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CHAPTER 1

Introduction

1.1 Motivation

Time series prediction is a widely recognized and important application of machine learning (ML). Time
series prediction usually relies on using historical patterns to accurately forecast future data points. Its
significance exists across many domains, including finance, healthcare, energy management, and weather
forecasting. In each of these domains, the ability to accurately model and forecast future values holds
potential to optimize decision-making, improve performance, or mitigate risks. Among all time series
prediction tasks, forecasting stock market behavior is one of the most difficult. This is due to the many
complex factors including the countless individuals and institutions acting on the market at the same time.
Within this domain, day trading, where positions are opened and closed within the same trading day poses
an even greater challenge.

This difficulty, however, also presents an opportunity. While human traders are constrained by
cognitive biases, limited processing capacity, and delayed reaction times, ML systems offer the potential to
systematically uncover patterns that may be invisible to human traders. In this thesis, | explore the premise
that advanced time series prediction ML methods, through their capability to process large amounts of data,
identify subtle patterns, and execute rapid decision-making, offer compelling advantages over traditional

human expertise in time series prediction, particularly in the domain of financial trading.



1.2 Purpose and Scope

My central aim of this study is to extensively explore state-of-the-art ML methodologies for time series
prediction and apply the most promising methods to day trading forecasting in the stock market. This work
is structured as a manuscript-style thesis comprising two major studies.

The first paper, A Survey of Machine Learning Methods for Time Series Prediction, investigates the
landscape of ML techniques applied to time series forecasting. In it, | seek to identify which models offer
the most promise across different forecasting formats and tasks. Unlike many existing surveys, this study
narrows its focus to research that compares state-of-the-art models within the same experimental setup,
allowing for more meaningful insights into their relative strengths, weaknesses, and situational advantages.

The second paper, Can Al Beat Human Traders? Exploring Machine Learning in Day Trading, applies
the insights gained from the survey to a real-world, trading problem. In it, | implement and evaluate a ML
model designed to replicate and surpass human day trading strategies by using second-by-second trade and

quote data from all U.S. equities over a two-year period.

1.3 Contributions of This Work

This thesis contributes to ML literature in time series forecasting through both a comprehensive review and
practical application. The survey of time series prediction addresses a notable gap in the existing literature.
Previous surveys face limitations in comparative analysis because they analyze independent studies which
each utilize a different implementation and dataset. This heterogeneity prevents apples to apples
comparison. My initial research indicated the superior performance of two classes of ML models: tree-
based machine learning (TBML) and deep learning (DL) methods. Consequently, this study only reviews
research that compares at least one state-of-the-art TBML and DL methods within the same uniform
experimental settings so that nuanced conclusions can be drawn. These conclusions include investigating

in key factors that influence model performance, such as the type of time series task, dataset size, time



interval of historical data, potential biases in model development, and trade-offs between computational
costs and performance.

Key findings of this survey show that specialized TBML architectures like LightGBM and recurrent
neural network DL architectures like long short-term memory models consistently outperform other
alternatives, with TBML methods showcasing a notable advantage in computational efficiency.
Additionally, this study emphasizes that the quality of data is the most influential factor affecting model
performance, overshadowing the incremental benefits of hyperparameter tuning. Thus, considerable
emphasis is placed on feature selection and engineering in the second paper. Similarly, this study found
that combining models and leveraging diverse sources of information further boosts forecasting
performance, an insight that heavily informed the construction of the trading model in the second paper.

The second paper applies insights from the survey to develop and evaluate ML models specifically for
a day trading application. Day trading refers to the short-term buying and selling of financial instruments
within a single trading day. Day trading is a risky endeavor and necessitates rapid decision-making and
high-dimensional data processing capabilities. Only the top performing day trading humans actually make
a profit, and thus in this paper | create a model that mimics the strategies used by human day traders while
leveraging the unique advantages of ML processing with the goal of surpassing the human trading
benchmark.

Existing research in this area typically relies on models tailored to individual stocks, limited to longer
time horizons, and often lacking in feature diversity. In contrast, human day traders face different
constraints as they are prone to emotional decision-making, have slower processing speeds, and can only
monitor a few stocks at a time. The ML approach presented in this study overcomes these limitations by
simultaneously analyzing the entire universe of U.S. equities and can manage many positions at one time.
This study advances the current literature by addressing key gaps in ML applications, leveraging a
combination of models trained on second-by-second trade and quote data, and operating on a

comprehensive, high-dimensional dataset.



In this paper, | conduct a series of experiments to test various regularization techniques, risk-reward
horizon weighting strategies, and execution pricing methods. | evaluate models using both idealized close
prices and realistic execution prices derived from the bid and ask prices at which investors are willing to
transact, with both methods resulting in profitable models. The model that performed best under realistic
trading environments incorporated a min-max regularized target feature based on a risk-reward ratio and
applied an equal weighting scheme in this risk-reward calculation. The results of this model show an
average profit of 20,000 bps per day with a Sharpe ratio of 15.78 across an average of 999 trades per day.
This performance is driven by the model’s ability to simultaneously manage a large number of positions at
the same time.

The findings from this research show that the ML model | developed achieves performance far
exceeding the profitability of top human day traders, demonstrating average daily returns more than 500
times higher. Additionally, the methodological contributions provide a comprehensive, practical blueprint
for high-frequency data acquisition, preprocessing, and feature engineering, facilitating replication and

extension of the study by future researchers.

1.4 Structure of the Thesis

The remainder of this thesis is organized as follows: Chapter 2 presents a detailed survey on ML methods
for time series prediction, identifying best practices and critical factors that influence model effectiveness.
Chapter 3 introduces the empirical research of applying these methodologies to the challenge of day trading,
detailing data methodologies, model development, and performance evaluation. Finally, Chapter 4

concludes with a summary of the contributions and recommendations for continued research in this area.
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A Survey of Machine Learning Methods for
Time Series Prediction?

