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This thesis investigates how hate speech detection models misclassify African American 

Vernacular English (AAVE) on social media, leading to disproportionate false positives and 

algorithmic bias. Many systems struggle to distinguish between culturally significant language 

and harmful content, resulting in the over-flagging of Black speech. The study evaluates models 

including GloVe + LSTM, TF-IDF + SVM, and fine-tuned DistilBERT across datasets with 

varying class distributions. A hand-labeled AAVE subset is used to examine false positives and 

highlight model shortcomings. Results show that even widely used models consistently 

underperform on AAVE tweets, with low F1 scores and poor generalization. These findings 

reveal how training data composition and linguistic bias shape detection outcomes. Ultimately, 

the work calls for more inclusive datasets and fairness-aware model design to reduce 

disproportionate harm and better support the complexity of online Black language. 
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CHAPTER ONE 

 

Introduction 

 

 

1.1 Motivation 

As online platforms increasingly shape public discourse, the need for accurate and 

equitable hate speech detection systems has never been greater. These automated systems are 

tasked with the difficult role of moderating harmful language in real time—but they often fail 

when faced with linguistic variation, particularly from marginalized communities [1]. One such 

variety is African American Vernacular English (AAVE), a culturally and historically rich dialect 

that differs from Standard American English in grammar, vocabulary, and usage. 

Despite its legitimacy, AAVE is regularly misclassified by hate speech detection models, 

which are typically trained on datasets that center dominant language norms. This 

misclassification disproportionately affects Black users – especially Black men[2] – whose use 

of reclaimed, in-group terms such as the n-word are often flagged as hateful or abusive, even 

when used non-pejoratively. These errors do more than undermine model performance; they 

represent a pattern of algorithmic censorship that disproportionately silences marginalized 

voices. 

This thesis investigates how and why these systems fail, focusing on the misclassification 

of male AAVE speech. By identifying consistent trends in model error, it contributes to the 
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growing body of work aimed at creating more context-aware and fair systems. This research also 

gestures toward broader ethical concerns around algorithmic injustice and the need for reparative 

approaches to fairness in AI. 

1.2 Research Objective/Question 

The central aim of this research is to expose and understand the linguistic and systemic 

factors that contribute to the misclassification of AAVE. To do so, this study: 

1. Evaluates model performance across several benchmark hate speech datasets. 

2. Identifies consistent patterns of misclassification, especially related to reclaimed 

language like the n-word. 

Together, these goals are guided by the following research question: How do hate speech 

detection models misclassify male AAVE speech, and what linguistic features contribute to these 

misclassifications? 

 

1.3 Thesis Outline 

The remainder of this thesis is organized as follows: 

• Chapter 2 examines AAVE’s online presence, its appropriation, and the persistent 

marginalization of Black linguistic expression 

• Chapter 3 examines hate speech detection, including model architectures, dataset 

construction, and the ethical implications of biased algorithms. 

• Chapter 4 outlines the methodology, detailing our dataset analysis and model selection. 

• Chapter 5 presents and discusses experimental results, analyzing misclassification 

patterns and linguistic influences. 

• Chapter 6 concludes with key findings, implications, and directions for future research. 
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CHAPTER TWO 

 

African American Vernacular English 

 

2.1 Overview 

Because this work focuses on improving hate speech detection models for the minority 

language variety of African American Vernacular English (AAVE), it is essential to understand 

AAVE’s historical and contemporary context. Moreover, understanding the ways in which AAVE 

differs from Standard American English (SAE) highlights the challenges in accurately processing 

minority language varieties online. Examining its linguistic evolution, social significance, and 

structural features provides insight into why hate speech models struggle with AAVE and why 

addressing this issue is crucial. 

African American Vernacular English is a dialect of the English language spoken in the 

United States, historically associated with Black communities, but not exclusively limited to 

them. Since the early 1960s, when attention to African American Vernacular English (AAVE) 

first gained momentum, the terminology used to describe this linguistic variety has shifted over 

time, often reflecting broader societal trends. For instance, during the era when African 

Americans were commonly called "Negroes," the language was referred to as "Negro dialect" or 

"Negro English." These changes in terminology are closely linked to evolving social contexts 

and perceptions of race [3]. The variety has been known to go over many different names, 
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including “Black communications”, “Black street speech”, “Nonstandard Negro English”, “Afro 

American English”, and more [3]. For the purposes of this work, it will be referred to as AAVE. 

Research into the origins of AAVE, draws on comparative data from other non-standard 

English varieties, English varieties within the African diaspora, and Caribbean Creoles. With the 

increasing availability of sources like ex-slave narratives and hoodoo texts, perspectives on the 

origins of AAVE have broadened [3]. The origin of AAVE has various theories on its formation 

as a language, with historical accounts often highlighting the linguistic challenges faced by 

African slaves when learning English. One major theory, the substratist hypothesis, posits that 

AAVE shares structural similarities with West African languages, such as Kikongo and Mande, 

which influenced its development [4-6]. Another prominent view is the creolist hypothesis, 

which suggests that AAE developed from creole languages like Gullah – a creole spoken among 

the African American Geechee communities of the Southeastern coastal low country – or 

Jamaican Creole, shaped by sociohistorical conditions on plantations [7, 8]. Understanding the 

origins of AAVE is essential for appreciating its linguistic complexity and sociocultural 

significance. 

While the term 'nonstandard' is often used in academic discussions to describe AAVE, it 

is important to recognize that this classification is based on social and linguistic norms rooted in 

standard English, not on the inherent value or complexity of the language itself. AAVE, like all 

dialects, is a fully developed and rule-governed variety of English with its own rich history and 

structure. Referring to AAVE as 'nonstandard' is not meant to diminish its legitimacy or cultural 

significance, but rather to align with the terminology commonly used in sociolinguistic studies. 

Despite what the name might imply, AAVE is not exclusively spoken by Black individuals, nor 
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do all Black people use AAVE. Today, it is estimated that over 30 million people across the 

United States speak this variety [9]. 

Table 1 [3] displays some distinctive features in AAVE. One of the most well-known and 

discussed is the use of the habitual ‘be.’  

Table 1: Comparisons of African American Vernacular English and Standard American English language use 

FEATURE AAVE SAE EXPLANATION 

HABITUAL 

"BE" 

"I be eating." "I am always/usually 

eating." 

The use of "be" refers to habitual 

or repeated actions. 

REMOTE PAST 

(STATE, HABIT) 

"I been eating.” "I have been eating 

for a long time.” 

Denotes a continual action that 

began in the past. 

REMOTE PAST 

(COMPLETION) 

“I been ate.” “I ate a long time 

ago.” 

Denotes an action that began and 

ended in the past. 

AUXILIARY 

OMISSION 

"They got 

everything they 

need.” 

"They have got 

everything they 

need." 

Auxiliaries may be omitted 

before the main verb in a 

sentence. 

DOUBLE 

NEGATION 

"I don’t ever have 

no problems.” 

"I never have any 

problems.” 

AAVE uses multiple negation to 

emphasize negation, whereas 

SAE uses single negation. 

GENETIVE 

MARKING 

"That’s the 

church 

responsibility." 

“That’s the church’s 

responsibility.” 

The possessive marker (‘s) may 

be omitted. 

PREVERBAL 

MARKING 

“FINNA” 

"I’m finna leave." "I’m getting 

ready/about to 

leave.” 

“Finna” is an example of a 

preverbal marker which indicates 

the event is imminent. 

 

2.2 The Sociolinguistics of Social Media 

Language is inherently dynamic and socially situated, which poses significant challenges 

for hate speech detection systems. Sociolinguistics, the study of language in its social context, 

provides critical insights into how variations in language – such as dialectal differences, 

reclaimed terms, and contextual nuances – can affect the accuracy and fairness of these systems. 

Understanding the interconnectivity of language use and social identity is crucial for developing 

hate speech detection models that can navigate the complexities of real-world communication. 

This section explores how AAVE evolves in digital spaces, focusing on its cultural significance, 
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reclamation, and appropriation. It highlights the need for models that can navigate the linguistic 

complexities of marginalized communities in online environments. 

2.2.1 AAVE in Digital Spaces: Evolution, Appropriation, and Cultural Significance 

African American Vernacular English (AAVE) has evolved rapidly in digital spaces, 

where social media platforms serve as hubs for cultural expression, linguistic innovation, and 

identity formation. Online environments like Twitter, TikTok, and Instagram provide spaces 

where AAVE speakers creatively adapt the dialect to fit various digital contexts[10], such as 

character-limited posts, video captions, memes, and comment threads. Phonetic features, 

including consonant dropping and alternative spellings, are frequently mirrored in written forms. 

Additionally, users often engage in code-switching between AAVE and Standard American 

English (SAE), depending on the platform and audience. This linguistic flexibility allows 

speakers to navigate different social spheres while maintaining cultural ties [10]. 

 Social media also plays a crucial role in cultural reclamation. AAVE speakers use digital 

platforms to resist appropriation by non-Black individuals and to assert ownership over linguistic 

expressions that hold cultural significance. As noted by Rickford and Rickford[11], “The reasons 

for the persistence and vitality of Spoken Soul [AAVE] are manifold: It marks Black identity; it 

is the symbol of a culture and a lifestyle that have had and continue to have a profound impact on 

American popular life; it retains the associations of warmth and closeness for the many Blacks 

who first learn it from their mothers and fathers and other family members; it expresses 

camaraderie and solidarity among friends; it establishes rapport among Blacks; and it serves as a 

creative and expressive instrument in the present and as a vibrant link with this nation’s past.” 

This connection to cultural identity and ancestry makes AAVE not just a means of 

communication, but a powerful tool for cultural resistance and resilience. Through digital 
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platforms, AAVE serves not only as a linguistic expression but as a form of cultural solidarity, 

reinforcing bonds within the community while resisting efforts to strip it of its meaning and 

significance. 

While AAVE plays a crucial role in cultural reclamation and solidarity within the Black 

community, it is often co-opted in online spaces by non-Black individuals, frequently without 

proper recognition of its origins and significance. For instance, AAVE expressions are commonly 

used as humor devices in meme creation, where their cultural context is overlooked or 

diminished [12]. As noted by Hill[13], 'African American English is the single most important 

source for new slang (and, eventually, unmarked everyday colloquial usage) in White American 

English.' Such widespread adoption of AAVE's linguistic innovations in mainstream culture 

occurs without acknowledging their cultural roots or the community from which they originate. 

The intersection of reclamation and appropriation of language online is further examined, 

particularly in relation to the racial epithet "nigga"[14]. This exploration delves into the 

dynamics of how the term is used across both Black and non-Black digital spaces. It highlights 

the nuanced reclamation of this term within the African American community, where it has 

evolved from a racial slur to a term of camaraderie and solidarity among Black individuals. 

However, the paper also underscores how the term’s usage in online spaces often blurs the lines 

between reclamation and appropriation. Non-Black individuals, particularly in digital spaces, 

frequently use the term without understanding its historical context or cultural significance, 

which leads to its commodification and diminishment. This phenomenon is emblematic of a 

broader trend where linguistic expressions rooted in AAVE are stripped of their cultural weight 

when adopted by mainstream culture. Understanding the evolution and appropriation of AAVE 

expressions is crucial for recognizing how digital platforms both empower and exploit 
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marginalized linguistic communities. This awareness is key to developing fair and accurate 

language technologies that respect the cultural significance of AAVE and do not marginalize the 

communities they aim to protect. 
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Chapter 3 

 

Background and Related Works 

 

3.1 Hate Speech 

Addressing issues in hate speech detection begins with defining what constitutes hate 

speech and understanding how it is categorized. Especially considering its possible subjectivity. 

Generally, “hate speech is any form of expression through which speakers intend to vilify, 

humiliate, or incite hatred against a group or a class of persons on the basis of race, religion, skin 

color sexual identity, gender identity, ethnicity, disability, or national origin [15].” While 

offensive language may be permissible in the eyes of the First Amendment, hate speech crosses a 

legal and moral line that cannot be ignored. Under current laws, hate speech can only be 

criminalized when it directly incites imminent criminal activity or consists of specific threats of 

violence targeted against a person or group [15]. Laws surrounding hate speech extend to online 

spaces as well, and as our online presence continues to expand across a wide range of platforms, 

the need for effective hate speech detection has become increasingly important. 

Conflating hate speech with offensive language can undermine the accuracy of hate 

speech detection studies, potentially weakening the effectiveness of models in identifying 

genuinely harmful actors [16]. These systems are implemented to safeguard users in diverse 

environments, from social media and discussion forums to customer support and dating 
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sites. Their aim is to prevent the spread of harmful language that can incite violence, harassment, 

or discrimination. However, despite the growing need for them and their growing presence, hate 

speech detection systems face significant challenges. 

The presence of racial epithets and other charged language presents a challenge in 

detecting hate speech online. While such terms can sometimes indicate hateful intent, they do not 

fully define hate speech. Training models to identify hate speech without relying solely on these 

words could improve both accuracy and precision [16]. Furthermore, racial epithets and similar 

language are often reclaimed or used in positive, affirming ways by the communities they have 

historically been used against, complicating their role as reliable indicators of harmful speech. 

This distinction is critical for hate speech detection, as models that overemphasize individual 

words risk misclassifying neutral or even supportive statements as offensive. Moreover, bias in 

these models can lead to the over-flagging of language associated with marginalized identities – 

such as references to being Black, Muslim, or LGBTQ+ – even when those references are not 

used in a derogatory manner [17]. Given that hate speech comprises only a small fraction of 

online discourse, developing models that can accurately distinguish between harmful and benign 

language remains a persistent challenge [18]. 

3.2 Hate Speech Detection Models Overview 

In order to develop more effective hate speech detection models, it is crucial to examine 

existing research. This section will explore the biases and limitations present in hate speech data, 

the interpretations of what constitutes hate speech, and how these factors shape model 

performance. Additionally, it will provide an overview of the datasets used to train these models 

and the various approaches employed in their development. 

 



 

 

11 

Bias and Limitations in Hate Speech Data 

The data used to train hate speech detection models is imperfect. The basis of a hate 

speech dataset almost always begins with a manually annotated set – leaving them open to 

inconsistencies and biases. Human annotators may have different interpretations of what 

constitutes hate speech, leading to subjective disagreements – especially when labeling content 

that relies on sarcasm, or cultural references unfamiliar to them [19]. Even among trained 

annotators, judgments can vary significantly, resulting in inconsistencies across datasets 

Additionally, there is a need to balance the number of annotators per instance, the cost of 

crowdsourcing, and the time required to complete the task, as increasing one of these factors 

often comes at the expense of the others [18]. This trade-off affects dataset quality and, by 

extension, the performance of hate speech detection models. Bias in annotated training data and 

the tendency of machine learning algorithms to amplify this has shown definitively that AAVE 

text is often mislabeled with a high positive rate by current hate speech detection models [20, 

21].  

AAVE will often be misclassified as "bad" or "non-standard" English on social media. 

Blodgett and O’Connor [22], highlight this issue, demonstrating how bias in natural language 

processing (NLP) models leads to inaccurate language classification and reinforces linguistic 

discrimination [22]. This misclassification of AAVE reflects a broader issue of racial bias in NLP 

systems. Many NLP models, trained primarily on Standard American English (SAE) datasets, 

often misinterpret AAVE, associating it with negative traits like toxicity or inappropriateness. As 

a result, AAVE content is disproportionately flagged as harmful or abusive, even when it 

contains no derogatory language. Incorporating diverse linguistic varieties, especially those 

prevalent in social media contexts, and improving the representativeness of training datasets are 
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crucial steps toward creating more equitable and accurate text analysis tools. Research[1] 

underscores the need for NLP systems to account for linguistic diversity to prevent biased 

outcomes and ensure fair treatment of all users. These under-representative models are often 

trained homogeneously. A prime example is the Common Crawl dataset [23], which is frequently 

criticized within ethical data representation discourse. Despite its immense size – spanning “over 

250 billion pages collected over 17 years”[23], its sheer volume does not guarantee fairness or 

inclusivity. Instead, the lack of equal linguistic and historical data perpetuates biases and 

marginalizes nonstandard dialects and underrepresented communities [24].  

