control type to store information between client/server
exchanges that would otherwise be lost due to the stateless nature of HTTP. Since the blackboard
is a string of abbreviated attribute/value pairs, displaying it on the screen would serve no purpose
except to confuse the user. Hence using a hidden field is an appropriate method.

28

Table 5.1: Properties of Sub-domains

Sub-domain Number Conclusion Unique
of Rules Type Conclusion

Citizenship status 47 Diagnosis Yes
Citizenship 29 Diagnosis Yes
by naturalization
Admission qualifications 82 Diagnosis No
for aliens
Visa recommendation 55 Recommendation No

The structure of knowledge base rules is the same for ImmGnosis and XSHELL

except for the number of the arguments for xkb_identify. Two arguments were added

to xkb_identify/2 of XSHELL making it xkb_identify/4. In the ImmGnosis knowledge

base, the four place predicate xkb_identify defines the knowledge component and has the

following structure:

xkb_identify(Rule_Number, INA_Statue, Environment, Diagnosis)

The first argument is an integer that represents the rule number, which is used by the

inference engine to pick out the correct rule for processing. The numbers have to be unique

and sequential, though the order of rules in the knowledge base does not matter. The second

argument is a list of atoms that refers to the exact Immigration and Nationality Act statue

that corresponds to the rule. The third argument is an atom that identifies the sub-domain

of the rule. This makes the system’s inference procedure more efficient by indexing only the

rules pertaining to that particular sub-domain. The final argument is a list of atoms that is

used to display appropriate output if the rule succeeds.

29

Similar to XSHELL, xkb_identify/4 is also constructed using prop/1, parm/3,

parmrange/3, parmset/4, and their negations, and it can also have complex conditions

in its body. Consequently, any knowledge base written for XSHELL can be accommodated

in this system with minor modifications; however, this has not been tested. A benefit of

deploying this system over the Web is that the text which goes in all but the first argument

of xkb_question/4 and xkb_menu/4, can have HTML tags in them. It is possible to boldface

text using the “” tag, etc., or even attach an image or provide hyper-links.

Having complex conditions as a clause in rules was extremely beneficial because every

rule in the “citizenship by naturalization” sub-domain has the property of “being admis-

sible”. This property is derived from the “admission qualifications for aliens” sub-domain.

By putting that property in every rule for naturalization, a module-within-module architec-

ture is achieved where the conclusion from admissibility sub-domain becomes a prerequisite

to all the rules in the naturalization sub-domain. Hence an intermediate diagnosis is received

from the “admission qualifications for aliens” sub-domain which is then used to derive the

final diagnosis. Further discussion about the advantages of complex conditions in ImmGnosis

knowledge base can be found in (Dejuan 2005).

Following is a toy rule from the ImmGnosis knowledge base, which is used to make a

recommendation for an L1 visa. Owing to the proprietary nature of ImmGnosis, a complete

rule cannot be divulged. The xkb_identify/4 rule states that if the user wishes to obtain

a new visa for working purposes as a manager or an executive, the system will give him a

recommendation to obtain L1 visa.

xkb_identify(1,’INA101(a)(15)(L)’,visa,[l1]) :-

parm(purpose_of_consultation,m,1), % new visa

prop(executive_or_manager).

30

xkb_menu(purpose_of_consultation,

’What is the purpose of your consultation today?’,

[’To Obtain a new Visa’,

’Sponsor Visa for prospective employee’,

’Change the status of current Visa’, ’],

’Purpose of current consultation: ’).

xkb_question(executive_or_manager,

[’Did you hold an executive or manager position? ’],

’You held an executive or manager position.’,

’You don’t hold an executive or manager position.’).

Note that parm/3 has a corresponding xkb_menu/4 while prop/1 has a corresponding

xkb_question/4. If the rule succeeds, then the fourth argument of xkb_menu/4 will be

appended to the appropriate choice from its third argument and used by the explanatory

facility. The explanatory facility will also take appropriate text from xkb_question/4 and

display it to provide complete justification for the conclusion reached.

5.3 User Interface

The user interface can be divided into two parts, the expert system interface and the interface

which is needed for the proper functioning of a Website.

5.3.1 Expert System Interface

Upon accessing the ImmGnosis home page, a user can conduct a consultation by either

initiating an anonymous consultation or by logging in to the system with an existing account.

Since ImmGnosis is a Web-based expert system designed for use by the general public, we

present the user with a familiar Web interface. The consultation window has two sections

(Figure 5.1). The section on the left displays the current question and possible answers, which

can be selected from a drop down list or radio buttons. The section on the right displays

all the answers provided by the user up to that point. If a user wants to change an answer

31

to a previous question, he or she can use the browser’s “back” button to navigate to that

question and alter its answer.

Once the conclusion is reached, the recommendation will be displayed in the right section

just below the history of answers provided by the user. At this point, the user has the option

of saving the consultation or permanently deleting it from the system. The “admissibility”

and “visa recommendation” sub-domains have the capability of providing multiple recom-

mendations. For example, a user might be eligible for an H1-B visa and also for an L1 visa.