! Timothy Hall. Submitted to Applied Sciences, 4/15/25



Abstract

This study provides a comprehensive survey of the top-performing research papers in the field of time
series prediction, offering insights into the most effective machine learning techniques, including tree-
based, deep learning, and hybrid methods. It explores key factors influencing model performance, such
as the type of time series task, dataset size, and the time interval of historical data. Additionally, the study
investigates potential biases in model development and weighs the trade-offs between computational costs
and performance. A detailed analysis of the most used error metrics and hyperparameter tuning methods
in the reviewed papers is included. Furthermore, the study evaluates the results from prominent
forecasting competitions, such as M5 and M6, to enrich the analysis. The findings of this paper highlight
that tree-based methods like LightGBM and deep learning methods like recurrent neural networks deliver
the best performance in time series forecasting, with tree-based methods offering a significant advantage
in terms of computational efficiency. The paper concludes with practical recommendations for
approaching time series forecasting tasks, offering valuable insights and actionable strategies that can

enhance the accuracy and reliability of predictions derived from time series data.

2.1 Introduction

Time Series Prediction is the process of predicting a future value based on historical sequential
observations. Accurate predictions based on time series data plays a crucial role in a wide range of domains
where forecasting future values is essential for strategic-planning, resource management, and decision-
making. Applications of time series prediction span numerous fields, including electricity consumption
forecasting, environmental quality assessments (e.g., air and water quality), meteorological predictions
(e.g., rainfall, solar radiation, and wind patterns), medical diagnostics (e.g., forecasting COVID-19 case
trends and pneumonia incidences), traffic flow prediction, and financial domains like sales forecasting and

stock market analysis.



In recent years, models based on Machine Learning (ML) have demonstrated the most success in time
series forecasting and are able to generalize well to unseen data, unlike models based solely on probability
and statistics. Specifically, Tree-Based Machine Learning (TBML) and Deep Learning (DL) have emerged
as the most prominent approaches, excelling in scenarios where complex, nonlinear dependencies exist
within the data. Their ability to generalize to unseen data makes them highly applicable to real-world
problems with diverse and dynamic characteristics.

While numerous studies have examined these techniques within specific domains, and several survey
papers (Lim & Zohren, 2021; Z. Liuetal., 2021) have analyzed various approaches to time series prediction
across domains, existing literature reviews face a significant limitation. Current survey papers struggle to
draw meaningful comparisons between models because they analyze independent studies, each utilizing
different implementations and datasets. This heterogeneity in experimental setups prevents direct model
comparisons and obscures true performance differences. This paper addresses this gap by exclusively
reviewing studies that compare both TBML methods and DL approaches within the same experimental
framework. By focusing on research where both methodologies are implemented and evaluated by the same
researchers using identical datasets, this survey enables more robust conclusions about the relative strengths
and weaknesses of these modeling approaches.

The remainder of this paper is organized as follows: Section 2.2 outlines the methodology employed
in this survey. Section 2.3 reviews TBML architectures, while Section 2.4 examines DL architectures.
Section 2.5 presents experimental results and discusses findings. Section 2.6 highlights recent time series

prediction competitions, and Section 2.7 concludes the paper.

2.2 Methodology

A rigorous and systematic methodology was employed to identify the most relevant research papers for this
survey. Web of Science was selected as the primary database because it is a trusted publisher-independent

source of data with comprehensive coverage of peer-reviewed scientific literature. Given the objective of



comparing TBML methods with DL approaches in time series prediction, this paper establishes specific

inclusion criteria for article selection:

1. Focus on Time Series Applications: The research must address problems involving time series
data.

2. Utilization of Advanced TBML Methods: Studies must implement advanced TBML architectures,
particularly gradient-boosted decision trees or similar structures (e.g., XGBoost, LightGBM, or
CatBoost).

3. Utilization of Advanced Neural Network (NN) Architectures: Papers must explore sophisticated
NN architectures, including but not limited to recurrent neural networks (RNN), feedforward neural
networks (FFNN), convolutional neural networks (CNN), long short-term memory networks
(LSTM), gated recurrent units (GRU), or Transformers.

4. Direct Comparisons Using Identical Datasets: The research must present comparative evaluations
of at least one TBML and one DL architecture under identical experimental setups, ensuring

consistent datasets and conditions.

To identify relevant literature, a comprehensive search query was developed as follows:

(ALL=(XGBoost) OR ALL=(LightGBM) OR ALL=(CatBoost) OR ALL=("gradient boost*")) AND
(ALL=("time series") OR ALL=("time sequence") OR ALL=("temporal series") OR ALL=("temporal
sequence”) OR ALL=("time forecast*")) AND (ALL=("LSTM") OR ALL=("ANN") OR ALL=("CNN")
OR ALL=("RNN") OR ALL=("transformer’) OR ALL=("GRU") OR ALL=("deep neur*") OR

ALL=("deep lear*"))

This query yielded 589 papers published between 2017 and 2024. To ensure focus on the most
influential research, papers were initially selected based on citation count. From the top 100 most-cited

papers, 65 articles satisfied the inclusion criteria. To maintain contemporary relevance and capture recent



developments in the field, additional temporal criteria were implemented: a minimum of 10 papers per
year from 2020 to 2024 must be included. Consequently, 4 highly cited papers from 2023 and the 10
most-cited articles from 2024 were incorporated. In total, this survey encompasses 79 influential papers
investigating the comparative performance of TBML and DL approaches in time series analysis (see

Appendix A for the complete list of included studies).

2.3 Tree-Based Machine Learning Architectures

This section will present an overview of the best performing TBML Architectures, which are widely utilized
for both regression and classification tasks. These include Random Forests (RF), Gradient Boosted Decision
Trees (GBDT), and three prominent implementations of GBDT: XGBoost, LightGBM, and CatBoost.

Figure 2.1 provides a comparative visualization of the structural differences between RF and GBDT.

2.3.1 Random Forests

Random Forests (RF) is an ensemble learning method that constructs multiple decision trees and combines
their outputs through averaging for regression tasks or majority voting for classification tasks. RF uses
bootstrapping to train individual decision trees on a random subset of the data at each split. This
randomization, coupled with its ensemble nature, enhances the robustness of RF compared to single
decision trees, significantly reducing the risk of overfitting. The most widely used library for RF

implementation in the studies reviewed in this paper is Scikit-learn.