Data collection practices heavily influence how well automated hate speech detection 

systems function. Unfortunately, much of the data used to train these systems comes from 

platforms like Reddit and Wikipedia, which are predominantly used by younger, male 

demographics [25, 26]. This lack of diverse representation skews the training data, making it 

difficult for models to accurately process content from underrepresented groups. Blodgett et al. 

[1] describe how language variations tied to different social and cultural groups, specifically 

AAVE, are treated on social media platforms [1]. Their research discusses how automated text 

analysis systems, including hate speech detectors, often struggle with accurately processing 

AAVE. This struggle arises because these systems are commonly trained on data that 

predominantly features Standard American English (SAE), leading to a lack of understanding 

and misclassification of AAVE’s unique linguistic features. As evidenced by Table 1, AAVE 

includes distinct grammatical structures, vocabulary, and phonological patterns that differ 

markedly from SAE. Without sufficient exposure to these linguistic features, automated systems 

frequently misclassify AAVE expressions as offensive or harmful. This misclassification is more 

than a technical error – it disproportionately affects speakers of AAVE by failing to recognize the 
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context and intent behind their communication. As hate speech detection is largely based on 

human interpretation – a topic further explored in Chapter 3 – these language differences often 

results in AAVE being unfairly flagged as offensive or harmful by automated hate speech 

detection systems because of a lack of linguistic diversity in the training data [1]. Such 

misclassifications highlight a paradox: models designed to protect marginalized groups end up 

censoring them instead. 

Biased Interpretations of Hate Speech 

Along with the lack of linguistic diversity in model training data, defining what 

constitutes hate speech presents a significant challenge to ensuring model inclusivity during the 

data collection process. The criteria for what is considered “harmful” or “unintelligible” content 

can introduce bias. For example, when filtering out certain words believed to be offensive, data-

cleaning processes may inadvertently remove discussions critical to marginalized communities, 

such as LGBTQ groups reclaiming slurs. Similar issues were observed during the training of 

GPT-3 [24]. 

The challenge of establishing clear and universally accepted definitions of hate reflects a 

broader issue: distinctions in what is considered hate speech vary significantly depending on 

cultural and contextual factors. Without recognizing these differences, hate speech detection 

systems risk erasing important voices under the guise of moderation. 

Building on the factors discussed above, it becomes clear that effective hate speech 

detection requires models that are not only sensitive but fundamentally aware of the complexities 

of different dialects. While it may not be feasible for a model to grasp the full societal dynamics 

that contribute to bias, curating diverse and representative datasets is a critical step. By capturing 

the linguistic and cultural nuances of marginalized communities, these systems can become more 
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equitable, explainable, and accurate. Numerous efforts have been made to tackle these challenges 

and reduce bias in hate speech detection models. Datasets, such as Davidson et al.’s [16], and 

Waseem and Hovy [27], provided foundational resources for hate speech detection, but primarily 

relied on binary or three-way classification without deeper insight into annotator reasoning. The 

HateXplain dataset builds upon these earlier efforts by introducing word and phrase-level span 

annotations, which document the specific parts of a text that led annotators to classify it as hate 

speech, offensive, or neither [28]. This level of detail in annotation offers greater transparency 

into how annotators justify hate speech classification, allowing for more nuanced model training 

and evaluation. As a result, the annotations are more context-aware and better consider intent. 

This methodological approach has also been applied in other studies focusing on how models 

interpret and reason through text-based tasks that require general knowledge and human-like 

inference [29]. This dataset includes content from Twitter and Gab, with MTurk workers 

assigned to annotate it across three categories: hate, offensive, and normal. What sets this dataset 

apart is its requirement for annotators to provide justifications for their choices based on the text, 

enhancing the rationale behind their decisions.  

The HateXplain dataset represents a significant advancement for transparency by 

requiring annotators to justify their decisions. Building on this approach, another strategy to 

reduce bias involves making annotators aware of nonstandard dialects, such as AAVE, and 

considering race in their assessments  [21]. Research indicates that when annotators are made 

explicitly aware of the dialect of an AAVE tweet, they are significantly less likely to label it as 

offensive. In practice, this process involves providing annotators with data that has been 

analyzed using a dialect classifier. Based on the results of this classifier, inferences can be drawn 

about the speaker's race; for example, if a tweet is identified as being written in AAVE, it can be 
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inferred that the speaker is likely Black for the purposes of this study. By equipping annotators 

with this contextual information, they can make more informed and sensitive judgments about 

the hatefulness of a tweet, ultimately leading to a reduction in bias. 

3.2.1 Composition of Hate Speech Datasets 

Online hate speech datasets can be categorized based on the social media platforms from 

which they originate, and the labeling practices used to classify hate speech. The structure and 

user behavior of different social media sites – such as Twitter, Reddit, or Gab – shape the nature 

of the data collected, meaning that hate speech on one platform may look different from hate 

speech on another. For example, Twitter’s character limit often results in concise, coded 

language, while Gab, known for its permissive moderation policies, may contain more explicit 

hate speech. Similarly, the categories used to label hate speech vary widely across datasets, 

creating additional challenges for comparison. For example, one dataset may classify content as 

racist, sexist, or normal [27] while another may use categories like abusive, hateful, normal, or 

spam [18], and yet another may opt for a simpler binary classification of hateful vs. non-hateful 

[30]. These differences in labeling make it difficult to compare model performance across 

datasets without some form of normalization. 
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Figure 1: Examples of tweets illustrating that hatefulness or abuse does not directly correlate with the presence of 

profanity: the first tweet is hateful without using profanity; the second is hateful with the use of a slur; the third is not hateful 

itself but describes being the target of hate. 

 

Given that language often carries nuance, one-dimensional labeling techniques cannot 

always fully encompass its complexity. Just as posts online containing slurs, this does not 

necessarily preclude the content as being hate speech. As illustrated in Figure 1, profanity alone 

is not a definitive indicator of hate speech [31]. Figure 1 shows three tweets in which (1) accuses 

immigrants of harming society without using any direct insult; (2) insults a Hispanic person 

using a slur; and (3) uses slurs to give a personal account of discrimination. Recognizing these 

complexities, the work of Ousidhoum et al. seeks to address the limitations of one-dimensional 

labeling by classifying hate speech data along five distinct attributes: directness, hostility, target, 

group, and annotator. This multidimensional approach, conducted across three different 

languages (English, French, and Arabic), provides a more nuanced framework for identifying 

and categorizing hate speech [31]. Directness: Within directness, a tweet can either be direct or 

indirect. This is based on whether or not a target group is named in the tweet. Hostility: The 

hostility attribute categorizes the type of harmful language used. Tweets can be labeled as 

abusive if they convey dangerous rhetoric, hateful or offensive depending on the intensity of hate 

or disrespect, and fearful if they express fear rooted in ignorance. Tweets that do not express 

hostility are marked as normal. Target: This attribute identifies the basis on which individuals or 
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groups are attacked. Annotators classify tweets according to six categories: origin (encompassing 

race, ethnicity, and nationality), religious affiliation, gender, sexual orientation, special needs, or 

other. (Target) Group: Here, annotators determine the specific group being targeted, choosing 

from 16 predefined groups such as women, people of African descent, Muslims, immigrants, and 

political ideologies. When multiple groups are targeted, annotators select the one deemed most 

affected. (Sentiment of the) Annotator: This attribute captures the annotator’s emotional 

response to the tweet using a range of negative and neutral sentiments, including shock, sadness, 

disgust, anger, fear, confusion, and indifference. This multi-attribute framework provides a 

comprehensive approach to understanding hate speech, offering nuanced insights into its 

manifestation across linguistic and cultural contexts.  

The choice of labels goes beyond simply describing language – it directly influences how 

well a model learns to detect and classify hate speech. If the labels are too broad or ambiguous – 

for example in a binary classification – the model may struggle to distinguish between different 

types of harmful speech, leading to over- or under-detection. On the other hand, a dataset that 

distinguishes between "abusive" and "hateful" speech allows for a more nuanced understanding 

of harmful language. The process of assigning these labels is inherently subjective – with a 

reliance on human annotators who may disagree on what constitutes hate speech versus offensive 

or controversial language This subjectivity can introduce inconsistencies, particularly when 

annotators come from different backgrounds or hold different cultural perspectives on harmful 

speech. These biases may be mitigated by assigning multiple annotators to each data point in 

order to get multiple perspectives [28], or by priming annotators on the data beforehand [21]. 
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Table 2: Hate Speech Dataset Labels 

Dataset Labels Total Size 

Founta et al. (2018) [18] Abusive, Hateful, Normal, Spam 80,000 

Waseem and Hovy (2016) [27] Racist, Sexist, Normal 16,914 

Davidson et al. (2017) [16] Hate Speech, Offensive, Normal 24,802 

Ousidhoum et al. (2019) [31] Directness, Hostility, Target, 

Group, Annotator (multi-attribute) 

13,000 

HateXplain (2021) [28] Hate Speech, Offensive, Normal 20,148 

HateCheck (2021) [30] Hateful, Non-hate 3,728 

 

3.2.2 Hate Speech Detection Approaches 

Numerous approaches have been explored in the field of hate speech detection. This 

section provides an overview of three key groups: traditional classification methods, deep 

learning techniques based on word embeddings, and deep learning methods leveraging 

transformer architectures. 

Traditional Machine Learning Approaches 

Traditional approaches to hate speech detection rely on well-established text 

representation techniques combined with classical machine learning classifiers. These models 

typically encode text using methods such as TF-IDF [32] and n-grams [16, 33], which have 

proven effective when paired with classifiers like support vector machines (SVM), naive Bayes, 

logistic regression, and decision trees [34-36]. 

To improve the ability to identify hateful or offensive content, researchers have 

incorporated additional linguistic features, such as sentiment lexicons and polarity scores [33]. 

Part-of-speech tagging and syntactic structures [33], as well as dependency parsing [36], have 

also been explored to improve classification accuracy. Among machine learning models, SVM 

remains one of the most widely used techniques for hate speech detection [16, 35-37], alongside 
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other classifiers like naive Bayes [16, 36], logistic regression [16], random forests [16], and 

gradient boosting decision trees [38]. 

Deep Learning Approaches 

Deep learning-based hate speech detection relies on neural network models that learn 

complex representations from text data. Unlike traditional methods, which require manually 

engineered features, deep learning models can automatically learn relevant patterns from text. 

These models can be trained on various forms of text representation, including traditional 

encodings like TF-IDF and more advanced word embeddings. Neural architectures such as 

convolutional neural networks (CNNs), long short-term memory networks (LSTMs), and 

bidirectional LSTMs (Bi-LSTMs)[37] have been widely used in this domain. CNNs excel at 

capturing local word or character-level patterns [37, 39], while LSTMs are particularly effective 

at modeling long-range dependencies in text [37, 40]. 

Word Embedding-Based Methods 

Word embeddings provide a distributed representation of words, enabling models to 

capture semantic relationships between terms. Techniques such as Word2Vec [41], GloVe [37], 

and FastText [37] generate vectorized word representations that position similar words closer 

together in a multi-dimensional space. These embeddings have been extensively applied in hate 

speech detection and related tasks such as sentiment analysis [39, 42]. Hate speech classifiers 

often integrate word embeddings with traditional machine learning models [37] or deep neural 

networks such as recurrent neural networks (RNNs) [42], LSTMs [37], and CNNs [39]. The 

ability of word embeddings to capture both semantic and syntactic relationships enhances the 

detection of hateful speech across different datasets. 
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Transformer-Based Methods 

Recent advances in natural language processing have introduced transformer-based 

models, which have outperformed earlier deep learning approaches in many text classification 

tasks. Unlike LSTMs and CNNs, transformers leverage self-attention mechanisms to process 

entire sequences of text in parallel, capturing contextual relationships more effectively. State-of-

the-art transformer models such as BERT [43] and ELECTRA [44] have achieved significant 

improvements in hate speech detection. Transformers can be integrated with architectures like 

CNNs, LSTMs, and multi-layer perceptrons (MLPs) [28] to enhance performance.  

3.3 Ethics of Hate Speech Detection 

The limitations of hate speech detection systems are not merely technical; they raise 

important ethical questions about the role of AI in shaping online discourse. As we continue to 

rely on automated systems to monitor and moderate speech, we must confront the ethical 

challenges that arise from their design and implementation. These systems, in their current form, 

often reflect the biases inherent in the data they are trained on, disproportionately impacting 

marginalized communities. This section will explore these ethical concerns, specifically 

examining the distinction between descriptive and normative accuracy, the role of bias in word 

embeddings, and the limitations of distributive fairness. It will also incorporate perspectives from 

fairness frameworks, such as non-distributive justice, to highlight how classification errors 

should be equitably distributed across demographic groups. Addressing these issues is crucial for 

creating systems that are not only effective but also just. 

Understanding the distinction between descriptive and normative accuracy is important in 

discussions on ethical AI development [45]. Descriptive accuracy refers to how well a system 

captures and represents reality, even if it is not perfect, while normative accuracy concerns 
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whether something aligns with moral or ethical expectations. To illustrate this, consider an 

example of taking a photo of someone robbing a store. While the photo captures the event 

(descriptive accuracy), it may still have flaws, such as being underexposed due to incorrect 

settings, which impacts the accuracy of the representation. For the camera to perform its intended 

task successfully, it must meet a certain level of descriptive accuracy, meaning it must depict the 

scene accurately enough to be useful, even if it's not perfect. In contrast to descriptive accuracy, 

it is expected that people get things right in a moral sense. Continuing with the example, while it 

is morally expected for someone to pay for their groceries rather than steal them, the act of 

robbery represents a normative wrong – the individual deviates from what is ethically expected 

by choosing to steal instead of paying. 

For a language model to be normatively correct, it must avoid reflecting morally relevant 

biases. A model that perpetuates bias is considered normatively incorrect, even if it may succeed 

in one aspect (e.g., avoiding sexist outputs) but fail in another (e.g., producing racist outputs). 

Normative correctness can encompass multiple objectives, such as eliminating ethically 

problematic biases or promoting social justice. However, the primary focus is on ensuring the 

model does not reflect bias [45]. 

Discussions around bias mitigation in NLP often begin with word embeddings, as they 

are foundational in shaping how language models understand and represent different words. 

Word embeddings are mathematical representations of words that capture the semantic 

relationships between them based on large language corpora [46]. Word embeddings excel in 

descriptive accuracy, meaning they capture language as it is used by people, often reflecting real-

world associations and relationships between words. However, while they accurately capture 

language as it is used, they often reproduce societal biases present in the data. For instance, 
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research has shown that that word2vec embeddings can reinforce sexist stereotypes, producing 

analogies like "Man is to computer programmer as woman is to homemaker" and "Father is to 

doctor as mother is to nurse" [47]. As these models learn word relationships, they also inevitably 

pick up on any biases that may be within the corpora. Without proper care in algorithmic 

development, biases from the corpora can in fact be amplified by machine learning systems[47]. 

While an ideal solution might be to eliminate biases in language itself, that's unrealistic, leaving 

the challenging task of trying to debias the models, which raises both practical and ethical 

concerns. 

These challenges in addressing bias within language models highlight the need for 

broader frameworks to evaluate fairness in order to create adequate solutions. Kong [48] presents 

an approach that involves assessing fairness through the lens of distributive and non-distributive. 