In such a situation the expert system provides the user with the option of either accepting

the first recommendation or further continuing their consultation with the aim of getting

multiple recommendations. If the user chooses to get multiple recommendations then all the

recommendations are written at the bottom right of the screen as shown in Figure 5.1

An advantage of delivering the system over the Web is that the knowledge engineer

can use any tag set allowed within the body element of a HTML document to appear in

expert system output.2 This is especially useful in the explanatory facility where words can

be highlighted, underlined or bold faced for emphases. Complete URL’s linking to other

documents can also appear in expert system output and can be used to link to definitions

of a concept or a term.

5.3.2 Website Interface

Since this expert system is delivered over the Web, it includes many functionalities which

are pertinent to the proper functioning of a Web-site. A user can login to the Web-site and

either choose to start a new consultation or view or edit an existing consultation.

Upon reaching a recommendation, the system provides the user with the option of saving

the current consultation or deleting it. If the user is already logged in and wants to save

the consultation, then it is saved under his or her account. Otherwise, he or she is given the

2An expert system “output” is not limited to its conclusions but includes any text displayed to
user.

32

option of creating a new account. In subsequent visits, the user can view, edit, or delete any

of his or her previous consultations.

Currently there are two types of roles that a user can possess: a regular user or an

administrator. An administrator level user has the option of viewing, editing, and deleting

all saved consultations available on the system from all users. The administrator also has

the power to start, stop, and restart the expert system. An administrator can also initiate a

special verbose mode of consultation where various system parameters are displayed during

the consultation. This is specially helpful in debugging the knowledge base and inference

engine. The parameters displayed in the verbose mode are

1. session ID assigned to the consultation;

2. the last successfully processed blackboard of this consultation;

3. the new unprocessed blackboard with the new answer; and

4. flags from Prolog indicating whether the new blackboard has been processed success-

fully or not.

5.4 Explanatory Facility

The explanatory facility of ImmGnosis is similar to the explanatory facility of XSHELL in

respect to how the displayed texts are formulated from the Prolog rules in the knowledge

base as detailed in Section 4.4. There are two major differences between the explanation pro-

vided by XSHELL and ImmGnosis. First, in XSHELL, a user needs to explicitly request an

explanation of how the conclusion is reached at the end of the consultation, while ImmGnosis

automatically displays the explanation in chronological order as the consultation proceeds.

Second, in XSHELL, only the facts that contributed to reaching the final conclusion are

displayed, while ImmGnosis displays all the facts collected during the consultation. The

advantage of the continuous explanatory feature of ImmGnosis is that the users can see

33

their previous responses during the consultation and can make necessary changes in the

middle of the session as discussed in Section 5.4.1. The disadvantage of the explanation

facility of ImmGnosis is that it does not show which facts were actually relevant for reaching

the final conclusion.

34

Figure 5.1: User Interface

35

Figure 5.2: Multiple Recommendations View

Chapter 6

Conclusion

I now conclude this thesis by providing the results of testing and identifying areas of future

development, some of which are already in development stage.

6.1 Evaluation

ImmGnosis is evaluated on three criteria: correctness, completeness, and the usefulness of the

system. At present, ImmGnosis has not undergone intensive evaluation regarding the accu-

racy of its diagnoses owing to the propriety nature of the system. So far, only the experts

involved in the knowledge acquisition process have validated the rule base throughout its

development by reading the rules and running the system. ImmGnosis passes the correctness

criteria so far but a larger test base of users is needed before making any objective claims.

ImmGnosis’ knowledge bases are complete in respect to their sub-domains except for the

“visa recommendation” sub-domain. With respect to United States immigration law, com-

pleteness is a matter of investing more resources. The system has been used by the experts to

evaluate a few real world cases pertaining to the citizenship status of their clients. According

to the experts, the system made accurate diagnosis and in far less time than it would have

taken the experts themselves to reach the same conclusion, hence demonstrating the useful

nature of the system.

The performance of the modified expert system shell and its stateless architecture has

been extensively tested. The stateless architecture coupled with the portable blackboard

has proven to be robust and lived up to its expectations of handling multiple users while

36

37

using minimum machine resources. It can be stated confidently that this shell can be used

to develop other expert systems, too.

6.2 Future Development

The primary area of development is to complete the visa recommendation sub-domain fol-

lowed by adding more sub-domains to the existing system and making it complete with

respect to United States immigration law. Using the current sub-domains, it has been proved

that the system is capable of reasoning and providing accurate recommendations or diag-

noses. Adding more sub-domains is a matter of investing more time in the knowledge acqui-

sition process.

In the sub-domains where multiple recommendations are sought, these recommendations

are not ranked or displayed with a confidence value. Since the inference engine tries to satisfy

the rules in lexical order, the rules with the higher number are attempted first, hence often

solved first. There are situations where the later recommendations may be more appropriate

but the user may assume that the first recommendation is the best. This problem can be

solved using traditional methods such as MYCIN style certainty values, Dempster-Schafer

Theory of Belief Functions, or Fuzzy Logic. I would like to take a different approach and

get users to attach a “desirability value” to different attributes. For example, for an alien

who wants to work in the United States, an L1 visa is easier to process and obtain than an

H1-B visa, but the maximum duration of stay on an L1 is only one year compared to three

years for a H1-B. A user could be asked to identify what is more important to them, ease of

obtaining a visa or the maximum duration of stay on a visa. These values coupled with an

expert’s opinion on ease of processing could influence our ranking methodology in multiple

recommendations.