2.3.2 Gradient Boosted Decision Trees

Gradient Boosted Decision Trees (GBDTS) is a machine learning algorithm that aggregates predictions
from multiple weak learners, typically decision trees. GBDTs use “boosting” to build models iteratively
where each subsequent models focuses on correcting mistakes made by previous models. The algorithm
achieves this by optimizing a differentiable loss function using gradient descent. GBDTSs are suitable for

both classification tasks, using loss functions such as cross-entropy, and regression tasks, using loss



functions like mean squared error. Key hyperparameters to tune in GBDT include tree depth and learning
rate, which are crucial for balancing model complexity and reducing overfitting. While Scikit-learn
provides a general implementation of GBDT, the three most prominent and high-performing
implementations discussed in this survey are XGBoost, LightGBM, and CatBoost, each offering distinct

advantages.

2.3.2.1 XGBoost

XGBoost, eXtreme Gradient Boosting (Chen & Guestrin, 2016), introduced by Tiangi Chen in 2014, was
designed to address key limitations of traditional GBDT, particularly computational efficiency and
scalability. XGBoost gained immediate popularity due to its significant speed improvements, achieved
through innovative approaches in decision tree construction. Unlike the greedy splitting methods used in
standard GBDT, XGBoost employs a similarity score to evaluate potential splits. This score measures the
homogeneity of observations within a node relative to the target variable, assessing the gain provided by a
split. To further reduce overfitting, XGBoost incorporates several techniques, including pruning, where
branches with a gain below a threshold (hyperparameter gamma, ) are removed. Similarly, XGBoost has
several regularization techniques that prevent overfitting by penalizing complex decision trees. XGBoost
also supports advanced features such as built-in cross-validation and highly scalable parallel processing,

making it ideal for large-scale datasets.

2.3.2.2 LightGBM

LightGBM (G. Ke et al., 2017), developed by Microsoft in 2017, shares many foundational principles with
XGBoost with an even larger focus on computational efficiency. LightGBM achieves superior speed by
employing histogram-based binning, which discretizes continuous features into bins, trading minor
accuracy losses for dramatic speed gains. Additionally, LightGBM introduces Exclusive Feature Bundling,
which is particularly effective for many real-world datasets with high-dimensional sparse features because

it consolidates mutually exclusive features into a single representation. Another innovation is Gradient-
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Based One-Side Sampling, which prioritizes instances with large gradients while randomly sampling
smaller gradients, optimizing learning efficiency. LightGBM also utilizes a leaf-wise tree growth strategy,
as opposed to the level-wise growth used in traditional GBDT and XGBoost. This approach selectively
grows the leaf with the greatest potential to improve the model, enabling faster convergence and improved

accuracy.

Training Data

Tree 1 Tree N
Tree 2
O OO0 O O OO0 O
O 00 O
Prediction 1 Prediction N

Prediction 2

[Final Prediction (Average)]

Figure 2.1: lllustrates the architectural differences between RF and GBDT, highlighting attributes
unique to RF in green and those specific to GBDT in blue.
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2.3.2.3 CatBoost

CatBoost (Prokhorenkova et al., 2018), developed by Yandex in 2017, was designed with a specific
emphasis on handling datasets with categorical features. One of its key innovations is a unique
implementation of target encoding which takes the concept of traditional target encoding, where categorical
values are replaced with the mean of the target variable for each category, and instead constructs the
encoding process using only previous data to avoid data leakage. Another distinguishing feature of
CatBoost is its use of symmetric decision trees, where all leaves at the same depth use identical splitting
criteria. This structure not only accelerates training but also significantly reduces inference time, an

essential advantage in some time-sensitive applications of real-world forecasting.

2.4 Deep Learning Architectures

This section presents an overview of the most prominent Deep Learning (DL) architectures encountered in
the surveyed literature. DL will be used in this paper to describe a subset of machine learning that utilizes
neural networks to perform classification and regression tasks. The architectures are categorized into four
primary groups: Feed-Forward Neural Networks (FFNN), Recurrent Neural Networks (RNN),
Convolutional Neural Networks (CNN), and Attention-based architectures. Figure 2.2 presents a visual
representation of a FFNN, highlighting the architectural modifications required to transform it into a RNN

or CNN.

2.4.1 Feed-Forward Neural Networks

The term Feed-Forward Neural Network (FFNN) is often used interchangeably with other terminologies in
the literature, including Artificial Neural Network (ANN), Neural Network (NN), Multilayer Perceptron
(MLP), Back Propagation Neural Network (BPNN) (Nan et al., 2022; Pan et al., 2023), Deep Neural

Network (DNN), and Deep Feed-Forward Neural Network (DFFNN). These networks are characterized by

12



a unidirectional flow of information from input to output nodes, often traversing one or more hidden layers.
Unlike other architectures, FFNNs do not contain loops or cycles within their structure?.

Although the various terms for FFNN are used interchangeably in the surveyed literature, there are
small architectural differences that exist between these variants namely in their depth. General FFNN
models do not require any hidden layers, whereas MLP models typically contain one or two hidden layers.
DNN usually incorporate multiple hidden layers, allowing them to capture more complex patterns in the
data. Despite their widespread use in time series analysis, these architectures require careful feature
engineering to incorporate temporal information effectively and struggle to learn long-term patterns within
the data. These limitations led to the development of more specialized architectures including

Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs).

T2

zs3

\ I
\ I
\

Convolutional |
> Layers - -
. (For CNN)

L

Figure 2.2: lllustrates the architecture of a FFNN, highlighting the modifications needed to transform it into a
CNN (in orange) or a RNN (in red).

2 For a comprehensive overview of the implementation details and mathematical foundation of FFNNs, see Svozil,
Kvasnicka and Pospichal, 1997
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2.4.1.2 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are a type of FFNN that distinguish themselves in their architectural
design through convolutional layers. The biggest benefit of these convolutional layers is to systematically
scan input data to extract various features® making them well suited candidates for handling image data as
they can detect local features, combine them into complex patterns, and still maintain spatial relationships
between features. Although this can be useful in certain datasets which contain a time series of images,
CNN models lack the ability to remember information over longer periods of time, such as Recurrent Neural

Network (RNN) models and Transformer models.