Distributive justice refers to theories that consider justice to involve the fair allocation of benefits 

and responsibilities among individuals within a society [48]. This approach posits that fairness in 

an algorithm is defined as the equal distribution of outcomes. Take for example a large tech 

company that uses an AI algorithm to decide who gets invited for interviews. According to 

distributive justice, the algorithm would be considered intersectionally fair if the rate of 

interview invitations is evenly distributed across intersectional subgroups of candidates, such as 

Latina women, Asian men, white women, and Black men. Each subgroup should have the same 

statistical likelihood of receiving an interview invitation, suggesting that equality in opportunity 

ensures fairness across the board [48]. Given the complexities of our current societal landscape, 

the notion of equality in opportunity – central to distributive justice, which emphasizes the equal 

distribution of outcomes – may not always be the most suitable approach. While it is often 

portrayed as an ideal in theoretical frameworks, there are numerous real-world situations where 
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an unequal distribution of resources may be more appropriate. AI-driven interview practices 

have historically struggled to achieve fairness, even with human intervention such as the removal 

of names and gender-identifying characteristics. The longstanding disparities in opportunities – 

particularly in fields like technology, where men have historically received more job prospects 

due to various societal factors – make it challenging to ensure a truly "fair" and equal distribution 

of opportunities. If left unchecked, these models would likely perpetuate existing biases and fail 

to perform effectively [49]. At leading companies like Google, Microsoft, and Facebook, Black 

employees make up only 5–7% of the workforce1, which is barely half of the Black population's 

representation in the U.S. at 13.6%. This lack of proportional representation matters not only in 

terms of fairness but also because the inclusion of genuinely diverse perspectives is critical for 

identifying and addressing biases in AI systems.  Given that approximately three-quarters of the 

U.S. population identifies as white, according to census data, it is expected that the majority of 

applicants will be white, particularly white men, while the number of Black and brown women 

who are applicants are likely to be fewer. If 30 white men and 3 Black women apply for a job 

posting, a truly equal probability across all applicants would mean that each individual, 

regardless of group, has the same chance of being invited for an interview. However, if the 

selection process aims to maintain proportional representation of each group, then the expected 

rate of interview invitations would reflect the initial applicant distribution. In this scenario, if 

interview slots are distributed proportionally based on group representation, we might expect that 

roughly 10 white men (out of 30) and 1 Black woman (out of 3) receive invitations. While this 

maintains distributive justice, it does not address the underlying structural barriers that led to the 

applicant pool being imbalanced in the first place. Black and brown women may have fewer 

 
1 According to the companies’ 2023 diversity reports 
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opportunities to enter the hiring pool due to structural disadvantages such as access to quality 

education, networking opportunities, and mentorship. Without considering these underlying 

disparities, the model risks reinforcing existing inequalities rather than actively working to 

mitigate them[48]. 

Instead of focusing solely on equal representation, it can be more insightful to examine 

fairness in AI algorithms through the framework of non-distributive justice, which Kong[48] 

applies from Iris Young’s critique of distributive justice. Young argues that social justice should 

be understood through the lens of domination and oppression rather than mere distribution, 

emphasizing the need to eliminate structural inequalities. This framework focuses less on equal 

numerical distribution and more on addressing the deeper biases that shape societal outcomes. 

Instead of just balancing statistics, it aims to challenge the unfair systems that create these 

inequalities. This is particularly relevant when considering biases that cannot be measured by 

simple distribution, such as the discrimination seen in Google search results. A search query on 

Google for “unprofessional hairstyles for work” predominantly shows images of Black women, 

while “professional hairstyles for work” primarily displays images of white women [50]. Such 

disparities highlight the limitations of distributive justice, which focuses on measurable 

outcomes, by demonstrating that fairness cannot solely be assessed through statistical equality. 

Even if search results were evenly distributed among racial groups, the underlying issue of 

misrepresentation and stereotype reinforcement would persist.  

Assessing algorithmic impact through the lens of harm, rather than fairness alone, 

provides a clearer understanding of the ways marginalized groups are affected. Continuing to 

assess algorithms solely through fairness models focused on equal distribution risks further harm 

to marginalized groups. As described by Kate Crawford [51], this harm can manifest in two 
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distinct ways: allocative and representational harms. Allocative harms arise when certain groups 

are disproportionately penalized or flagged by the system, such as when language from 

marginalized communities is more likely to be marked as toxic or offensive due to dialect 

differences or reclaimed slurs. Representational harms, on the other hand, occur when these 

systems fail to recognize or appropriately classify hate speech directed at those same 

communities, allowing covert or coded harmful speech to go undetected. 

Recognizing a problem largely depends on our ability to see it; without visibility, fixing it 

becomes challenging. Along this vein, model opacity presents a significant barrier in creating 

ethical algorithms. This opacity refers to the lack of transparency regarding the data, code, and 

foundational elements that make up the model. A model’s construction directly influences its 

effectiveness in identifying bias and addressing fairness concerns and ability to mitigate bias. 

Although it may not always be feasible to design models with thoughtful precision due to various 

constraints, one way to address this challenge is through the use of data statements [52]. These 

statements offer detailed insights into the origin, composition, and collection methods of the 

data, with a focus on identifying potential biases. Applying this approach to hate speech 

detection could enhance bias mitigation efforts by making the training data more transparent and 

easier to scrutinize. Additionally, data statements encourage developers to reflect critically on the 

ethical ramifications of their datasets, particularly in how marginalized communities are 

represented—or misrepresented. By clearly documenting the social and demographic 

characteristics of the data, researchers can minimize the risk of perpetuating harmful biases, 

ultimately leading to more equitable, explainable, and accurate hate speech detection models. 

Increasing model explainability has also been done through specific data curation [28]. 
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Failing to address the issues surrounding algorithmic bias risks complicity in perpetuating 

disparate mistreatment, which is the misclassification of certain groups more frequently than 

others [53]. This is particularly relevant to hate speech detection systems, which often 

misclassify content from marginalized communities, as toxic. The framework moves beyond the 

concepts of disparate treatment (differential treatment based on group membership) and disparate 

impact (unequal outcomes across groups). It emphasizes ensuring that classification errors, such 

as false positives and false negatives, are not disproportionately distributed among demographic 

groups [53]. In the context of hate speech detection – and specifically in the work outlined in this 

thesis – adopting this perspective can help reduce bias in the way systems handle content from 

underrepresented communities, ensuring they are not unfairly targeted by incorrect flagging, 

while still accurately identifying harmful speech.  

In the pursuit of improving AI fairness, Kong[48] suggests tailoring specific questions to 

each problem. In the case of major tech companies' facial recognition systems, which displayed 

the highest levels of discrimination against Black women [54], the questions asked might be: 

“Through what process is the structure of racial patriarchy is being embedded into AI 

algorithms? How does the biased algorithm perpetuate the racial patriarchy of society? In order 

to resist this intersecting structure of racial and gender oppression, how should the entire 

development process be redesigned?[48]” These questions help guide research toward 

prioritizing non-distributive fairness rather than solely focusing on distributive fairness. 

As we’ve seen through our discussion on ethics, not all fairness is created equal. Weak 

fairness focuses solely on debiasing flawed algorithms, while strong fairness involves leveraging 

algorithms to actively confront oppression and foster a more equitable society [48]. This 

perspective underscores the necessity of designing systems that not only strive for fair outcomes 
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but also prioritize equitable error distribution among diverse social groups. Understanding this 

distinction is particularly important in hate speech detection, where the consequences of 

misclassification are not evenly distributed. Without a shift toward strong fairness, these systems 

risk perpetuating the very inequalities they aim to mitigate. 
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Chapter 4 

 

Methodology 

 

4.1 Overview 

Due to factors such as limited or unbalanced training data and bias in data annotation 

there are significant challenges in developing hate speech detection models that will perform 

well on nonstandard language. This presents an opportunity to contribute to the ongoing 

discourse on how to improve these models. This work aims to aid in better, more inclusive hate 

speech detection model design – specifically for African American Vernacular English (AAVE) 

on Twitter.  To do this, we trained three model architectures – LSTM, SVM, and DistilBERT – 

on three benchmark hate speech datasets to compare their performance and generalizability, with 

the goal of identifying misclassification patterns when the best model is tested on AAVE tweets. 

To identify these misclassifications, we perform a corpus study – analyzing a subset of the model 

predictions by closely examining the language used in the tweets – to understand the linguistic 

factors contributing to misclassifications. This chapter discusses the methodology for our 

experimentation. 

In their work, Kim et al. investigate the multifaceted biases present in hate speech 

detection models, revealing that these models not only misinterpret racial nuances in language 

but also exhibit significant gender biases [2]. Their study finds that African American men are 
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disproportionately flagged for hateful speech, even when their language is non-offensive. This 

work aims to understand what linguistic factors are at play here to inform more deliberate hate 

speech detection model creation. 

Publicly available code and data were used throughout this project. 

4.2 Data 

Our experiments include three widely-used datasets: Davidson [16], Founta [18] and 

HateXplain [28]. Each tweet is assigned to only one category, meaning it is classified as either 

abusive, hateful, or another label, but not both. Below, we provide an overview of each dataset, 

with key statistics summarized in Table 3. To maintain user privacy, these datasets contain only 

textual content and their corresponding category labels, with all user-specific details removed in 

accordance with platform policies, such as those enforced by Twitter [55]. Further information 

on the data labeling process can be found in Appendix A. 

The final stage of experimentation involved a corpus study using a fourth dataset, in 

which a subset of misclassified tweets was closely analyzed to explore the language patterns that 

may have influenced the models' errors. This dataset was created by Blodgett et al.[1], and is 

comprised solely of unlabeled AAVE tweets. 

4.2.1 Dataset statistics and creation 

Datasets for model fine-tuning 

The following three datasets are used to simulate the current landscape of hate speech 

detection. It is possible that they may even offer an improved perspective since each was created 

with a specific, well-intentioned design. By training different model architectures on these 

datasets, we aim to understand why models that should, in theory, be performing well today 

might still be failing.  
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The Davidson et al. dataset [16] consists of approximately 25,000 tweets, categorized 

into three classes: neither (16.8%), offensive language (77.43%), and hate speech (5.77%). This 

dataset was constructed in 2017 using a hate speech lexicon compiled by Hatebase.org, which 

contains words and phrases identified by internet users as hate speech. Tweets containing terms 

from the lexicon were collected using the Twitter API, resulting in a sample from 33,458 Twitter 

users. The corpus was then expanded to 85.4 million tweets, from which a random sample of 

25,000 tweets was extracted for manual annotation. The annotators were provided with a detailed 

definition of hate speech and were asked to consider the context in which the words appeared, 

ensuring that the presence of offensive words alone did not necessarily indicate hate speech. 

Each tweet was labeled by three or more workers, with a resulting intercoder-agreement score of 

92%. The majority label was used for each tweet, and some tweets were excluded from the final 

dataset due to a lack of consensus.  

The Founta et al. dataset [18] consists of approximately 100,000 annotated tweets, 

categorized into four classes: normal (56%), abusive (24%), hateful (5%), and spam (15%). The 

tweets were collected via the Twitter Stream API. The process included extracting metadata from 

each tweet, such as URLs, hashtags, mentions, emojis, and numerals. Sentiment analysis was 

also applied to measure polarity and subjectivity, and tweets were tagged with offensive terms 

using dictionaries like HateBase3 and a general offensive words dictionary. Due to the class 

imbalance inherent in abusive language detection, a boosted sampling procedure was employed, 

particularly to increase the presence of inappropriate content (abusive and hateful tweets) within 

the dataset. Tweets showing negative sentiment and containing offensive language were 

prioritized for inclusion. Their subset of 80,000 tweets underwent five judgments per tweet for 

the annotation task. Statistical analysis of annotation agreement reveals that over 55% of the 
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tweets reached an overwhelming agreement (4 out of 5 annotators), reinforcing the reliability of 

the labeled data. The annotation process involved demographic analysis of annotators to better 

understand label biases and ensure diverse perspectives.  

HateXplain[28] is our third dataset for model fine-tuning. The total size of this dataset is 

about 20,000 tweets, categorized into three classes: normal (40.47%), offensive (28.59%), hate 

speech (30.94%). This dataset was created using posts from two social media platforms: Twitter 

and Gab. The dataset construction follows a method consistent with prior studies, collecting 

posts using lexicons provided by previous works like Davidson et al. [16], Ousidhoum et al. [31], 

and Mathew et al. [56]. For Twitter, the tweets were collected between January 2019 and June 

2020, while for Gab, posts were sourced from the dataset shared by Mathew et al. [56]. The 

annotation of the dataset was conducted using Amazon Mechanical Turk (MTurk) workers, with 

each post receiving three types of annotations: (1) classification of the text as either hate speech, 

offensive speech, or normal, (2) identification of the target community of the speech, and (3) 

identification of words or phrases that could explain why the post was categorized as hate speech 

or offensive. Annotators were instructed to consider target groups such as race, religion, gender, 

and sexual orientation when identifying which communities were being targeted by the speech. 

The workers were also provided with definitions for each category, clear instructions on 

annotating spans, and examples to guide the classification task. To ensure high-quality results, 

MTurk qualifications were applied, requiring annotators to have an approval rate of 95% and at 

least 5,000 approved HITs 2. Of the three datasets, HateXplain is the most balanced in terms of 

class distributions. Their work presents a hate speech dataset that captures multiple dimensions 

 
2 HITs stands for Human Intelligence Tasks. In the context of Amazon Mechanical Turk (MTurk), a HIT 

refers to a task that is designed for workers (known as Turkers) to complete. These tasks can range from simple data 

entry to more complex tasks like data labeling or transcription. The number of approved HITs indicates how many 

tasks a worker has successfully completed and had approved by the requester. 
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of each tweet. Not only are tweets labeled for their type of speech, but they are also labeled for 

who the target community of a hateful tweet is directed toward. Dataset statistics can be found in 

Table 3.  

Table 3: Class Statistics for Each Datasets 

Dataset Class and Statistics 

 

Davidson 

Neither – 4,163 

Offensive – 19,190 

Hate Speech – 1,430  

Total ~ 25k 

 

 

Founta 

Normal – 53,560 

Abusive – 22,766 

Hateful – 4,496 

Spam – 13,996 

Total ~ 95k 

 

HateXplain 

Normal – 8,153 

Offensive – 5,761 

Hate Speech – 6,234 

Total ~ 20k 

 

Dataset for linguistic study 

For the relevant corpus study, we used the Blodgett et al. dataset, which contains tweets 

likely authored by African American users [1]. This dataset was specifically curated to reflect a 

diverse range of AAVE usage and facilitate detailed linguistic analysis. These tweets are not 

labeled for hate speech detection. The authors created their AAVE dataset by collecting geo-

located tweets from U.S. users in 2013, primarily sent from mobile phones. To infer user 

demographics, they mapped each tweet to a U.S. Census block group – a small geographic area 

with 600 – 3,000 people – and averaged the demographic data of all tweets from each user. They 

then identified words strongly associated with African American demographics and used a 

seedlist approach to gather tweets from users who frequently used these terms. A seedlist 

approach builds a dataset by starting with key terms linked to a group, identifying users who 
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frequently use them, and collecting their tweets to capture relevant language patterns. To validate 

the dataset, they analyzed lexical, orthographic, and phonological variations, comparing AAVE-

aligned text to Standard American English (SAE) to ensure it reflected known linguistic patterns. 

It is unlabeled as hate speech or otherwise. The resulting dataset is made up of tweets that have 

an over 80% confidence of being AAVE – according to the results of their model. It is made up 

of 1.1 million tweets. 

Gender Classification 

To test the ways in which – if any – AAVE from men is more likely to be falsely flagged 

as hateful, it was necessary to classify these tweets as being either written by a man or woman. 

This has been done previously in hate speech detection [2] in order to show the ways in which 

hate speech detection models are disproportionately biased against Black male speech. This 

classification was done using Kim et al.’s[2] gender classifier. It is based on labeled data from 

Kaggle’s website. The gender data was originally provided by the Data for Everyone Library on 

CrowdFlower [57].  

Their classification didn't reflect the authors' actual gender identities. Rather, it aimed to 

identify whether the linguistic features of a tweet aligned more closely with those commonly 

associated with a particular gender group. The classifier assigned one of three labels: female, 

male, or brand (referring to accounts associated with organizations, businesses, or public figures 

rather than individual users). 

4.2.2 Dataset Standardization and Similarity Analysis 

To prepare the datasets for training and analysis, several preprocessing steps were 

applied: tweets were converted to lowercase, punctuation and special characters were removed, 

stop words were filtered out, and lemmatization or stemming was used to reduce words to their 
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root form (e.g., 'running' → 'run'). Additionally, URLs, Twitter mentions (e.g., @user), and 

numbers were removed. For model training and evaluation, all datasets were split into train, test, 

and validation sets. 

4.2.2.1 Label Normalization 

Since we are comparing the performance of three different datasets on the same model, 

some analysis into the similarity of the datasets was necessary to aid in qualifying model results. 

By measuring cosine similarity, we identified similarities across datasets within the same classes. 

This similarity across dataset labels led us to remove Founta’s [18] additional label of 

“spam.” Once the “spam” label was removed, labelling was normalized across the datasets. 