Another shortcoming that became apparent during the parallel development of knowledge

bases was the repetition of knowledge structures. Since the knowledge base for sub-domains

were developed independently, there were a few concepts which were repeated. For example,

38

in the “Citizenship status” sub-domain, a user is asked about their parent’s citizenship

status and then asked again in the “Citizenship by naturalization” sub-domain, albeit in

different words. This problem exists due to lack of communication between knowledge base

developers and through not having proper naming conventions. Though this does not effect

the correctness or completeness criteria of an expert system, asking the same question

twice seems rather unintelligent for an intelligent system. This problem can be solved by

developing an ontology for the system and identifying relationships between objects so

the domain knowledge is appropriately encoded and reused. The development of such an

ontology is currently under way.

A rule-based expert system (ImmGnosis) that deals with United State immigration laws

was designed and implemented in order to efficiently evaluate the legal merits of a case and

reduce the time required for research. An existing Prolog expert system shell (XSHELL) was

modified such that it would allow multiple users to access the system simultaneously through

a Web interface with minimum server side load by incorporating a portable blackboard in a

stateless architecture. The system is capable of determining a user’s U.S. citizenship status,

admissibility status for an alien visitor, and eligibility for naturalization as well as giving

multiple visa recommendations. ImmGnosis was evaluated on three criteria: correctness,

completeness, and the practicality of the system. The results of the tests indicate that the

diagnoses and recommendations made by the system are correct, and the knowledge base is

complete as mentioned. In addition, it has been shown that the system can make an accurate

diagnosis in far less amount of time when dealing with real cases pertaining to citizenship

status; hence demonstrating the practical nature of the system.

References

Awad, E. M. (1996) Building Expert Systems: Principles Procedures, and Applications. St.

Paul: West Publishing Company.

Brown, S.; Burdick, R.; Falkner, J.; Galbraith, B.; and Johnson, R. (2001) Professional JSP

(2nd ed.) Birmingham: Wrox Press.

Covington, M. A.; Nute, D.; and Vellino, A. (1997) Prolog Programming in Depth. New

Jersey: Prentice-Hall Inc.

DeJuan, D. M. (2005) ImmGnosis: Knowledge Engineering for A Stateless Web-based Expert

System for Immigration Law. M. S. thesis, University Of Georgia.

DeJuan, D. M.; Khosla, V.; Potter, W. D.; Dorminey, B.; and Nute, D. (2005) ImmGnosis:

A Stateless Web-based Expert System for Immigration Law. Proceedings of the 2005

International Conference on Artificial Intelligence-1, 249-255.

Buchanan, B. G.; Barstow, D.; Bechtal, R.; Bennett, J; Clancey, W.; Kulikowski, C.; Mitchell,

T.; and Waterman, D. A. (1983) Constructing an Expert System. In Hayes-Roth,

Fredrick; Waterman, A. Donald; and Lenat, B. Douglas, eds., Building Expert Systems,

pp. 127–167. Reading, M.A.: Addison-Wesley Publishing Company.

Jackson, P. (1999) Introduction to Expert Systems. 3rd ed. Harlow, England: Addison Wesley

Longman Limited.

Jennings, D. (2002) JXSHELL: a Web-based expert system platform. M. S. thesis, University

Of Georgia.

McCarty, L. T. (1977) Reflections on Taxman: An Experiment in Artificial Intelligence and

Legal Reasoning. Harvard Law Review 90.5: 837–893.

39

40

McPherson, S. (2000, April 2000) Java Server Pages: A Developer’s Perspective. Sun

Microsystems. Web: http://java.sun.com/developer/technicalArticles/Programming/jsp/

Popp, W. G., and Schlink, B. (1975) Judith, a computer program to advise lawyers in

reasoning a case. Jurimetrics Journal 15.4: 303–314.

Popple, J. (1993) Shyster: A pragmatic legal expert system. The Australian National Univer-

sity, Canberra.

Westwood, A., and Steel, B. D. (2004) LPA Win-Prolog 4.500 Intelligence Server. Logic

Programming Associates. Web: http://www.lpa.co.uk/ftp/4500/int ref.pdf

	Acknowledgments
	Preface
	List of Figures
	List of Tables
	Introduction
	Problem Domain
	Expert System Approach
	Description of study

	Expert System Development Lifecycle
	Problem Identification
	Knowledge Acquisition
	Knowledge Representation and Prototyping
	Verification and Validation
	Testing and Implementation

	System Architecture
	Main components of ImmGnosis
	Stateless Architecture with Portable Blackboard
	Data-flow

	XSHELL Design
	Inference Engine and Procedure
	Knowledge base
	User Interface
	Explanatory Facility

	ImmGnosis System Design
	Inference Engine and Procedure
	Knowledge Base
	User Interface
	Explanatory Facility

	Conclusion
	Evaluation
	Future Development

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