2.4.2 Recurrent Neural Networks

Recurrent Neural Networks (RNN) distinguish themselves through their unique feedback loop architecture,
where outputs from previous timesteps are fed back into the network, creating an internal memory state that
enables learning from past inputs. This recursive processing allows RNN models to incorporate historical
information into current computations, making them particularly well-suited for time series analysis, where
current predictions often depend heavily on historical patterns.

Among RNN variants, Long Short-Term Memory (LSTM) networks have emerged as the most popular
in literature studied for this paper, largely due to their sophisticated gating mechanisms that help mitigate
the vanishing gradient problem prevalent in general RNNs. LSTM models incorporate an input, forget, and
output gate to regulate information flow and enable the network to capture both long-term dependencies
and short-term patterns effectively (Sherstinsky, 2020). Variants such as Bidirectional LSTMs (Bi-LSTMs),
which process sequences in both forward and backward directions, enhance the model’s ability to leverage
contextual information from both past and future timesteps. Another notable RNN variant is the Gated

Recurrent Unit (GRU), which simplifies LSTM architecture by combining the input and forget gates into a

3 For a comprehensive examination of CNN architectures, including detailed mathematical formulations and
implementation considerations, see Gu, et al., 2018

14



single update gate and introducing a reset gate. GRUs are computationally more efficient than LSTMs while

retaining comparable performance in capturing sequence dependencies.

2.4.3 Attention-Based Architectures

Attention-Based Architectures, particularly Transformer Models (Vaswani et al., 2017), are the least
explored deep learning approach among the surveyed literature in time series applications. Unlike RNNs,
which use recurrent layers to process data sequentially, Transformers use a self-attention mechanism to
identify ways that distant data features in a series are related to each other. They operate by processing
entire sequences in parallel, making them much faster to train than RNNs. The application of Transformers
has mainly been used for Natural Language Processing (NLP) models and less so for time series
applications. Among the surveyed literature, only five papers (Guan et al., 2024; L6pez Santos et al., 2022;
Torres, Martinez-Alvarez, & Troncoso, 2022; Zhao et al., 2024; Zrira et al., 2024) explore attention-based
models in this domain. Early results suggest that Transformers can outperform traditional RNN-based
models in tasks requiring long-term dependency modeling, though their suitability for specific time series

tasks warrants further investigation.

2.5 Experimental Results and Discussion

This section outlines the methodology used to conduct the analysis presented in this survey. The process
begins with a detailed discussion of data preprocessing in Section 5.1, where the inclusion and exclusion
criteria for models are established. Section 5.2 describes the evaluation metrics employed to systematically
compare the performance of different models. The results of the analysis are presented in Section 5.3,

followed by an in-depth discussion of these findings in Section 5.4.

2.5.1 Data Preprocessing

The primary objective of this survey is to evaluate and compare the performance of DL models against

TBML methods for time series prediction. To maintain the integrity and relevance of the analysis, certain
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models were excluded based on their consistent underperformance or lack of applicability. Linear
regression (LR) models, for example, were omitted due to their poor performance across most surveyed
studies, apart from a single instance of Ridge Regression that showed promising results (Yu et al., 2020).
While this exception highlights potential avenues for future research, it should be noted that other Ridge
Regression examples in the surveyed literature performed poorly (Chen, Guan, & Li, 2021). Decision Tree
(DT) models were also excluded, as they consistently underperformed relative to other methods.

Autoregressive Integrated Moving Average (ARIMA) models, including variants like Seasonal
ARIMA (SARIMA), have historically been popular for time series forecasting. However, all surveyed
instances demonstrated that these models were outperformed by either DL or TBML methods.
Consequently, ARIMA-based models were excluded from this comparative analysis (Hewamalage,
Bergmeir, & Bandara, 2022; Ibafiez et al., 2022; Khan et al., 2020; Lépez Santos et al., 2022; Nan et al.,
2022; Priyadarshi et al., 2019; Rafi et al., 2021; Ribeiro et al., 2022; Shi, He, & Liu, 2018; Yang et al.,
2020; Zhu et al., 2023). Adaboost, a tree-based ensemble algorithm developed in 1995, was similarly
excluded due to its inferior performance when compared to similar modern TBML methods such as
XGBoost, LightGBM, and CatBoost. In all reviewed cases, Adaboost either underperformed or matched
the performance of these more advanced methods (Comert et al., 2021; Farsi, 2021; G. Li et al., 2022;
Pavlov-Kagadejev et al., 2024).

For this analysis, models were grouped into broader algorithmic categories to facilitate meaningful
comparisons. Radial Basis Function Neural Network (RBFN) (Rafi et al., 2021), Neural Network
Autoregression (NNAR) (Liang et al., 2021), and Broad Learning System (BLS) (G. Li et al., 2022) models
were grouped with Feed-Forward Neural Networks (FFNNs), which also encompass MLP, ANN, and DNN
architectures. While Convolutional Neural Networks (CNNs) are technically FFNNs, their unique
operational characteristics justify separate analysis. Recurrent Neural Network (RNN) architectures,
including GRU, LSTM, and Bi-LSTM, were grouped alongside DeepAR, an autoregressive recurrent
neural network (Singh et al., 2024). The TBML category encompasses XGBoost, LightGBM, CatBoost,

Bagging, GBDT, and RF models.
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2.5.2 Evaluation Metrics

To systematically compare the performance of various models surveyed in the reviewed papers, two
evaluation metrics were employed. These metrics were designed to capture different aspects of model
performance. The first metric, First Place Aggregation (FPA), measures the frequency with which a model
is identified as the highest-performing or tied for the highest-performing model in the surveyed studies.

FPA is calculated as:

first

N
FPA = ——x 100

total

Here, Ng, represents the number of times the model achieved the top rank, while N, is the total
number of evaluations in which the model was included. FPA provides a straightforward measure of a
model’s dominance in performance comparisons. A key advantage of this metric is that it mitigates the
influence of any poor performing models present within comparisons.