Unified labels across all datasets are “normal”, “offensive”, and “hateful.” This made 

computation tasks easier and will make it easier to compare model results. Updated labels and 

class distributions are pictured in Table 4. Further comparison on dataset labelling is outlined in 

Appendix A. Cosine similarity and Euclidean distances between labels and across datasets can 

also be found in Appendix A. 

Table 4: Unified labeling across datasets 

Datasets with Unified Labeling 

 Founta [18] Davidson [16] HateXplain [28] 

Normal 53,560 4,163 8,153  

Offensive 22,766 19,190 5,761 

Hateful 4,496 1,430  6,234  

Total  80,822 24,783 20,148 

 

4.3 Models 

For our study, we tested three distinct model architectures that have previously been used 

in hate speech detection. 



 

 

35 

For baseline result comparison, we use a SVM model, as seen in previous studies [34, 35, 

58]. Text data is first preprocessed using the Term Frequency-Inverse Document Frequency (TF-

IDF) vectorizer, which converts the raw text into numerical features based on term frequency and 

inverse document frequency. Our model primarily relies on unigrams (n-gram range: (1,1)), 

indicating that individual words contribute the most to classification performance. Unlike some 

feature-restricted approaches, we found that using all available features (max_features=None) 

yielded the best results.  A linear Support Vector Machine (SVM) classifier is applied to these 

features, trained on the labeled dataset using a train-test split (80%-20%). The model utilizes a 

regularization parameter of C=1. The model also incorporates probability estimation for 

additional interpretability and use in downstream applications. 

Secondly, we trained our datasets on a Long Short-Term Memory (LSTM) model created 

by Badjatiya et al.[37] in 2017. Their model architecture for hate speech detection in this study 

uses an LSTM network to capture sequential dependencies in text. It consists of an embedding 

layer initialized with pre-trained GloVe embeddings, a single LSTM layer with 50 units, and a 

dense output layer with three units for classification into hateful, offensive, or normal. Dropout 

layers with rates of 0.25 and 0.5 are applied after the embedding and LSTM layers to reduce 

overfitting. The model is trained using categorical cross-entropy loss and the Adam optimizer, 

with class-weighted loss scaling to address class imbalance. Training occurs over 10 epochs with 

a batch size of 512 and 10-fold cross-validation.  

Lastly, we fine-tune a transformer-based model – as seen in previous hate speech 

detection studies[58] – in DistilBERT. The DistilBERT model is fine-tuned for hate speech 

detection using a custom pipeline with Hugging Face’s Trainer class. The training dataset is 

tokenized using the DistilBertTokenizer, with truncation applied to ensure input sequences do not 
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exceed the model's maximum length. During training, the model is configured 

with TrainingArguments to train for 1 epoch, apply weight decay of 5e-4, and a learning rate of    

1e-5. The Trainer is set up to use the tokenized datasets, custom metrics, and 

DataCollatorWithPadding to ensure proper batching.  

4.4 Experimental Overview 

• Clean and preprocess datasets: Remove irrelevant content, normalize text, and split the 

data into training, testing, and validation sets. 

• Fine-tune models using the cleaned training data: Adjust hyperparameters and 

perform encoding for optimal feature representation based on the preprocessed data. 

• Evaluate model performance on validation set: Once model has been adequately 

altered, test the trained model on the validation data to assess accuracy and generalization 

ability. 

• Apply best model to unlabeled AAVE data 

• Hand-label a subset of AAVE data: Manually annotate a sample of AAVE data from 

each class to further validate the model's performance on non-standard language use.  

• Analyze linguistic patterns in the model’s false positive hateful results. 



 

 

37 

Figure 2: Chart of model training and evaluation process. 

 
  

SVM 
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Chapter 5 

 

Experimental Results and Analysis 

 

5.1 Introduction 

The objective of this thesis is to highlight and analyze patterns of misclassification in hate 

speech detection systems when applied to African American Vernacular English (AAVE), 

particularly in the context of reclaimed, in-group language. By surfacing these patterns, the goal 

is to expose the limitations of current model and dataset designs and advocate for more inclusive, 

context-aware approaches to hate speech detection. This chapter presents a detailed discussion of 

the results obtained from training and evaluating three different model architectures across three 

benchmark hate speech datasets. After determining which model architecture and dataset 

combination generalizes best, the analysis then shifts to linguistic observations on the top-

performing model’s results on unlabeled AAVE tweet data, exploring the linguistic patterns that 

may have contributed to misclassification.  

Further experiments, confusion matrices, and tables can be found in Appendix B; 

however, these results offer only minimal additional insight beyond what is discussed in the main 

text. 
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5.2 Model Performance 

Before training, all datasets were split to include a validation set for evaluation after the 

models were run. Each model architecture was trained using a 60:20:20 split for training, testing, 

and validation. All reported results reflect the models’ performance on the hidden validation set. 

Our model training process began with using a Glove+LSTM hate speech detection model that 

was claimed to have “state-of-the-art” performance [37]. However, further review of the 

literature uncovered a critique of the original authors’ work [42], which conducted experiments 

using the authors’ original training data and found evidence of overfitting. This suggested that 

the model’s reported performance was likely inflated. While we include its accuracy results 

across our three datasets for reference, its inconsistent performance rendered it unsuitable for our 

analysis.  

5.2.1 Model Performance on Original Dataset Class Distribution 

Table 5 reports findings from our initial experimentation with original class distributions 

in the datasets. Findings and comparisons of model performance on balanced class distributions, 

as well as per-class performance can be found in Appendix B. 
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Table 5: Imbalanced Dataset Results. Accuracy results from the initial Glove+LSTM model on three hate speech 

datasets. Although originally reported to achieve state-of-the-art performance, later findings suggest the model was overfit to its 

training data [42]. 

Model Macro Weighted Average Overall 

Accuracy 

AUC 

Average Precision Recall F1 Precision Recall F1 

Results on Davidson Dataset 

TF-IDF + 

SVM 

0.79 0.68 0.70 0.89 0.91 0.89 0.91 0.92 

Glove + LSTM 0.26 0.33 0.29 0.60 0.77 0.68 0.77 0.50 

DistilBERT 0.76 0.71 0.72 0.90 0.91 0.90 0.91 0.81 

Results on Founta Dataset 

TF-IDF + 

SVM 

0.81 0.70 0.73 0.90 0.91 0.90 0.91 0.91 

Glove + LSTM 0.02 0.33 0.04 0.01 0.06 0.01 0.06 0.50 

DistilBERT 0.80 0.71 0.73 0.90 0.91 0.90 0.91 0.82 

Results on HateXplain 

TF-IDF + 

SVM 

0.42 0.40 0.39 0.43 0.44 0.40 0.44 0.79 

Glove + LSTM 0.10 0.33 0.16 0.10 0.31 0.15 0.31 0.50 

DistilBERT 0.65 0.65 0.65 0.66 0.66 0.66 0.66 0.74 

 

In table 5, we see that the TF-IDF + SVM model consistently outperforms the other 

models in terms of overall accuracy and AUC average, as well as precision, recall, and F1 scores, 

especially in the Davidson and Founta datasets, where it achieves a high weighted average F1 

score of 0.89 and 0.90, respectively. This suggests that TF-IDF combined with SVM is effective 

at identifying positive cases while minimizing false positives and negatives. However, the LSTM 

model struggles across all datasets, with particularly poor performance in the Founta dataset, 

where its macro averages for precision and F1 are almost zero, indicating its inability to 

effectively classify the data. Additionally, its AUC scores remain at 0.50 across all datasets, 

suggesting it is performing no better than random chance. DistilBERT, on the other hand, is more 

consistent, achieving reasonable weighted average F1 scores of 0.90 in Davidson and Founta 

datasets and 0.66 on the HateXplain dataset. Although its precision and recall scores are 

competitive, its AUC scores are notably lower than those of TF-IDF + SVM, particularly in the 
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HateXplain dataset (0.74 vs. 0.79 for SVM), indicating that its overall ranking of predicted 

probabilities is less reliable. Overall, TF-IDF + SVM emerges as the strongest model for these 

datasets, while Glove + LSTM requires further optimization. DistilBERT offers a solid middle 

ground, demonstrating stable performance across different datasets but not quite matching the 

precision of TF-IDF + SVM.  

The best dataset-model combination appears to be the TF-IDF + SVM model on the 

Founta dataset, where it achieves the highest weighted average F1 score of 0.90. The Davidson 

dataset also shows strong performance with TF-IDF + SVM, where it achieves a weighted 

average F1 score of 0.89, making it the second-best combination overall. The following figures 

provide a more detailed breakdown of these results. 

 

Figure 3: Confusion Matrix for TF-IDF+SVM trained on imbalanced Founta Dataset. Results show that the model 

reliably identifies normal tweets but struggles to distinguish hateful speech from both offensive and normal content.  
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Figure 3’s confusion matrix represents results from the TF-IDF+SVM model trained on 

the Founta dataset. The model performs well in classifying normal tweets, correctly 

identifying 10,386 instances, with only 35 misclassified as hateful and 254 misclassified as 

offensive. This suggests that the model has a strong bias towards correctly identifying normal 

tweets, but may still struggle with some edge cases. However, when it comes to hateful tweets, 

the model performs much worse. Out of all hateful tweets, only 202 were correctly classified, 

while 395 were misclassified as normal and 302 as offensive. This indicates that the model has 

difficulty distinguishing hateful speech from both normal and offensive language, potentially due 

to overlapping linguistic patterns. Similarly, offensive tweets are somewhat well classified, 

with 4,146 correct predictions, but 99 instances were misclassified as hateful and 308 as normal, 

suggesting some level of confusion between offensive and normal speech. 

5.3 Cross-Domain Testing 

In this section, we evaluate the generalizability of our models by testing them across 

different datasets. Models trained on one dataset are assessed on the other two to determine how 

well they perform when applied to data from different domains. This approach helps us 

understand the robustness of each model, given that linguistic variation and contextual nuances 

may differ across datasets. By examining the performance of models outside of their training 

environments, we aim to assess their ability to generalize and identify potential weaknesses that 

could hinder their effectiveness in real-world applications. Ultimately, the most robust model 

will likely be the best choice for our task of labeling unlabeled AAVE tweets to determine 

whether they are hateful or not. Results are shown in Table 6. 

 

  



 

 

43 

Table 6:  Cross-Domain Results. Accuracy results from the initial Glove+LSTM model on three hate speech datasets. 

Although originally reported to achieve state-of-the-art performance, later findings suggest the model was overfit to its training 

data [42]. 

Model Macro Weighted Average 

Precision Recall F1 Precision Recall F1 

CROSS-DOMAIN EXPERIMENTAL RESULTS WITH THE DAVIDSON 

DATASET AS THE SOURCE DOMAIN 

Testing on Founta 

TF-IDF + 

SVM 

0.58 0.54 0.49 0.77 0.71 0.70 

Glove + LSTM 0.09 0.33 0.15 0.08 0.28 0.12 

DistilBERT 0.69 0.62 0.61 0.85 0.88 0.86 

Testing on HateXplain 

TF-IDF + 

SVM 

0.48 0.42 0.40 0.48 0.41 0.40 

Glove + LSTM 0.10 0.33 0.15 0.08 0.29 0.13 

DistilBERT 0.45 0.45 0.45 0.46 0.45 0.45 

CROSS-DOMAIN EXPERIMENTAL RESULTS WITH THE FOUNTA 

DATASET AS THE SOURCE DOMAIN  

Testing on Davidson 

TF-IDF + 

SVM 

0.53 0.63 0.54 0.83 0.74 0.76 

Glove + LSTM 0.02 0.33 0.04 0.01 0.06 0.01 

DistilBERT 0.53 0.64 0.54 0.83 0.70 0.72 

Testing on HateXplain 

TF-IDF + 

SVM 

0.43 0.41 0.40 0.43 0.44 0.41 

Glove + LSTM 0.10 0.33 0.16 0.10 0.31 0.15 

DistilBERT 0.47 0.46 0.46 0.47 0.48 0.47 

CROSS-DOMAIN EXPERIMENTAL RESULTS WITH THE 

HATEXPLAIN DATASET AS THE SOURCE DOMAIN  

Testing on Founta 

TF-IDF + 

SVM 

0.40 0.40 0.39 0.60 0.62 0.60 

Glove + LSTM 0.02 0.33 0.04 0.01 0.06 0.01 

DistilBERT 0.51 0.40 0.39 0.67 0.70 0.62 

Testing on Davidson 

TF-IDF + 

SVM 

0.47 0.53 0.46 0.74 0.57 0.61 

Glove + LSTM 0.02 0.33 0.04 0.01 0.06 0.01 

DistilBERT 0.48 0.50 0.38 0.75 0.42 0.45 
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TF-IDF + SVM 

When trained on Davidson, it achieves reasonable performance on Founta (macro F1 = 

0.49, weighted F1 = 0.70) but significantly drops on HateXplain (macro F1 = 0.40, weighted F1 

= 0.40). A similar trend appears when trained on Founta, performing moderately well 

on Davidson (macro F1 = 0.54, weighted F1 = 0.76) but weakly on HateXplain (macro F1 = 

0.40, weighted F1 = 0.41). When trained on HateXplain, it performs the worst, particularly 

on Founta (macro F1 = 0.39, weighted F1 = 0.60), indicating that HateXplain's linguistic 

diversity does not translate well to other datasets. Overall, TF-IDF + SVM generalizes 

moderately well but loses effectiveness when tested on HateXplain. 

Glove + LSTM 

Glove + LSTM is the weakest performer across the board. Regardless of which dataset it 

is trained on, it consistently achieves poor performance on all target datasets. The macro F1 

scores remain below 0.16 in every case, and weighted F1 scores never exceed 0.15.  

DistilBERT 

DistilBERT shows the strongest cross-dataset generalization. When trained on Davidson, 

it achieves an F1 score of 0.61 (macro) and 0.86 (weighted) on Founta, demonstrating strong 

transferability. It does show a performance drop when tested on HateXplain (macro F1 = 0.45, 

weighted F1 = 0.45), but it still outperforms TF-IDF + SVM in every case. When trained 

on Founta, it maintains a macro F1 of 0.54 and weighted F1 of 0.72 on Davidson, similar to the 

SVM model but with better contextual understanding. Even when trained on HateXplain, which 

is the most challenging dataset to generalize from, it outperforms TF-IDF + SVM on Founta 

(macro F1 = 0.39 vs. 0.39, weighted F1 = 0.62 vs. 0.60) and Davidson (macro F1 = 0.38 vs. 0.46, 

weighted F1 = 0.45 vs. 0.61), though its results are more unstable. 
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Figure 4: Confusion Matrix for DistilBERT trained on the Davidson dataset and tested on the Founta dataset. Results 

show that the model performs well on normal and offensive tweets, but consistently misclassifies hateful tweets as either offensive 

or normal. 

 

Figure 4 is a confusion matrix representing the results from testing the DistilBERT model 

(trained on the Davidson dataset) on the Founta validation set. It shows that the model does well 

in classifying normal and offensive tweets, but not on hateful tweets. Most hateful tweets are 

instead labeled as offensive or normal by the model. 
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Figure 5: Confusion Matrix for DistilBERT trained on the Davidson dataset and tested on the HateXplain dataset. 

Results show strong performance on normal and offensive tweets, but the model consistently misclassifies hateful tweets as either 

offensive or normal. 

 

Figure 5 is a confusion matrix representing the results from testing the DistilBERT model 

(trained on the Davidson dataset) on the HateXplain dataset. It shows that the model classifies 

normal tweets best and does worse on offensive and hateful tweets. However, false positives are 

apparent in each class, with normal even having 2,747 misclassified as offensive. The hateful 

class is most likely to be misclassified as offensive, and the offensive class is most likely to be 

classified as normal. 

The DistilBERT model consistently delivers the best results across datasets, making it the 

most reliable choice for handling unlabeled AAVE data. Its consistent F1 scores across different 

datasets suggest that it most effectively captures contextual relationships. TF-IDF + SVM is a 

secondary option, as it shows moderate transferability, but its performance degrades significantly 

on HateXplain. Glove + LSTM is unsuitable for generalization and should not be used.  

DistilBERT trained on Davidson performs best overall, achieving the highest average macro F1 

score of 0.53 across both Founta and HateXplain. It transfers best to Founta (0.61 macro 
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F1), which suggests that Davidson’s data provides good generalizable features for this dataset. 

Although performance on HateXplain is lower (0.45 macro F1), it is still better than models 

trained on Founta or HateXplain. Training on HateXplain results in the worst 

generalization, likely because its data is more different than between Founta and Davidson. 

5.4 Aggregate Dataset Performance 

Each dataset demonstrates strengths in different aspects of hate speech detection, raising 

the question of whether combining them could lead to a more robust and generalizable model. 

By training on a merged dataset and evaluating performance on an aggregate of the validation 

sets, we aim to assess whether this approach enhances overall effectiveness. The results of this 

experiment are presented in Table 7. 

Table 7: Aggregated Dataset Performance. Accuracy results from the initial Glove+LSTM model on three hate speech 

datasets. Although originally reported to achieve state-of-the-art performance, later findings suggest the model was overfit to its 

training data [42]. 

Model Macro Weighted Average Macro 

Average 

AUC 

Overall 

Accuracy Precision Recall F1 Precision Recall F1 

TF-IDF + SVM 0.76 0.66 0.68 0.79 0.80 0.78 0.87 0.80 

Glove + LSTM 0.03 0.33 0.06 0.01 0.10 0.02 0.50 0.10 

DistilBERT 0.81 0.74 0.77 0.85 0.86 0.85 0.83 0.86 

 

TF-IDF + SVM demonstrated solid overall performance with a balanced weighted 

average F1 score of 0.78 and an AUC of 0.87, suggesting that it was effective at identifying the 

relevant features for classification. However, its macro-average scores (precision of 0.76, recall 

of 0.66, and F1 of 0.68) indicate a slightly less consistent performance across different classes, 

with potential struggles in correctly identifying certain labels. In contrast, GloVe + LSTM 

performed poorly across all metrics, with an F1 score of only 0.06 for the macro-average and a 

dismal AUC of 0.50, suggesting that this model fails to capture meaningful patterns in the data.  
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Figure 6: Confusion Matrix for DistilBERT Trained on Combined Datasets. Results show strong overall performance, 

particularly in classifying normal and offensive tweets. However, despite high macro and weighted average scores, the model 

continues to struggle with accurately identifying hateful tweets, which are frequently misclassified as either normal or offensive. 

 

DistilBERT, however, outperformed both of the other models by a significant margin. It 

achieved strong macro-average results (precision of 0.81, recall of 0.74, and F1 of 0.77), and its 

weighted average scores (precision of 0.85, recall of 0.86, and F1 of 0.85) indicate exceptional 

performance in classifying the dataset with high accuracy across all classes. Additionally, its 

AUC of 0.83 suggests it is highly effective at distinguishing between different classes. Overall, 

DistilBERT is the best-performing model, when trained on the aggregated datasets. Figure 6 is 

the confusion matrix of this model’s results. It shows that the model does best in classifying 

normal tweets, with 12,066 true positives, indicating that it correctly identifies most normal 

instances. For the offensive class, the model correctly predicts 8,424 instances, but it also 

mislabels normal and hateful instances as offensive, with 836 false positives and 283 false 

negatives. Although it correctly predicts 1,051 hateful instances, there are 616 instances where 

hateful tweets are classified as normal and 765 instances where hateful instances are mistaken 
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for offensive. This higher number of misclassifications in the hateful class suggests that the 

model struggles to identify hateful content with the same accuracy as the other classes. 

Combining all of the datasets may not necessarily lead to a more powerful model due to 

several factors that can negatively impact performance. First, the datasets likely have different 

characteristics, including varying levels of noise, and domain-specific language use. When these 

datasets are merged, a model trained on the combined data might struggle to generalize well 

across all classes, as it may be forced to learn patterns that do not necessarily align across the 

datasets. This could result in a model that overfits certain data types while underperforming on 

others. Variations in annotation techniques across datasets may contribute to these 

inconsistencies, posing challenges for training a unified model. Since each dataset was created 

using distinct methodologies, the model may struggle to reconcile these variations, potentially 

hindering its ability to learn consistent patterns across datasets. 

5.5 AAVE Study 

To examine how AAVE is misclassified by current hate speech detection models, we 

apply our best-performing and most generalizable model – trained using the original dataset's 

class distribution, without balancing – to the AAVE dataset created by Blodgett et al [1]. This is 

the DistilBERT model trained on the Davidson dataset. 

5.5.1 Model Performance 

The Blodgett dataset consists of 1.1 million tweets, which we classified using our 

DistilBERT model trained on the Davidson dataset with original class distributions. We then 

manually annotate 500 instances from each predicted class to examine linguistic patterns and 

trends in misclassified data points. Our labeling approach defined offensive language as tweets 

containing words or expressions that, while disrespectful or inappropriate, do not necessarily 
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intend to harm or target a specific group. Such language may cause discomfort or annoyance but 

is not typically intended to incite harm or violence. We classified hateful tweets as more severe, 

typically containing expressions that deliberately target individuals or groups with the intent to 

cause harm, incite violence, or convey animosity based on inherent characteristics such as race, 

ethnicity, gender, religion, or sexual orientation. After creating these ground truth labels, we were 

able to generate a report on the model’s performance – shown in Table 8. 

Table 8: AAVE Results from classification by DistilBERT run on Davidson Dataset. Results indicate limited 

generalizability, with an overall accuracy of 64%. 

Class Precision Recall F1-Score Accuracy 

Normal 1.00 0.61 0.76 0.99 

Offensive 0.70 0.61 0.65 0.70 

Hateful 0.22 0.98 0.36 0.22 

Macro Avg 0.64 0.73 0.59 

Weighted Avg 0.82 0.64 0.69 

Overall Accuracy: 0.64 

 

From our sample of 1500 data points, the normal class performs very well with a 

precision of 1.00, indicating that every instance predicted as normal is indeed normal. This 

suggests that the model is highly accurate in predicting instances of the normal class. However, 

the recall for normal is 0.61, meaning that the model identifies only 61% of all true normal 

instances. This indicates that the model misses a significant portion of normal instances, 

especially those that may have been misclassified as other categories. The offensive class 

presents a different challenge for the model. While the precision for offensive is 0.70, meaning 

that 70% of instances predicted as offensive are truly offensive, this is lower than that of the 

normal class. The recall for offensive is 0.61, indicating that the model identifies 61% of true 

offensive instances, suggesting that the model is relatively effective in detecting Offensive 

instances but still misses about 39%. Of the three, performance for the hateful class is the lowest. 
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The precision for hateful is very low at 0.22, meaning that only 22% of instances predicted as 

hateful are actually hateful. This low precision indicates that the model is often misclassifying 

other classes as hateful. However, the recall for hateful is exceptionally high at 0.98, meaning 

that the model correctly identifies 98% of all true hateful instances. This suggests that the model 

is highly sensitive to the presence of hateful instances, but it struggles with accurately predicting 

them without incorrectly labeling other instances as hateful.  

It is important to note that these results are derived from a subset of the entire dataset, 

which may not fully capture the diversity of the entire dataset. As such, while these results 

provide valuable insights into the model's performance, they may not be entirely representative 

of how the model would perform on the full dataset. Variations in the distribution of classes, the 

characteristics of the data, or other external factors could lead to different results if the model 

were tested on a broader, more diverse set of data. Therefore, while the analysis offers useful 

information, further testing on a more comprehensive dataset would be necessary to ensure that 

these findings are fully generalizable. 
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Figure 7: Confusion Matrix for AAVE Results from fine-tuned DistilBERT trained on Davidson Dataset. Results show 

that while the model performs moderately well on normal and offensive tweets, it struggles to accurately distinguish hateful 

content. 

 

Figure 7’s confusion matrix gives us insight into where the model’s misclassifications are 

occurring. The normal class has 498 true positives, indicating that the model successfully 

classifies normal instances. However, it also misclassifies 150 normal instances as offensive and 

170 as hateful, suggesting that the model struggles with distinguishing normal from the other two 

categories. For the offensive class, the model correctly identifies 348 instances, but it 

misclassifies 2 normal instances as offensive and 220 offensive instances as hateful. These 

results indicate some difficulty in separating it from the hateful class, leading to confusion 

between these two categories. The hateful class, while showing a relatively high number of true 

positives (109), suffers from a significant misclassification issue, with 220 offensive and 

170 normal instances incorrectly predicted as hateful. The small number of true positives and 

relatively low misclassification from other classes suggest that the model is struggling to 

accurately identify hateful content. 
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5.5.2 Gender and Linguistic Trends 

This section focuses on the gendered and linguistic trends observed in the 

misclassification of AAVE in hate speech detection. Given the challenges models face in 

accurately interpreting the diverse linguistic features of nonstandard languages, this analysis 

seeks to identify specific aspects of AAVE that may contribute to its disproportionate 

misclassification. Additionally, in line with the findings of Kim et al[2], which highlight the 

tendency for African American male speech to be disproportionately flagged as hateful, this 

analysis will investigate whether this pattern is evident in our own dataset. This analysis will 

contribute to a deeper understanding of the complexities in hate speech detection on nonstandard 

language. 

Table 9: AAVE misclassifications by gender, according to classifications made using Kim’s [2] gender classifier. 

Percentage of false positive hateful predictions by gender 

Female 0.35 

Both 0.27 

Neither 0.23 

Male 0.15 

 

To start our analysis, we examine how the misclassifications are reflected in the gender 

associations of the tweets. Table 9 shows these findings. In our sample of 1,500 tweets, those 

classified as female were most frequently misclassified as hateful. However, since these results 

are based on a subset of the dataset, we cannot definitively conclude that they are fully 

representative of the entire dataset. 
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Figure 8: Word Cloud visualization of tweets incorrectly labeled as hateful. Word size corresponds to the frequency of 

terms in misclassified examples. 

 

Since this dataset consists entirely of AAVE data, we begin our linguistic analysis by 

examining word usage, as it is the most relevant factor in this context, given that all tweets share 

a similar linguistic framework. Among the 20 most common words in tweets misclassified as 

hateful, the top two were variations of the n-word: "niggas" (misclassified 87 times) and "nigga" 

(misclassified 67 times). Overall, the n-word appeared in 38% of false predictions in our sample. 

Figure 8 presents a WordCloud highlighting the words most frequently misclassified as hateful, 

with "nigga" appearing most prominently, indicating its strong association with misclassification. 

It is important to note that some tweets misclassified as hateful were actually labeled as 

offensive, which explains the presence of certain offensive words in the WordCloud. 

Table 10: N-word Usage in Tweets – illustrating different contexts and highlighting how the word can be used in both normal and 

hateful contexts. 

Tweet Predicted Label Actual Label 

dont play wit my feelings your liable to get your ass 

whooped or shot if u a nigga 

Offensive Hateful 

i know who that is nigger boy Hateful Hateful 

dese young niggas out here hungry Hateful Normal 
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To highlight the varying ways in which the n-word is used and how these differences 

impact classification, we present a small case study examining three distinct examples from the 

dataset. Table 10 showcases these instances, illustrating how context and tone influence whether 

a tweet is truly hateful, offensive, or simply a neutral usage of the word. By analyzing these 

cases, we aim to better understand the linguistic patterns that may contribute to misclassification 

and the challenges that arise in distinguishing between harmful and non-harmful language. 

Tweet 1: "dont play wit my feelings your liable to get your ass whooped or shot if u a 

nigga" 

This tweet was predicted as offensive but actually labeled as hateful. The language used 

here includes a direct threat ("liable to get your ass whooped or shot"), paired with the term 

"nigga," which is often flagged as hateful due to its association with racial hostility. However, the 

model misclassifies it as offensive, possibly because it overlooks the threatening nature of the 

message or struggles to interpret the intensity of aggression when combined with AAVE 

linguistic features. 

Tweet 2: "i know who that is nigger boy" 

This tweet was correctly predicted as hateful. The use of the "hard R" variation of the n-

word is widely recognized as a slur, historically and presently used by outsiders to demean and 

oppress the Black community. "Nigger boy" is an explicitly racial slur, making it easy for the 

model to classify as hateful. This kind of direct derogatory language often falls under well-

established patterns of hate speech, making it less susceptible to misclassification. 

Tweet 3: "dese young niggas out here hungry" 
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The third tweet was predicted as hateful but is actually normal. The term "niggas" 

appears in this tweet, which might trigger the model's hate speech classification. However, 

"niggas" can be used as a term of camaraderie or to refer to individuals in a non-hostile way. The 

tweet's overall tone does not contain hate but is more about describing a situation involving 

"young niggas" who are "hungry." The misclassification highlights how the model may struggle 

to understand contextual usage, especially with a reclaimed slur which can have different 

meanings based on social and cultural factors. 

The n-word has undergone a process of reclamation within the Black community, 

transforming from a term historically used to oppress into one that can express solidarity, 

familiarity, and cultural identity. In many contexts, it is used casually among peers, as a term of 

endearment, or as a marker of in-group belonging. However, despite this reclamation, the word is 

not universally benign – its meaning is highly dependent on context, tone, and the speaker’s 

identity. While it can serve as an expression of camaraderie, it can also still be weaponized in 

hateful or derogatory ways, particularly when used by those outside the community. It is this 

distinction – between reclaimed, non-hateful uses and those that perpetuate harm – that hate 

speech detection models must navigate carefully. 

Future studies should focus on refining hate speech detection models to better recognize 

these nuanced distinctions, ensuring that tweets containing the n-word are not automatically 

flagged as hateful without considering context. By incorporating linguistic and sociocultural 

understanding into model training, researchers can work toward reducing the unnecessary 

censorship of Black voices while still identifying genuinely harmful speech. 
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Chapter 6 

 

 

Conclusion and Future Work 

 

This thesis has explored the complexities of hate speech detection, particularly focusing 

on how these models struggle to accurately classify AAVE text. As online platforms increasingly 

serve as primary spaces for social interaction, the need for robust and inclusive automated 

systems for detecting harmful language is more pressing than ever. Through this work, we have 

examined the limitations of existing methodologies, the challenges posed by diverse linguistic 

forms like AAVE, and the ethical problems inherent in these systems. In this concluding chapter, 

we reflect on the contributions of this research, discuss its limitations, and consider future 

directions. 

6.1 Contributions 

This research makes a key contribution by demonstrating a consistent pattern of 

misclassification in hate speech detection models, specifically in relation to the use of the n-word 

within African American Vernacular English (AAVE). This pattern reveals how reclaimed, in-

group terms used by Black speakers are disproportionately flagged as hateful, pointing to a trend 

of algorithmic censorship of Black voices. By surfacing this trend, the thesis sheds light on the 



 

 

58 

linguistic biases embedded in current detection systems and contributes to ongoing efforts to 

make hate speech detection more context aware. 

6.2 Limitations 

While this research offers valuable insights into the misclassification of AAVE in hate 

speech detection, it is not without limitations. First, the hand-labeling of the AAVE dataset as 

hateful/normal/offensive introduces subjectivity and potential biases into the labeling process, as 

these classifications were made based on personal judgment rather than automated or widely 

accepted standards. Additionally, the labeled subset of the Blodgett AAVE dataset represents 

only a small portion of over one million tweets and may not accurately reflect the broader 

dataset. Finally, the study’s reliance on a binary gender classification framework limits the scope 

of analysis, excluding the full spectrum of gender identities and expressions that exist in real-

world discourse. These limitations should be considered when interpreting the findings, as they 

may influence the generalizability and robustness of the results. 

6.3 Future Directions 

Looking ahead, there are several promising avenues for future research in the 

development of more inclusive models for hate speech detection. Future work could focus on 

augmenting existing datasets with a more diverse range of linguistic samples, particularly those 

reflecting how marginalized communities communicate online. Enhancing linguistic diversity in 

training data can help models perform more equitably and more accurately reflect the 

complexities of real-world language. This process should be paired with annotator priming 

strategies, such as those proposed by Sap et al. [21]. This would involve informing annotators 

about the cultural and contextual significance of reclaimed or in-group terms – such as the n-
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word in Black communities or the f-word in queer spaces. Together, these efforts can lead to 

more representative datasets and, ultimately, fairer hate speech detection systems. 