The second metric utilizes a weighted rank aggregation (WRA) approach to account for the relative

performance of a model across all comparisons, not just first-place rankings. The WRA score is calculated

as:

(Nrank - 1)
(Ntotal - 1)

WRA=1-—

Here, N, denotes the model’s rank in each comparison, with 1 representing the top rank. N, is the
total number of models in the comparison. This metric assigns a score of 1 to the top-performing model and
0 to the lowest-performing model, offering a nuanced perspective that accounts for varying numbers of
models across comparisons. WRA is particularly valuable in scenarios where the relative performance of

models varies significantly, enabling a more comprehensive evaluation of their effectiveness.
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2.5.3 Results

2.5.3.1 Overall Model Performance

The first objective of this paper is to identify the models that exhibit the best overall performance across a
variety of time series prediction tasks analyzed in the 79 surveyed studies. The models can broadly be
categorized into two classes: Tree-Based Machine Learning (TBML) models and Deep Learning (DL)
models. Figure 2.3 illustrates the comparative performance of these classes based on the First Place
Aggregation (FPA) and Weighted Rank Aggregation (WRA) metrics.

TBML models marginally outperform DL models as a class, achieving the best performance (FPA) in
54.55% of tasks studied, with a WRA score of 0.6910. In comparison, DL models perform best (FPA) in
52.70% of tasks and achieve a WRA score of 0.6486. It is important to note that ties for the highest-
performing model contribute to a combined percentage exceeding 100%. On average, TBML models

outperform DL models by approximately 2.5%. However, this comparison at the class level provides only

Deep Learnjong T ] Deep I‘Jeaming Tree-Based
FPA: 52.70% FPA- 54.55% WR":-E‘;M% WRA: 0.6910
(49.1%) (50.9%) L (51.6%)

Figure 2.3: Illustrates the FPA and WRA score distribution for each class, along with the
comparative performance (%) between the two classes.
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a surface-level understanding of the performance landscape. A more granular analysis is needed to assess

the performance of subclasses within each category.

Figure 2.4 breaks down the performance of model subclasses within the TBML and DL categories for FPA
and WRA metrics. Notably, the “Attention” subclass, which exclusively comprises Transformer models,

emerges as the best-performing model in three tasks but is only evaluated in five studies. While this result
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Figure 2.4: Depicts the FPA and WRA scores for each model. The "Model Use" legend
indicates the total number of comparisons for each model, with specific counts labeled
above the bars.



is intriguing and suggests a promising avenue for further research, the limited sample size warrants caution
when interpreting these findings. Consequently, this paper does not place a primary focus on Attention-
based models.

From the detailed subclass analysis, it is evident that the most effective algorithms for time series
prediction are Recurrent Neural Network (RNN) models, primarily comprised of LSTM, GRU, and general
RNN architectures, and the Specialized Tree-Based Models (SPTB) category, which includes XGBoost,
LightGBM, and CatBoost. RNNs demonstrate superior performance, ranking as the best-performing
models in 61.36% of studies and achieving a WRA score of 0.7330. They are closely followed by SPTB
models, which perform best in 50% of studies and achieve a WRA score of 0.6328. These results underscore
the complexity of the performance landscape and highlight that it is insufficient to simply state that TBML
models outperform DL models in time series prediction tasks. Instead, a nuanced understanding of

individual subclasses helps to draw more meaningful conclusions.
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Figure 2.5: Depicts the FPA scores for each model. The "Model Use" legend indicates the total number
of comparisons for each model, with specific counts labeled above the bars.
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WRA

To further refine this understanding, the subclasses are broken down into individual models. Figures
2.5 and 2.6 present the performance of each model based on the FPA and WRA metrics, respectively.
Among individual models, CatBoost emerges as the best performer across both metrics, followed by
Transformers, LSTMs, and LightGBM. However, it is important to note that like Attention-Based
Transformer models, the robustness of CatBoost’s results may be limited, as it was the best-performing
model in only two out of the three studies where it was evaluated. The LSTM model, on the other hand,
demonstrates strong and consistent performance, achieving an FPA of 58.97% and a WRA score of 0.7222.
With 39 instances of evaluation, its results are more statistically robust. LightGBM also performs well, with
an FPA of 58.82% and a WRA score of 0.6608, based on 17 studies. In contrast, the two weakest-
performing models were MLPs and general FFNNs. Neither model achieved the highest rank in any study,

and their WRA scores, 0.2265 for MLP and 0.1667 for FFNN, were the lowest among all evaluated models.

094 °* Model Use
0.8 45
5
39
40
0.7 17
12 12 35
0.6- 5
20
30
0.5 o
6 -25
0.4
-20
0.3 4
17 17 15
0.2- N
-10
0.1
-5
0 I T 1 T T I I I T T

£

I I
. &
Corgy, 7 m@”" My Fage, oy B0y Rt fny &8 Sy, Any, 7 Py,

Z
Zag 2y
0, 77 Ay
Osg %&

Models

Figure 2.6: Depicts the WRA scores for each model. The "Model Use" legend indicates the total
number of comparisons for each model, with specific counts labeled above the bars.
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Additionally, it is notable that the most frequently compared models in the surveyed papers were XGBoost,

RF, and LSTM, with 47, 43, and 39 instances, respectively.

2.5.3.2 Task-Specific Model Performance Analysis

Another objective of this paper is to evaluate whether certain models exhibit superior performance for
specific types of time series prediction tasks. Table 2.1 provides a detailed list of the 46 unique tasks covered
in the surveyed papers. To facilitate meaningful comparisons, these tasks were grouped into 10 broader
categories based on shared characteristics and application domains (Figure 2.7).

For each task category, the performance of TBML models and DL models was compared, with
additional focus on the best-performing subclasses within these categories: RNNs and SPTB models.
Figures 2.8 and 2.9 illustrate the comparative performance of these model classes using the FPA and WRA
metrics, respectively. The results highlight that TBML models consistently outperform DL models in Task

Groups 1, 5, 9, and 10.