The algorithmic biases explored in this work are a small part of a larger, widespread 

pattern of algorithmic injustice present across multiple domains. Studies have shown that 

women’s voices are often underrepresented and misclassified in speech recognition and 

automated systems. YouTube’s auto-captioning system, for instance, performs better on male 

speech than female speech, largely due to differences in voice pitch [59]. Biased algorithms have 

also been known to create obstacles in access to housing and loan opportunities. All of these 

seemingly small and isolated issues compound into a broader system of algorithmic 

marginalization. This work aims to contribute to the ongoing discussion on how we can address 

and rectify these injustices. 

As hate speech detection systems continue to evolve, their development must strike a 

balance between technical advancement and ethical responsibility, ensuring that these tools are 

not only effective but also just. Given the persistent social inequalities that shape outcomes 

across demographic groups, a commitment to non-distributive forms of justice is essential to 

achieving genuine fairness – one that accounts for context, identity, and historical 

marginalization. By integrating both cultural and linguistic sensitivity as well as reparative 

justice into their design, we can mitigate harm while fostering a more inclusive and equitable 

digital space. This research aims to support a more holistic approach to hate speech detection – 

one that acknowledges cultural, sociolinguistic, and ethical contexts to foster fairer and more 

inclusive systems. 
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APPENDIX A 

 

A.1 Justifications Behind Annotation and Labeling Techniques 

This section provides an overview of the annotation and labeling techniques employed in 

the datasets used in this study. The justifications for these techniques were drawn from the 

original papers and methodologies provided by the creators of each dataset. By reviewing these 

sources, this section outlines the rationale behind the chosen labeling conventions, offering 

insight into the specific decisions made during the annotation process. Understanding these 

foundations helps clarify how and why certain categories were defined, ensuring transparency 

and a clear understanding of the dataset preparation for the study. 

A.1.1 Davidson Dataset 

Davidson et al. used Hatebase.org to create a lexicon of hateful terms, which they applied 

to the Twitter API to collect tweets from 33,458 users, resulting in a corpus of 85.4 million 

tweets. From this, they randomly sampled 25,000 tweetscontaining lexicon terms and had them 

manually labeled by CrowdFlower workers. 

Tweets were categorized as: 

• Hate speech 

• Offensive but not hate speech 

• Neither offensive nor hate speech 

Annotators were given detailed definitions and instructed to consider context, not just 

word presence. Each tweet was labeled by at least three annotators, with a 92% intercoder 
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agreement. Labels were assigned based on majority vote; tweets without a majority were 

excluded, resulting in 24,802 labeled tweets. 

A.1.2 Founta Dataset 

Label Definitions: Annotators were provided with definitions for each category, drawn 

from existing literature and dictionaries: 

• Offensive Language: Profanity or vulgar language used to insult an individual or group. 

• Abusive Language: Strongly impolite or hurtful language using profanity that may 

express intense emotion or debasement. 

• Hate Speech: Language expressing hatred or aiming to humiliate based on attributes 

such as race, religion, ethnicity, gender, disability, or sexual orientation. 

• Aggressive Behavior: Angry or violent online communication intended to harm or upset 

others. 

• Cyberbullying: Repeated, hostile behavior via electronic means intended to intimidate, 

abuse, or embarrass others. 

• Spam: Promotional or malicious content, including advertising, phishing, or repeated 

unwanted posts. 

• Normal: Tweets not fitting any of the above categories. 

Annotation Process: 

The Founta annotation process was conducted in three phases: 

1. Exploratory Round: Annotators labeled tweets as normal, spam, or inappropriate. 

Inappropriate tweets were further classified into one of five 

categories: offensive, abusive, hateful, aggressive, or cyberbullying. 
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2. Refinement Round: Based on low annotation agreement and significant category 

overlap, the labeling scheme was revised. Cyberbullying was removed due to its reliance 

on repeated behavior (which is hard to assess in isolated tweets), and offensive, abusive, 

and aggressive were collapsed into a single category. Hateful remained separate due to its 

distinct definition and relevance. This resulted in four final labels: Abusive, Hateful, 

Normal, and Spam. 

3. Validation and Final Annotation: We validated the simplified scheme with further 

rounds on the smaller dataset. These showed improved annotator agreement and clearer 

label separation. The final 80K tweets were then annotated using this scheme, with each 

tweet receiving five independent labels. 

Annotator Demographics: Annotations were crowdsourced globally. Annotators came 

from over 100 countries, with the majority from Venezuela, the U.S., Egypt, and India. Most had 

at least a secondary education, and income levels skewed low. Two-thirds of annotators 

identified as male. 

A.1.3 HateXplain Dataset 

Annotation Process: Annotation was conducted via Amazon Mechanical Turk 

(MTurk) with each post labeled across three dimensions: 

1. Type of speech: 

o Hateful 

o Offensive 

o Normal 

2. Target community (e.g., Race, Religion, Gender, Sexual Orientation). 
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3. Rationale spans: Annotators highlighted the words/phrases responsible for their 

classification. 

Instructions: 

Annotators were warned about exposure to offensive content, given detailed guidelines, 

definitions, and examples.  

Target Communities: 

Included communities: African, Islam, Jewish, LGBTQ, Women, Refugee, Arab, Caucasian, 

Hispanic, Asian. A group is considered a target if at least 2 of 3 annotators agree and the group 

appears in ≥100 posts. 

Top Targets Identified: 

• Hate speech: African, Islam, Jewish 

• Offensive speech: Women, African, LGBTQ 

Rationale Annotation: 

Each hateful/offensive post received 2–3 rationale annotations. 

• Avg. tokens per rationale: ~5.48 

• Avg. tokens per post: 23.42 

• Top hateful terms: nigger, kike, moslems (30.02% of hateful posts) 

• Top offensive terms: retarded, bitch, white (47.36% of offensive posts) 

A.2 Text Cleaning Procedure 

To prepare the training datasets for modeling, I implemented a text preprocessing 

function in Python using several tools from the regular expression, string, and nltk (Natural 

Language Toolkit) libraries, as well as pandas for data handling. The cleaning function was 



 

 

70 

designed to reduce noise and standardize text input for downstream natural language processing 

tasks. The steps are as follows: 

1. Lowercasing: All text was converted to lowercase using Python’s built-

in str.lower() method to ensure uniformity and reduce duplication due to case differences. 

2. URL and Handle Removal: URLs (e.g., strings beginning with http, https, or www) 

were removed using regular expressions (re.sub). Twitter-specific elements such as 

mentions (@username) and hashtags (#topic) were also removed to eliminate social 

media artifacts that do not contribute to semantic meaning. 

3. Digit and Punctuation Removal: All numeric characters were removed, including long 

strings of digits (e.g., phone numbers or IDs), along with punctuation 

using string.punctuation and Python’s translate() function. 

4. Tokenization: Text was split into individual words (tokens) using word_tokenize() from 

the nltk.tokenizemodule. 

5. Stop Word Removal: Common English stop words (e.g., "the", "is", "and") were 

removed using the list provided by nltk.corpus.stopwords to focus on semantically 

meaningful words. 

6. Lemmatization: Words were reduced to their base (or lemma) forms 

using WordNetLemmatizer from nltk.stem, helping to consolidate variations of the same 

word (e.g., "running" → "run"). 

7. Whitespace Normalization: Finally, extraneous spaces were removed using regular 

expressions to ensure clean, readable output. 

Before running the function, I downloaded the required NLTK resources 

(punkt, stopwords, and wordnet) using nltk.download(). 
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A.3 Dataset Label Comparisons 

This section presents an exploration of the relationship between dataset labels using 

Euclidean distance and cosine similarity. The goal was to assess how the tweets in the datasets 

are separated in feature space according to their assigned labels. By calculating these distances, 

the aim was to identify any patterns or groupings that could inform understanding of the label 

distributions. However, the results did not yield significant insights due to the nature of the data, 

and as such, they are included here in the appendix for reference. 

A.3.1 Intra-Class Label Similarity 

After preprocessing the datasets, we analyzed class statistics and measured cosine 

similarity to evaluate the separation of tweets within each class. Cosine similarity is a measure of 

similarity between two vectors, with values ranging from 0 (no similarity) to 1 (identical). In this 

case, the cosine similarity within each class label indicates how similar the instances of that class 

are to each other in terms of their feature representations. Lower values suggest more variability 

within the class, while higher values imply more consistency. Additionally, we calculated the 

Euclidean distance between tweet vectors within each class, which measures the straight-line 

distance between instances in a multidimensional space. Smaller Euclidean distances indicate 

that the tweets within a class are closer to each other in feature space, suggesting a higher degree 

of similarity. Larger distances indicate more spread out instances within a class. Table A shows 

these values for each class in each dataset.  
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Table A: Intra-Class cosine similarity and Euclidean distance. These values indicate  how semantically similar or 

dispersed tweets are within classes. 

Label Cosine similarity within class Euclidean distance within class 

Davidson Dataset 

normal 0.52 3.09 

offensive 0.56 2.85 

hateful 0.50 3.10 

Founta Dataset 

normal 0.63 2.82 

offensive 0.58 2.88 

hateful 0.61 2.74 

HateXplain Dataset 

normal 0.65 2.71 

offensive 0.64 2.70 

hateful 0.64 2.59 

 

Davidson Dataset 

The cosine similarity within the Davidson dataset remains relatively low across all 

classes, indicating that the feature representations of tweets within each category (normal, 

offensive, hateful) are still fairly diverse. The hateful class now shows the lowest similarity 

(0.50), suggesting that hateful tweets in this dataset may vary widely in how they are expressed 

linguistically. The normal class follows closely at 0.52, continuing the trend of higher intra-class 

variability. Interestingly, the offensive class now has the highest similarity (0.56), suggesting that 

offensive tweets may exhibit more consistent patterns or phrasing. The Euclidean distances are 

fairly close across all classes, with offensive tweets being the most tightly clustered (2.85) 

and hateful tweets the most spread out (3.10), reinforcing the idea that hateful language in this 

dataset is especially diverse in its expression. 

Founta Dataset 

In the Founta dataset, the normal class now exhibits the highest cosine similarity (0.63), 

diverging from the patterns seen in Davidson. This suggests that tweets labeled as normal in this 
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dataset may follow more consistent linguistic structures. The hateful class follows closely with a 

similarity of 0.61, while the offensive class is somewhat lower at 0.58. This reversal of trends 

may reflect differences in labeling guidelines or tweet content across datasets. In terms of 

Euclidean distance, hateful tweets are the most compact (2.74), followed by normal (2.82), 

and offensive tweets are the most dispersed (2.88). The closeness of these values still suggests 

that all classes are moderately well-clustered but that hate speech in this dataset may be more 

narrowly defined or exhibit more consistent features. 

HateXplain Dataset 

All classes in the HateXplain dataset show high cosine similarity values, with normal at 

0.65, and both offensive and hateful classes very close behind at 0.64. This overall consistency 

suggests that in this dataset, tweet representations within each class are highly aligned. The small 

variation between classes implies that the dataset might be more curated, or the language used in 

each class might conform to particular linguistic norms. Euclidean distances echo this tight 

clustering: hateful tweets have the lowest spread (2.59), while normal tweets are slightly more 

dispersed (2.71). These patterns could reflect clearer distinctions between categories and possibly 

more rigorous annotation, resulting in lower intra-class variability and more homogenous 

representations. 

Across all datasets, the normal class consistently exhibits the lowest intra-class cosine 

similarity, particularly in the Davidson (0.0168) and Founta (0.0167) datasets. This suggests that 

tweets labeled as "normal" may be more diverse in their content and wording compared to 

offensive or hateful tweets, which often share common linguistic patterns. In contrast, offensive 

and hateful labels tend to have higher intra-class similarity, particularly in the Founta (0.0280 for 

offensive, 0.0229 for hateful) and HateXplain (0.0280 for offensive, 0.0282 for hateful) datasets. 
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The increased similarity indicates that offensive and hateful speech could follow more distinct 

patterns, possibly due to recurring slurs, insults, or syntactic structures that make them more 

uniform. HateXplain exhibits the highest intra-class similarity overall, suggesting it may have 

stricter labeling criteria or more homogenous representations of each category. 

We might expect cosine similarity within labeled tweet classes for hate speech detection 

to be low because hate speech and abusive language do not follow a consistent linguistic 

structure. Hate speech, abusive language, and even neutral speech can take many different 

lexical, syntactic, and stylistic forms, depending on factors such as dialect, sarcasm, topic, and 

intended audience. Unlike sentiment analysis, where positive or negative language often relies on 

a shared set of words and expressions (e.g., "happy," "excited" for positive sentiment), hate 

speech can be conveyed through a wide range of words, tones, and rhetorical strategies. Some 

instances may include direct slurs, while others rely on euphemisms, sarcasm, or context-

dependent implications. This variability means that even tweets labeled as the same category 

may have low cosine similarity, as they do not share a common linguistic pattern. 

A.3.2 Inter-Class Similarity 

To measure similarity between classes within each dataset, we calculated cosine 

similarity and Euclidean distance. Euclidean distance measures how far apart two labels are in 

the feature space. Each tweet is represented as a point in this space based on its linguistic 

features, and the distance between two points reflects their dissimilarity. When comparing labels 

like normal and offensive, the Euclidean distance tells us how distinct the tweets in these 

categories are from each other. A smaller Euclidean distance means the tweets classified under 

those labels are more similar, with overlapping features, making it harder for a model to 

differentiate between them. Essentially, Euclidean distance helps reveal how much the language 
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used in different categories diverges. Smaller distances highlight subtle differences that models 

might struggle with, while larger distances suggest more defined distinctions between labels. 

 

Table B: Inter-Class cosine similarity and Euclidean distance. Measures of How Similar or Distinct Tweets Are 

Between Different Labels in a Dataset 

Labels Cosine Similarity Euclidean Distance 

Label comparisons across Davidson 

normal vs offensive 0.9724 0.8033 

offensive vs hateful 0.9947 0.3416 

hateful vs normal 0.9736 0.8200 

Label comparisons across Founta 

normal vs offensive 0.9647 0.9255 

offensive vs hateful 0.9896 0.5018 

hateful vs normal 0.9872 0.5572 

Label comparisons across HateXplain 

normal vs offensive 0.9993 0.1450 

offensive vs hateful 0.9988 0.1799 

hateful vs normal 0.9977 0.2648 

 

Davidson Dataset 

In the Davidson dataset, the cosine similarities between each pair of labels are quite high, 

ranging from 0.9724 (normal vs offensive) to 0.9947 (offensive vs hateful). The Euclidean 

distances, however, show more distinction. The lower distance between offensive and hateful 

(0.3416) suggests that these two labels share more overlapping features, making them harder to 

distinguish. In contrast, the distances between normal and offensive (0.8033) and normal and 

hateful (0.8200) indicate greater separation, implying that there are clearer boundaries between 

these labels. 

Founta Dataset 

The Founta dataset shows a similar trend, though the distinctions are slightly less 

pronounced. The normal vs offensive similarity is slightly lower (0.9647), with a higher 
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Euclidean distance (0.9255), suggesting that Founta differentiates normal and offensive language 

more distinctly than Davidson. However, the offensive vs hateful labels remain closely related, 

with a high cosine similarity (0.9896) and a relatively low Euclidean distance (0.5018), 

reinforcing the notion that these categories overlap significantly. 

HateXplain Dataset 

In the HateXplain dataset, the labels are remarkably similar across the board, with cosine 

similarities exceeding 0.997 for all comparisons. The Euclidean distances are correspondingly 

low, particularly between normal and offensive (0.1450), indicating a substantial overlap in how 

these labels are represented. This suggests that HateXplain may not be drawing strong 

distinctions between these categories, potentially making it harder for models to accurately 

separate them.  

Overall, the closer relationship between offensive and hateful language across datasets 

highlights the challenge in distinguishing these forms of harmful speech, as the boundaries 

between offensive and hateful content are often blurred. Meanwhile, the varying levels of 

similarity between normal and offensive language suggest that different datasets may have 

different thresholds for what constitutes "offensive" speech, reflecting subjective biases in 

annotation.  

A.3.3 Cross-Dataset Comparison 

By measuring Euclidean distance, we can quantify how different the representations of 

each class – normal, offensive, and hateful – are between datasets. A lower Euclidean distance 

means that the features representing a particular class are more similar across datasets, indicating 

greater alignment in how the datasets define and capture that type of language. Conversely, a 

higher Euclidean distance suggests that the datasets represent the same class in noticeably 
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different ways, reflecting potential differences in data collection, annotation, or interpretation. By 

examining these distances, we gain insight into how consistently each class is represented across 

datasets, which is crucial when evaluating model performance and generalizability. Table C 

shows these results. 

Table C:Cross-Dataset cosine similarity and Euclidean distance. Measures of how similarly tweets are represented 

across different datasets within the same label. 

Label Cosine Similarity Euclidean Distance 

Comparison across Davidson and Founta 

normal 0.9931 0.4352 

offensive 0.9931 0.3885 

hateful 0.9861 0.6605 

Comparison across Davidson and HateXplain 

normal 0.9897 0.5707 

offensive 0.9738 0.8491 

hateful 0.9809 0.7831 

Comparison across Founta and HateXplain 

normal 0.9931 0.4284 

offensive 0.9778 0.7630 

hateful 0.9961 0.3132 

 

Normal Class 

The normal class shows consistently high cosine similarity across all dataset 

comparisons, with values around 0.993, indicating that the normal tweets in each dataset have 

highly similar representations. The Euclidean distances for the normal class are also relatively 

low, especially between Founta and HateXplain (0.4284), suggesting that the feature spaces for 

normal tweets are closely aligned. This consistency implies that the definition and characteristics 

of normal speech are relatively stable across datasets. 

Offensive Class 

The offensive class shows slightly lower cosine similarity, particularly between Davidson 

and HateXplain (0.9738), indicating more variation in how offensive language is represented 
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across datasets. The Euclidean distances for offensive tweets are higher compared to the normal 

class, especially between Davidson and HateXplain (0.8491). This could reflect differences in 

the types of offensive language captured by each dataset or slight variations in annotation 

criteria. 

Hateful Class 

The hateful class displays the most variation across datasets. The lowest cosine similarity 

is observed between Davidson and Founta (0.9861), suggesting that the datasets diverge the most 

when identifying hateful content – though this difference is marginal. The Euclidean distances 

for the hateful class vary more, with the largest distance found between Davidson and 

HateXplain (0.7831), reinforcing the idea that these datasets may not fully align on what 

constitutes hateful speech. Interestingly, the comparison between Founta and HateXplain yields a 

very high cosine similarity (0.9961) and the lowest Euclidean distance (0.3132), implying that 

these two datasets may have more agreement on the features representing hateful content. 

Overall, these results suggest that the normal class is the most consistently represented 

across datasets, with lower Euclidean distances indicating a more stable definition of what 

constitutes "normal" speech. However, the offensive and hateful classes show greater variation, 

particularly when comparing Davidson and HateXplain. This variability points to potential 

discrepancies in how offensive and hateful language are perceived and labeled across datasets, 

which could impact model performance when applied to new data. 
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APPENDIX B 

This appendix contains additional figures and tables generated during the 

experimentation process that were not central to the final analysis. While these results did not 

directly contribute to the conclusions drawn in the main body of the thesis, they are included 

here for transparency and reference. Readers interested in deeper exploration of the model 

behavior and dataset characteristics may find these materials informative. 

B.1 Additional Confusion Matrices From Imbalanced Dataset Model Results 

Figure A: Confusion Matrix for TF-IDF+SVM trained on imbalanced Davidson Dataset. 

 

 

Figure A shows a confusion matrix for the TF-IDF + SVM model trained on the 

Davidson dataset which reveals that while the model effectively classifies offensive speech, it 

struggles with distinguishing between offensive and normal language. Specifically, the model 

correctly identifies 3,695 offensive instances but misclassifies 106 normal and 37 hateful tweets 
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as offensive. For normal speech, 748 instances are correctly classified, with only one being 

mistaken for hateful and 84 misclassified as offensive. However, the classification of hateful 

speech is notably poor, with only 54 instances correctly identified, while 206 are mislabeled as 

offensive and 26 as normal. This indicates a strong bias toward the offensive class, leading to a 

high false positive rate for offensive speech as hateful.  

 

Figure B: ROC Curve for TF-IDF+SVM trained on imbalanced Davidson Dataset.  

 

Figure B shows an ROC curve and AUC scores provide insight into the model’s 

classification confidence and overall discriminatory power. The AUC for the normal class is the 

highest at 0.98, suggesting that when the model correctly classifies normal tweets, it does so with 

high confidence. Offensive speech follows closely with an AUC of 0.93, indicating strong 

classification ability for this category as well. However, the hateful class has the lowest AUC at 
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0.85, reflecting a weaker, albeit still strong, ability to differentiate hateful content from other 

categories.  

 

 

Figure C: Confusion Matrix for TF-IDF+SVM trained on imbalanced Founta Dataset 

 

 

Figure C’s confusion matrix represents results from the TF-IDF+SVM model trained on 

the Founta dataset. The model performs well in classifying normal tweets, correctly 

identifying 10,386 instances, with only 35 misclassified as hateful and 254 misclassified as 

offensive. This suggests that the model has a strong bias towards correctly identifying normal 

tweets, but may still struggle with some edge cases. However, when it comes to hateful tweets, 

the model performs much worse. Out of all hateful tweets, only 202 were correctly classified, 

while 395 were misclassified as normal and 302 as offensive. This indicates that the model has 

difficulty distinguishing hateful speech from both normal and offensive language, potentially due 
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to overlapping linguistic patterns. Similarly, offensive tweets are somewhat well classified, 

with 4,146 correct predictions, but 99 instances were misclassified as hateful and 308 as normal, 

suggesting some level of confusion between offensive and normal speech. 

 

Figure D: ROC Curve TF-IDF+SVM trained on imbalanced Founta Dataset 

 

Figure D displays the ROC curve for the TF-IDF+SVM model trained on the Founta 

dataset. It further supports the conclusion that the model struggles the most with the hateful 

class. The AUC for hateful tweets is 0.79, significantly lower than the scores for normal (0.96) 

and offensive (0.97) tweets. This indicates that the model has difficulty distinguishing hateful 

tweets from the other two classes, leading to more false positives and false negatives. In contrast, 

the model performs well in classifying normal and offensive tweets, as evidenced by their near-

perfect AUC scores. The high performance for these two categories suggests that the feature 
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extraction method (TF-IDF) and the SVM model are effective in detecting general patterns of 

normal and offensive speech but fall short when handling hate speech. 

 

Figure E: Confusion Matrix for TF-IDF+SVM trained on balanced Davidson Dataset. 

 

Figure E shows a confusion matrix for the TF-IDF + SVM model trained on the 

Davidson dataset with balanced class distributions. The model correctly identifies 3,464 

offensive instances but misclassifies 137 normal and 237 hateful tweets as offensive. In this case, 

balancing class distributions led this model to have greater difficulty distinguishing between the 

hateful and offensive class, compared to the results of the model trained on an imbalanced class 

distribution, to the detriment of performance on the normal class. For normal speech, 766 

instances are correctly classified, with 23 being mistaken for hateful and 44 misclassified as 

offensive. The classification of hateful speech is poor, but improved from figure A, with 127 

instances correctly identified (compared with 54 previously), while 128 are mislabeled as 

offensive and 31 as normal.  
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Figure F: ROC Curve for TF-IDF+SVM trained on balanced Davidson Dataset. 

 

Figure F shows an ROC curve and AUC scores for the TF-IDF+SVM model trained on 

the Davidson Dataset with balanced class distributions. The AUC for the normal class is the 

highest at 0.98, suggesting that when the model correctly classifies normal tweets, it does so with 

high confidence. Offensive speech follows closely with an AUC of 0.93, indicating strong 

classification ability for this category as well. However, the hateful class has the lowest AUC at 

0.84, reflecting a weaker ability to differentiate hateful content from other categories.  

B.2 Model Performance on Balanced Dataset Class Distribution 

In order to improve performance on the minority class, we balanced dataset class 

distributions. Table D reports findings from our experimentation with balanced class 

distributions in the datasets. 



 

 

85 

Table D: Balanced Dataset Results. Accuracy results from the initial Glove+LSTM model on three hate speech 

datasets. Although originally reported to achieve state-of-the-art performance, later findings suggest the model was overfit to its 

training data [42]. 

Model Macro Weighted Average AUC 

Average 

Overall 

Accuracy 

Precision Recall F1 Precision Recall F1   

Results on Davidson Dataset  

TF-IDF + SVM 0.70 0.76 0.72 0.89 0.88 0.89 0.92 0.88 

Glove + LSTM 0.02 0.33 0.04 0.01 0.06 0.01 0.50 0.06 

DistilBERT 0.73 0.78 0.76 0.91 0.90 0.90 0.86 0.90 

Results on Founta Dataset  

TF-IDF + SVM 0.70 0.74 0.70 0.90 0.86 0.87 0.91 0.86 

Glove + LSTM 0.09 0.33 0.15 0.08 0.28 0.12 0.50 0.28 

DistilBERT 0.71 0.75 0.73 0.90 0.88 0.88 0.84 0.88 

Results on HateXplain  

TF-IDF + SVM 0.61 0.62 0.61 0.62 0.62 0.62 0.79 0.62 

Glove + LSTM 0.10 0.33 0.15 0.08 0.29 0.13 0.50 0.29 

DistilBERT 0.65 0.65 0.64 0.66 0.64 0.65 0.73 0.64 

 

With the balanced class distributions, we still see TF-IDF + SVM performing well, 

achieving the highest weighted average F1 scores across all datasets, with 0.89 on Davidson, 

0.87 on Founta, and 0.62 on HateXplain. DistilBERT follows closely, with strong performance 

across datasets, particularly on Davidson (0.90 weighted F1) and Founta (0.88 weighted F1). 

Notably, it surpasses TF-IDF + SVM in macro F1 scores for all datasets, indicating stronger 

balance across classes.  Glove + LSTM continues to struggle with performance. It struggles with 

both precision and recall, leading to very low F1 scores – especially on Davidson, where its 

macro F1 is just 0.04 and weighted F1 is 0.01. This trend is consistent across the Founta and 

HateXplain datasets, where its highest weighted F1 is only 0.29. The AUC scores further 

reinforce this pattern, as Glove + LSTM reaches only 0.50 on Davidson and Founta, barely 

above random chance.   

The best model-dataset combination appears to be TF-IDF + SVM on the Davidson 

dataset, where it achieves the highest weighted average F1 score of 0.89 and an overall accuracy 
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of 0.88. Additionally, it has an AUC score of 0.92, indicating strong classification performance 

across all classes.  A close second is DistilBERT on the Davidson dataset, which achieves a 

weighted average F1 score of 0.90 and a slightly lower AUC of 0.86. A further look into these 

results can be found in the following confusion matrices and ROC curves. 

Figure G: Confusion Matrix for TF-IDF+SVM trained on balanced Davidson Dataset. 

 

Figure G shows a confusion matrix for the TF-IDF + SVM model trained on the 

Davidson dataset with balanced class distributions. The model correctly identifies 3,464 

offensive instances but misclassifies 137 normal and 237 hateful tweets as offensive. In this case, 

balancing class distributions led this model to have greater difficulty distinguishing between the 

hateful and offensive class, compared to the results of the model trained on an imbalanced class 

distribution, to the detriment of performance on the normal class. For normal speech, 766 

instances are correctly classified, with 23 being mistaken for hateful and 44 misclassified as 

offensive. The classification of hateful speech is poor, but improved from figure A, with 127 
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instances correctly identified (compared with 54 previously), while 128 are mislabeled as 

offensive and 31 as normal.  

Figure H: ROC Curve for TF-IDF+SVM trained on balanced Davidson Dataset. 

 

Figure H shows an ROC curve and AUC scores for the TF-IDF+SVM model trained on 

the Davidson Dataset with balanced class distributions. The AUC for the normal class is the 

highest at 0.98, suggesting that when the model correctly classifies normal tweets, it does so with 

high confidence. Offensive speech follows closely with an AUC of 0.93, indicating strong 

classification ability for this category as well. However, the hateful class has the lowest AUC at 

0.84, reflecting a weaker ability to differentiate hateful content from other categories.  
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Figure I: Confusion Matrix for DistilBERT trained on balanced Davidson Dataset. 

 

Figure I’s confusion matrix represents results from the DistilBERT model trained on the 

Davidson dataset with balanced class distributions. The model performs well in classifying 

offensive tweets, correctly identifying 3,520 instances, with 128 misclassified as hateful and 190 

misclassified as offensive. This suggests that the model has a strong bias towards correctly 

identifying offensive tweets. Similarly, normal tweets are well classified, with 773 correct 

predictions, but 39 instances were misclassified as offensive and 21 as hateful. However, 

performance dips when it comes to hateful tweets. Out of all hateful tweets, only 145 were 

correctly classified, while 25 were misclassified as normal and 116 as offensive.  
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Figure J: ROC Curve for DistilBERT trained on balanced Davidson Dataset. 

 

Figure J displays the ROC curve for the DistilBERT model trained on the Davidson 

dataset with balanced class distributions. It further supports the conclusion that the model 

struggles the most with the hateful class. The AUC for hateful tweets is 0.73, significantly lower 

than the scores for normal (0.95) and offensive (0.89) tweets. This indicates that the model has 

difficulty distinguishing hateful tweets from the other two classes, leading to more false positives 

and false negatives. 

Analysis of Model Performance: Imbalanced vs. Balanced Class Distributions 

When comparing models trained on imbalanced and balanced class distributions, we see 

that TF-IDF + SVM remains one of the most stable models, with only minor changes in overall 

performance. On the Davidson dataset, balancing led to a slight improvement in macro recall 

(0.76 vs. 0.68), indicating better classification of minority classes, but a slight drop in overall 

accuracy (0.88 vs. 0.92), which is expected when removing the bias toward majority classes. A 
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similar trend appears in the Founta dataset, where macro F1 slightly declines from 0.73 to 0.70, 

but AUC remains constant at 0.91, showing that the model's ranking ability is unaffected. 

However, on the HateXplain dataset, balancing significantly improves TF-IDF + SVM’s 

performance, increasing macro and weighted F1 from 0.40 to 0.62, while overall accuracy jumps 

from 0.44 to 0.62. Suggesting that balancing class distributions had the greatest effect on this 

dataset.  

Figure K: Comparing results of balanced class distribution on model performance 

 
As shown in Figure K, HateXplain demonstrates significant improvements across all 

metrics, with the exception of its AUC score, which saw a minimal change (0.77 vs. 0.76). For 

the Davidson and Founta datasets, balancing the class distributions resulted in both slight 
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improvements and slight declines in performance. Most notable is the improvement in the 

Davidson Macro F1 (0.71 vs 0.74) and AUC score (0.86 vs 0.88). Founta also saw the most 

improvement in AUC score (0.86 vs 0.88). 

 

B.3 Model Performance by per class distribution 

Although macro and weighted average results presented so far align with previous work, 

a direct comparison of per-class metrics is challenging, as they are not often reported in the 

literature due to the common issue of class imbalances in datasets. In this section, we present the 

per-class performance metrics for the models we have already evaluated above for both the 

balanced and imbalanced class distributions. 

B.3.1 Per-Class Metrics on Imbalanced Datasets (Original Class Distribution) 

In this section, we examine the per-class performance metrics for our models when 

evaluated on the imbalanced datasets, using the original class distributions. Given the challenges 

posed by class imbalance in many real-world datasets, it is crucial to assess how well the models 

perform on each individual class. This detailed analysis helps to highlight the strengths and 

weaknesses of our models across different classes, which may not be apparent when only 

considering aggregate metrics. 