: Environmental and Meteorological Predictions
: Energy and Utilities

: Water and Air Quality

. Agriculture and Crop Management

: Transportation and Urban Mobility

. Structural and Mechanical Health Monitoring

: Stock Market, Finance, and Market Trends
10: Other

8: Healthcare and Biomedical Predictions

9: Anomaly Detection

EEEENEEEEN
N o w s =N

Figure 2.7: lllustrates the distribution of time series prediction tasks by category, including group
numbers and the percentage representation of each category.
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Table 2.1: lllustrates the 46 time series prediction tasks present in the surveyed papers. The frequency
column shows the number of occurrences of the tasks, and the group column shows the assigned category

number of each task

No.  Time Series Prediction Task Frequency Group
1 Total Electricity Consumption (Demand) 8 1
2 Load Forecasting 2 1
3 Electricity Theft Prediction 1 1
4 Heating Load Prediction 1 1
5 Return Temperature of District Heating System 1 1
6 Electricity Consumption of an Electric Bus 1 1
7 Solar Power Forecasting 3 2
8 Wind Power Forecasting 2 2
9 Rainfall Prediction (Including Rainfall Runoff) 2 2
10 Drought Prediction 2 2
11 River Inflow Prediction (Including Reclaimed Water VVolumes) 2 2
12 Subsurface Temperature (Including Sea Surface Temperature) 2 2
13 Reservoir Water Level Prediction 1 2
14 Flood Frequency 1 2
15 Groundwater Availability 1 2
16 Indoor Daylight Illuminances Prediction 1 2
17 Crop Yield (Including Corn Biomass, Crop Height) 5 3
18 Crop Classification 3 3
19 Water Quality Prediction (Including Chlorophyll-a and Wastewater Treatment) 8 4
20 Air Quality 1 4
21 Passenger Demand (Includes Bike Sharing, Urban Rail Passenger Flow) 3 5
22 Travel Time Prediction 1 5
23 Future Traffic of Mobile Base Stations in Urban Areas 1 5
24 Traffic Queue Length 1 5
25 Tunnel Deformation Prediction 1 6
26 Dam Structural Health Prediction 1 6
27 Highway Tunnel Pavement Performance 1 6
28 Predict Temperature Trend of Wind Turbine Gearbox 1 6
29 Discharge Capacity Estimation for Li-lon Batteries 1 6
30 Sintering Process Prediction 1 6
31 Stock Price (Including Crypto/Stock Trend) 3 7
32 Hedge Fund Return Prediction 1 7
33 Store Item Demand 1 7
34 Vegetables Demand 1 7
35 Post Stroke Pneumonia Prediction 1 8
36 Predict Peak Demand Days of Cardiovascular Admissions 1 8
37 COVID-19 New Cases Prediction 1 8
38 Anomaly Detection for Web Services 1 9
39 Leak Detection 1 9
40 Fall Detection 1 9
41 Global Models for Various Tasks (Simulated and Real World) 1 10
42 Predicting Emerging Research Topics 1 10
43 Lane Changing Risk 1 10
44 Predictive Process Monitoring 1 10
45 Oil Well Production 1 10
46 Crime Prediction 1 10
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Figure 2.8: lllustrates the FPA scores for each model. Blue bars represent the overall model types, while
orange bars highlight the best-performing model classes.
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Figure 2.9: lllustrates the WRA scores for each model. Blue bars represent the overall model types,
while orange bars highlight the best-performing model classes.
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In these categories, TBML models demonstrate performance advantages ranging from 37.5% to 68.85% in
WRA scores and 25% to 150% in FPA scores. Conversely, DL models show significant superiority in Task
Groups 2, 6, and 7, with performance improvements of 28.57% to 97.26% in WRA and 50% to 500% in
FPA

compared to TBML models. A more nuanced comparison between RNN and SPTB models reveals that
SPTB models perform notably better than RNNs in Task Groups 5 and 10, with WRA improvements of
45.83% and 22.22% and FPA improvements of 25% and 66.67%, respectively compared to RNNs. In
contrast, RNN models excel over SPTB models in Task Groups 2, 4, 6, 7, and 8, with performance gains

compared to SPTB models ranging from 31.25% to 84.32% in WRA and 50% to 260% in FPA.

2.5.3.3 Impact of Dataset Size on Model Performance

Model Type
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Deep Learning Based Models
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Figure 2.10: Illustrates the FPA percentage for each model based on dataset size. Blue bars represent
the overall model types, while orange bars indicate the best-performing class of models. The dataset
size range is exclusive on the left side and inclusive on the right side.
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This study also examines how dataset size influences the relative performance of different machine learning
models for time series prediction. To ensure balanced analysis, dataset ranges were selected to contain an
equal number of model comparisons within each range. The analysis considers TBML models and DL
models, as well as their top-performing subclasses: SPTB models and RNNSs. Figures 2.10 and 2.11 present
the performance of these model classes across the dataset ranges using FPA and WRA metrics, respectively.

In the smallest dataset range (0-2,173 samples), TBML models perform comparably to DL models
overall, but RNN significantly outperform SPTB models, achieving an FPA advantage of 50% and a WRA
advantage of 0.425. In the second range (2,173-7,800 samples), DL models demonstrate a slight edge over
TBML models, with FPA and WRA gains of 12.12% and 0.0972, respectively. Within this range, RNN
outperform SPTB models with a WRA gain of 0.1296, while the FPA scores for both subclasses are equal.