  



 

 

92 

Table E: Per-Class metrics with models trained on original class distributions 

Label Precision Recall F1-Score Accuracy 

Davidson trained on DistilBERT  

Normal 0.84 0.91 0.88 0.91 

Offensive 0.94 0.95 0.95 0.95 

Hateful 0.50 0.27 0.35 0.27 

Davidson trained on TF-IDF 

Normal 0.85 0.90 0.87 0.90 

Offensive 0.93 0.96 0.94 0.96 

Hateful 0.59 0.19 0.29 0.19 

Founta trained on DistilBERT  

Normal 0.94 0.97 0.95 0.97 

Offensive 0.88 0.90 0.89 0.90 

Hateful 0.60 0.26 0.36 0.26 

Founta trained on TF-IDF 

Normal 0.94 0.97 0.95 0.97 

Offensive 0.88 0.91 0.90 0.91 

Hateful 0.60 0.22 0.33 0.22 

HateXplain trained on DistilBERT  

Normal 0.73 0.68 0.70 0.68 

Offensive 0.50 0.54 0.52 0.54 

Hateful 0.73 0.75 0.74 0.75 

HateXplain trained on TF-IDF 

Normal 0.45 0.73 0.56 0.73 

Offensive 0.42 0.29 0.34 0.29 

Hateful 0.41 0.19 0.26 0.19 

 

Table E presents the per-class performance metrics for the TF-IDF and DistilBERT 

models trained on the datasets with original (imbalanced) class distributions. For the Davidson 

dataset, the DistilBERT model shows strong performance in identifying normal and offensive 

classes. The normal class achieves a precision of 0.84, recall of 0.91, and an F1-score of 0.88, 

indicating that DistilBERT is effective at recognizing normal content while maintaining a good 

balance of precision and recall. The offensive class performs even better, with precision of 0.94, 

recall of 0.95, and F1-score of 0.95, which demonstrates the model’s ability to accurately detect 

offensive content. However, the hateful class performance is notably poor, with a precision of 

0.50, recall of 0.27, and F1-score of 0.35, suggesting that DistilBERT struggles to identify 
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hateful content in the Davidson dataset. When trained with TF-IDF, the Davidson model shows 

similar trends. The normal class has slightly improved precision (0.85) and slightly lower recall 

(0.90), compared to DistilBERT, while the offensive class maintains strong performance with 

precision of 0.93 and recall of 0.96. However, the hateful class’s performance with TF-IDF 

significantly drops, with precision of 0.59, recall of 0.19, and F1-score of 0.29, indicating that 

TF-IDF struggles substantially to identify hateful content in the Davidson dataset. 

In the Founta dataset, DistilBERT performs well in identifying normal content, achieving 

a precision of 0.94, recall of 0.97, and F1-score of 0.95. The Offensive class also shows strong 

performance, with precision of 0.88, recall of 0.90, and F1-score of 0.89. However, similar to the 

Davidson dataset, the hateful class presents a challenge, with a precision of 0.60, recall of 0.26, 

and F1-score of 0.36. When the Founta dataset is trained with TF-IDF, the performance on the 

normal and offensive classes is almost identical to the DistilBERT model, with precision values 

of 0.94 and recall values of 0.97 for normal tweets, and precision of 0.88 and recall of 0.91 for 

the offensive class. However, the hateful class still shows poor results, with precision of 0.60, 

recall of 0.22, and F1-score of 0.33. These findings underscore the limitations of the TF-IDF 

model in detecting hateful content, as it fails to accurately identify this class across both the 

Davidson and Founta datasets. 

When the HateXplain dataset is trained on DistilBERT, the model shows relatively 

balanced performance across the different labels. The hateful class achieves the highest scores 

across all metrics, with a precision of 0.73, recall of 0.75, and an F1-score of 0.74, which 

indicates that the model is quite effective at identifying hateful content. The normal class also 

performs reasonably well, with a precision of 0.73, but its recall drops to 0.68, reflecting some 

challenges in fully capturing all instances of normal content. The offensive class shows the 
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weakest performance, with precision and recall values of 0.50 and 0.54, respectively, resulting in 

an F1-score of 0.52, which suggests that the model struggles to consistently identify offensive 

content (which is the minority class in the HateXplain dataset). For HateXplain trained on TF-

IDF, the performance is notably poorer, particularly for the offensive and hateful classes. 

The normal class, however, sees a high recall of 0.73, but the precision drops to 0.45, indicating 

that the model struggles with false positives – classifying many non-normal instances as normal. 

The offensive class' performance is poor, with both precision and recall low at 0.42 and 0.29, 

respectively, yielding a very low F1-score of 0.34. This suggests that the TF-IDF model has 

difficulty identifying offensive content accurately. The hateful class also suffers from low 

precision (0.41) and recall (0.19), leading to a poor F1-score of 0.26. 

In summary, DistilBERT outperforms TF-IDF in all cases across all 

datasets. DistilBERT also achieves the best performance on the hateful class when trained on the 

HateXplain dataset. These results highlight the strengths of transformer-based models like 

DistilBERT in handling nuanced text classification tasks, but also indicate that further 

improvements are needed to better detect hateful speech. 

B.3.2 Per-Class Metrics on Balanced Datasets 

In this section, we focus on the per-class performance metrics for our models when 

trained on balanced datasets, where class distributions have been adjusted to mitigate the effects 

of imbalance. By examining these metrics, we can assess how well the models generalize across 

classes when given equal class representation. This analysis provides insight into the model's 

ability to detect the minority classes more effectively, offering a clearer picture of its 

performance in scenarios where class balance is intentionally managed. 
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Table F: Per-Class metrics with models trained on balanced class distributions 

Label Precision Recall F1-Score Accuracy 

Davidson trained on DistilBERT  

Normal 0.83 0.93 0.88 0.93 

Offensive 0.96 0.91 0.94 0.92 

Hateful 0.41 0.51 0.45 0.51 

Davidson trained on TF-IDF 

Normal 0.82 0.92 0.87 0.92 

Offensive 0.95 0.90 0.93 0.90 

Hateful 0.33 0.44 0.38 0.44 

Founta trained on DistilBERT  

Normal 0.93 0.93 0.94 0.93 

Offensive 0.87 0.84 0.86 0.84 

Hateful 0.32 0.49 0.38 0.49 

Founta trained on TF-IDF 

Normal 0.95 0.91 0.93 0.91 

Offensive 0.89 0.81 0.85 0.81 

Hateful 0.24 0.50 0.33 0.50 

HateXplain trained on DistilBERT  

Normal 0.74 0.59 0.66 0.59 

Offensive 0.48 0.59 0.53 0.59 

Hateful 0.73 0.75 0.74 0.75 

HateXplain trained on TF-IDF 

Normal 0.67 0.66 0.66 0.66 

Offensive 0.50 0.46 0.48 0.46 

Hateful 0.67 0.73 0.70 0.73 

 

Table F presents the per-class performance metrics for the three different datasets trained 

on the TF-IDF and DistilBERT models. When trained on the Davidson dataset, 

DistilBERT shows strong performance on the normal and offensive classes. Precision 

for normal is 0.83, with a high recall of 0.93, resulting in a solid F1-score of 0.88. 

The offensive class performs well, with precision of 0.96, recall of 0.91, and F1-score of 0.94, 

suggesting that DistilBERT effectively identifies offensive content. However, the hateful class 

shows notable weakness, with precision of 0.41, recall of 0.51, and F1-score of 0.45, which is 

considerably lower compared to the other two classes. This indicates that DistilBERT struggles 

with identifying hateful content in the Davidson dataset. TF-IDF on the Davidson dataset 
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exhibits similar trends, with normal having precision of 0.82 and recall of 0.92, leading to an F1-

score of 0.87. The offensive class performs well, achieving precision of 0.95 and recall of 0.90, 

resulting in an F1-score of 0.93. However, like DistilBERT, TF-IDF also struggles with 

the hateful class, as its precision of 0.33 and recall of 0.44 result in a poor F1-score of 0.38.  

When trained on the Founta dataset, DistilBERT shows good performance on 

the normal class, with precision of 0.93, recall of 0.93, and an F1-score of 0.94. The offensive 

class also performs well, with precision of 0.87 and recall of 0.84, resulting in an F1-score of 

0.86. However, the hateful class remains challenging for DistilBERT, with a precision of 0.32, 

recall of 0.49, and an F1-score of 0.38. TF-IDF on the Founta dataset results in slightly higher 

performance for the normal class, with precision of 0.95 and recall of 0.91, resulting in an F1-

score of 0.93. The offensive class sees a decline in performance, with precision of 0.89 and recall 

of 0.81, leading to a lower F1-score of 0.85. The hateful class' performance with TF-IDF is also 

poor, with precision of 0.24, recall of 0.50, and an F1-score of 0.33.  

When trained on the HateXplain dataset, DistilBERT performs most poorly on the normal 

and offensive classes. The precision for normal is 0.74, with a low recall of 0.59, resulting in a 

poor F1-score of 0.66. Similarly, the offensive class shows precision of 0.48, recall of 0.59, and 

an F1-score of 0.53. On the other hand, hateful tweets are detected much better by DistilBERT, 

with a precision of 0.73, recall of 0.75, and an F1-score of 0.74, suggesting that DistilBERT 

excels at identifying hateful content in this dataset. TF-IDF on the HateXplain dataset shows 

even weaker performance across the board. The normal class has a precision of 0.67 and recall of 

0.66, resulting in an F1-score of 0.66. The offensive class performs poorly with a precision of 

0.50 and recall of 0.46, yielding an F1-score of 0.48. Hateful content, however, is better detected 
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with TF-IDF compared to the other classes, with precision of 0.67, recall of 0.73, and an F1-

score of 0.70. 

In summary, DistilBERT consistently outperforms TF-IDF across all datasets for 

detecting offensive and normal classes, showing higher precision, recall, and F1-scores. 

However, both models show notable difficulties in identifying hateful content, with the hateful 

class performing significantly worse than the normal and offensive classes, except in the 

HateXplain dataset. DistilBERT generally performs better than TF-IDF for detecting hateful 

content but still faces challenges. 

Analysis of per-class performance: Imbalanced vs. Balanced Class Distribution 

When comparing the results of models trained on imbalanced versus balanced datasets, 

we observe differences in per-class performance across datasets. This comparison helps in 

understanding how class balancing affects model performance, particularly for minority classes 

like hateful. 
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Figure L: Per-Class metric comparison (imbalanced vs balanced) for Davidson dataset 

 

Davidson Dataset 

When comparing the performance of DistilBERT on imbalanced vs. balanced datasets, a 

few key trends emerge, particularly in how the model handles the hateful class. For the normal 
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class, DistilBERT performs well on the imbalanced dataset, achieving a precision of 0.84 and 

recall of 0.91, which leads to an F1-score of 0.88. On the balanced dataset, precision slightly 

drops to 0.83, but recall improves to 0.93, keeping the F1-score constant at 0.88. In terms of 

the offensive class, DistilBERT demonstrates excellent performance in both cases. When the 

dataset is balanced, recall decreases slightly to 0.91, which leads to a small drop in F1-score 

from 0.95 to 0.94. The most notable difference appears in the hateful class. When the dataset 

is balanced, performance improves. Precision rises to 0.41, recall increases to 0.51, and the F1-

score jumps to 0.45. This suggests that balancing the dataset helps improve the detection of 

hateful speech, although the performance is still much lower than for the other classes. 

The performance of TF-IDF on the imbalanced vs. balanced datasets shows similar trends 

to those seen with DistilBERT, though there are some differences in the degree of improvement 

for each class. For the normal class, precision and recall remain very close across both datasets, 

indicating that balancing the dataset does not significantly affect the performance on the normal 

class. For the offensive class, performance is almost identical across both datasets. The 

hateful class once again presents a challenge for TF-IDF, particularly on the imbalanced dataset, 

where precision is 0.59 and recall is just 0.19, resulting in a poor F1-score of 0.29. When the 

dataset is balanced, there is some improvement. Precision rises slightly to 0.33, and recall 

increases to 0.44, which leads to a small boost in the F1-score to 0.38. Despite this improvement, 

performance on the hateful class remains far behind that of the other classes, highlighting that 

balancing the dataset does help, but challenges in detecting hateful speech persist. 
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Figure M: Per-Class metric comparison (imbalanced vs balanced) for Founta dataset 

 

 
Founta Dataset 

In comparing DistilBERT’s performance when trained on the balanced vs imbalanced 

Founta dataset, we see consistently good performance on the normal class. However, the 
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offensive class experiences a noticeable decline in performance when the dataset is balanced. 

Precision drops to 0.87 and recall to 0.84, resulting in an F1-score of 0.86, suggesting that 

balancing the dataset may reduce the model’s sensitivity to offensive content. The hateful class 

continues to struggle, with a drop in precision (0.32). However, recall, and overall accuracy 

improved. 

The TF-IDF model shows similar results with relatively strong performance on the 

normal class across balanced and imbalanced datasets. We also see a similar drop in metrics for 

the offensive class. Again, precision dropped for the hateful class, but all other metrics saw 

improvement with class balancing.  
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Figure N: Per-Class metric comparison (imbalanced vs balanced) for HateXplain dataset 

 

 
HateXplain Dataset 

For the HateXplain dataset, the impact of balancing the dataset varies across different 

classes and models. When using DistilBERT, the normal class experiences a slight drop in 
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performance when the dataset is balanced, with its F1-score decreasing from 0.70 to 0.66 due to 

a noticeable decline in recall (from 0.68 to 0.59). Similarly, the offensive class sees a minor 

increase in recall (from 0.54 to 0.59) but a slight drop in precision (from 0.50 to 0.48), keeping 

the F1-score relatively stable at around 0.52–0.53. However, the hateful class remains unaffected 

by balancing, maintaining a performance with an F1-score of 0.74 across both imbalanced and 

balanced conditions. This suggests that DistilBERT is consistently able to detect hateful content, 

while balancing the dataset slightly reduces its ability to identify normal speech. 

With TF-IDF, the effect of balancing the dataset is more pronounced. The normal class 

sees a notable improvement, with its F1-score increasing from 0.56 to 0.66 as precision rises 

significantly (from 0.45 to 0.67). Similarly, the hateful class benefits greatly from balancing, 

with its F1-score improving from 0.26 to 0.70, primarily due to a significant boost in recall (from 

0.19 to 0.73). However, the offensive class does not see similar gains; although precision 

increases slightly (from 0.42 to 0.50), recall decreases (from 0.29 to 0.46), leading to only a 

modest improvement in the F1-score (from 0.34 to 0.48). These results indicate that while 

balancing helps TF-IDF better detect both normal and hateful speech, it does little to improve the 

model’s ability to classify offensive content correctly. 

Key Observations 

When comparing the imbalanced and balanced datasets, we generally see that models 

trained on balanced datasets perform worse on the offensive and normal classes, especially for 

the Founta and HateXplain datasets. This could be due to the increased emphasis on the 

minority hateful class after balancing the dataset, which reduces overall performance on the other 

classes. The hateful class tends to perform better when models are trained on balanced datasets, 

especially in HateXplain for DistilBERT and TF-IDF. However, the improvement is not uniform 
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across all datasets, and some minority class performance still lags. DistilBERT tends to 

outperform TF-IDF on all datasets, with DistilBERT consistently yielding higher precision, 

recall, and F1-scores for both imbalanced and balanced scenarios. 

B.4 Additional Confusion Matrices From Cross-Domain Model Results 

Figure O: Founta source domain testing on Davidson (DistilBERT) 

 

Figure O is a confusion matrix representing the results from testing the DistilBERT 

model (trained on the Founta dataset) on the Davidson validation set. It shows that the model 

does well in classifying offensive and normal tweets, however some offensive tweets are still 

classified as normal or hateful. The model does not classify hateful tweets well, and most 

commonly classifies them as normal. 
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Figure P: Founta source domain testing on HateXplain (DistilBERT) 

 

Figure P is a confusion matrix representing the results from testing the DistilBERT model 

(trained on the Founta dataset) on the HateXplain validation set. This model does best at 

calculating normal tweets. It also correctly classifies many hateful tweets correctly, but almost 

the same amount of hateful tweets are misclassified as normal, indicating that the model has a 

strong bias towards the normal class. This is also apparent in the offensive class, where the 

model largely misclassifies offensive tweets as normal. 
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Figure Q: HateXplain source domain testing on Founta (DistilBERT) 

 

Figure Q is a confusion matrix representing the results from testing the DistilBERT 

model (trained on the HateXplain dataset) on the Founta validation set. It shows that the model 

does well in classifying normal tweets, but struggles in classifying hateful and offensive tweets. 

There appears to be a bias towards the normal class, as most hateful and offensive tweets are 

misclassified as normal.  
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Figure R: HateXplain source domain testing on Davidson 

 

Figure R is a confusion matrix representing the results from testing the DistilBERT model 

(trained on the HateXplain dataset) on the Davidson validation set. It shows that the model does 

well in classifying normal tweets but struggles in classifying hateful and offensive tweets. There 

appears to be a bias towards the normal class, as most hateful and offensive tweets are 

misclassified as normal.  
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