For mid-sized datasets (7,800-35,712 samples), TBML models begin to show a slight advantage over

DL models, outperforming them by 8.33% in FPA and 0.0417 in WRA. However, RNN models continue

Model Type
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Figure 2.11: Illustrates the WRA percentage for each model based on dataset size. Blue bars represent
the overall model types, while orange bars indicate the best-performing class of models. The dataset size
range is exclusive on the left side and inclusive on the right side.
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to outperform SPTB models, achieving an FPA gain of 5% and a WRA gain of 0.0542. In the second-
largest dataset range (35,712-206,573 samples), TBML models maintain a modest advantage over DL
models, with FPA and WRA improvements of 4.55% and 0.0462, respectively. Similarly, RNN outperform
SPTB models by 0.0556 in FPA, while both achieve equivalent WRA scores. The largest dataset range
(206,573-11,275,200 samples) reveals a more definitive trend. In this range, TBML models outperform DL
models by 4.55% in FPA and 15.15 in WRA. Moreover, SPTB models achieve significant gains over RNN

models, with an FPA advantage of 16.67% and a WRA advantage of 0.3833.

2.5.3.4 Impact of Data Time Interval on Model Performance

This study investigates whether the time interval of datasets influences the performance of machine learning

models for time series prediction. As in previous analyses, the comparison includes TBML models and DL
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Figure 2.12: Illustrates the FPA score for each model based on time interval of data. Blue bars represent the overall
model types, while orange bars indicate the best-performing class of models.
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models, along with their top-performing subsets: SPTB models and RNNs. Figures 2.12 and 2.13 illustrate
the FPA and WRA scores across different time intervals of the datasets.

DL models outperform TBML models in the 5/10-minute, 15/30-minute, and 1-month intervals.
Notably, these intervals have a modest representation in the dataset, occurring 6, 4, and 8 times,
respectively. Conversely, TBML models show slightly better performance in the 1/4-hour interval (16
occurrences) and the 7/8/15/16-day interval (3 occurrences®), with FPA and WRA advantages of 6.25% and
0.0469, and 33.33% and 0.0556, respectively.

A deeper comparison of subclasses reveals that RNN models outperform SPTB models in the 1-minute,
5/10-minute, 15/30-minute, 1-day, and 1-month time intervals. Among these, the 1-day interval (9 RNN

occurrences vs. 12 SPTB occurrences) is particularly significant, where RNN models achieve a notable
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Figure 2.13: Illustrates the WRA score for each model based on time interval of data. Blue bars represent
the overall model types, while orange bars indicate the best-performing class of models.

4 The time intervals of 8 days and 16 days were tested using the same model, see Kang, et al., 2020
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FPA advantage of 27.78% and a WRA advantage of 0.2509. On the other hand, SPTB models surpass RNN
models in the 1/4-hour and 7/8/15/16-day intervals. The 1/4-hour interval (16 occurrences) is particularly

noteworthy, with SPTB models outperforming RNN by 18.59% in FPA and 0.0785 in WRA.

2.5.3.5 Impact of Research Focus on Observed Model Performance

The papers surveyed in this study exhibit diverse objectives and emphases, ranging from developing hybrid
deep neural networks to benchmarking specific advanced TBML models against DL models, or conducting
balanced evaluations across a variety of ML and DL approaches. This subsection examines whether the
primary focus of the research—categorized as TBML models, DL models, or a balanced approach—affects
the observed performance outcomes of the evaluated models. Figures 2.14 and 2.15 present the FPA and
WRA scores, respectively, for TBML and DL models under each research focus category. The results reveal

a noticeable bias in performance outcomes depending on the primary focus of the papers:

Muodel Type
B Tree Based Models
I Deep Leaming Based Models

FPA (%)

Deep Models Tree-Based Models Both

Focus

Figure 2.14: lllustrates the FPA score for each model class based on the focus of the paper.
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1. Deep Learning-Focused Papers:
When the primary focus of the paper is on deep learning models, DL models outperform TBML
models significantly. The FPA score for DL models is 33.79% higher, and the WRA score is
0.2891 points higher than TBML models. This finding suggests that papers with a DL emphasis
may introduce methodological, architectural, or experimental advantages tailored to highlight DL
performance.

2. Tree-Based Model-Focused Papers:
Conversely, when papers focus on TBML models, the observed performance skews in favor of
TBML models. In this category, TBML models achieve a 66.67% higher FPA score and a 0.5694
higher WRA score compared to DL models. These results indicate that TBML focused research

often optimizes conditions or design choices that favor these methods.

Model Type
B Tree Based Models
Il Deep Learning Based Models

Deep Models Tree-Based Models Both

Focus

Figure 2.15: lllustrates the WRA score for each model class based on the focus of the paper.
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3. Balanced Focus Papers:
In papers with no specific emphasis on either model class, TBML models slightly outperform DL
models. The FPA score for TBML models is 15.23% higher, and the WRA score is 0.1771 points
higher than DL models. This finding suggests that when research is conducted without bias
toward a specific model class, TBML models may have a slight advantage, potentially due to

their relative simplicity and robustness in a range of scenarios.

2.5.3.6 Model Training Time Analysis

An essential factor to consider when evaluating the performance of ML models is their training time,
particularly given the significant computational costs associated with some models. The training time
directly impacts the feasibility of deploying these models in real-world applications where computational
efficiency is often critical. Of the surveyed papers, ten studies (Comert et al., 2021; Ge et al., 2019;
Hewamalage, Bergmeir, & Bandara, 2022; J. Ke et al., 2017; S. Liu et al., 2021; Ngarambe et al., 2020;
Pan et al., 2023; Shi, He, & Liu, 2018; Wei et al., 2021; Zrira et al., 2024) provide training time
comparisons for the models evaluated. In these papers, the training time of the best performing TBML
model and DL model was analyzed.

The results demonstrate that TBML models significantly outperform DL models in terms of training
efficiency. Notably, there is only one instance (Ge et al., 2019) where a DL model, an MLP, trained faster
than its TBML counterpart (XGBoost). In this specific case, the MLP achieved a 22.55% reduction in
training time compared to XGBoost. However, across all ten studies, TBML models demonstrated a marked
advantage. On average, TBML models were 126,385.01% faster than DL models, with the median training
time advantage being 5,603.43% faster. This stark difference underscores the efficiency of TBML models

in scenarios where computational resources and time constraints are limiting factors.
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2.5.3.7 Analysis of Error Metrics in Model Evaluation

Evaluating model performance requires the use of appropriate error metrics, which vary depending on
whether the task involves classification or regression. This subsection provides a comprehensive analysis

of the error metrics employed across the surveyed papers.

2.5.3.7.1 Error Metrics for Classification Models

The classification models reviewed in this study were evaluated using the following set of metrics:
e False Positive Rate (FPR)
e Kappa Coefficient (KC)
e Positive Predictive Value (PPV)
e Negative Predictive Value (NPV)
e Receiver-Operating Characteristic (ROC) Curve
e Matthews Correlation Coefficient (MCC)

e Area Under the ROC Curve (AUC)

e Sensitivity
e Specificity
e Recall

e Precision

e F1 Score

e Accuracy

The frequency of these metrics’ usage is illustrated in Figure 2.16. The metric names are reported exactly
as listed in the surveyed papers, even if some represent equivalent measures (e.g., recall and

sensitivity). Among the most employed metrics, Recall was used in 35.29% of the studies, Precision in

41.18%, F1 Score in 47.06%, and Accuracy in 76.47% of the papers.
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Figure 2.16: Illustrates the percent of papers that use each error metric for classification tasks.

2.5.3.7.2 Error Metrics for Regression Models

The regression models reviewed in this study were evaluated using the following set of metrics:

Index of Agreement (1A)

Normalized Mean Absolute Percentage Error (NMAPE)
Prediction of Change in Direction (POCID)

Mean Normalized Bias (MNB)

Normalized Mean Bias Error (NMBE)

Root Mean Squared Percentage Error (RMSPE)

Root Squared Logarithmic Error (RMSLE)
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Figure 2.17: lllustrates the percent of papers that use each error metric for regression tasks.
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e Mean Absolute Error (MAE)
e Root Mean Squared Error (RMSE)
The prevalence of these metrics is depicted in Figure 2.17. Among the traditional metrics, MSE was used

in 22.03% of the papers, MAPE in 37.29%, R? in 45.76%, MAE in 55.93%, and RMSE in 67.80%.

2.5.3.8 Hyperparameter Optimization Techniques

Hyperparameter tuning is a critical aspect of ML model development, as the choice of hyperparameters can
significantly influence performance. Several of the surveyed articles specified the hyperparameter
optimization techniques employed in their studies. Figure 2.18 illustrates the relative prevalence of these
techniques across the surveyed papers. The most used hyperparameter optimization technique was Grid

Search, followed by Bayesian Optimization (BO), Random Search, Manual Optimization, and OPTUNA

Grid Search
BO

Random Search
Manual
OPTUNA

FA

NNI

ERSA

HDTO

Figure 2.18: Illustrates the usage for each hyperparameter optimization technique.
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Automatic Hyperparameter Tuning Software. Less frequently used methods included algorithms such as
the Firefly Algorithm (FA) (Zahoor Ali et al., 2020), Neural Network Intelligence (NNI) (L6pez Santos et
al., 2022), Enhanced Reptile Search Algorithm (ERSA) (Pavlov-Kagadejev et al., 2024), and Hidden
Dipper Throated Optimization (HDTQ) (Singh et al., 2024), each of which was mentioned in only one
paper. While many studies focused on a single optimization approach, one paper (Pan et al., 2023) provided
a comparative evaluation of multiple hyperparameter optimization methods. This study found that Bayesian
Optimization outperformed techniques such as Grid Search and Particle Swarm Optimization (PSO) in
terms of search effectiveness. By leveraging probabilistic models to guide the search process, Bayesian
Optimization was able to reduce computational costs while identifying optimal hyperparameter

configurations more efficiently.

2.5.3.9 Comparative Analysis of Hybrid Models

Hybrid models, which integrate multiple ML and DL architectures, are a common approach to improving
predictive performance in time series tasks. Across the surveyed literature, hybrid models often outperform
individual stand-alone models, although there are notable exceptions. This section examines these

exceptions as well as provides insights into the relative performance of different hybrid configurations.

2.5.3.9.1 Performance of Hybrid Models vs. Individual Models

While hybrid models generally exhibit superior performance, a few studies highlight cases where individual

models outperform hybrids:

1. Seydi, Amani and Ghorbanian (2022): A 2D CNN, 3D CNN, and XGBoost model each
outperformed a hybrid RNN-CNN model.
2. Oyucu et al. (2024): RF and XGBoost models surpassed multiple hybrid models, including CNN-

LSTM, CNN-GRU, RNN-GRU, and RNN-LSTM configurations.
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3. Saravanan and Bhagavathiappan (2024): A CatBoost model outperformed a spatio-temporal

attention-based CNN and Bi-LSTM hybrid model.

2.5.3.9.2 Hybrid Models Compared to Other Hybrids

Several papers explored the relative performance of different hybrid configurations, providing valuable

insights into design considerations:

1. Pan et al. (2023): a hybrid CNN-LSTM-Attention model outperformed a CNN-LSTM model,
which in turn outperformed an LSTM-Attention model.

2. Zhu et al. (2023): CEEMDAN decomposition was applied to both an XGBoost and DL model.
The hybrid XGBoost-CEEMDAN model performed better than its DL-based counterpart.

3. Lietal. (2024): A Bi-LSTM-LightGBM hybrid outperformed a Bi-LSTM-FFNN hybrid.

4. Pavlov-Kagadejev et al. (2024): LSTM models with decomposition techniques, Variational Mode
Decomposition (VMD) and Empirical Mode Decomposition (EMD), were compared. The LSTM-
VMD hybrid outperformed the LSTM-EMD hybrid.

5. Zriraetal. (2024): an Attention-based Bi-LSTM hybrid model performed better than an Attention-
based Bi-GRU hybrid model.

6. Oyucu et al. (2024): Among four hybrid DL models, CNN-LSTM demonstrated the best
performance, followed by CNN-GRU, RNN-GRU, and RNN-LSTM.

7. Nan et al. (2022): Four hybrid models were compared, with relative performance as follows:

LSTM-XGBoost > FFNN-XGBoost > LSTM-MLR > FFNN-MLR.

2.5.4 Analysis

This section synthesizes the biggest takeaways from the experimental results, highlighting key insights,

overarching trends, and limitations observed across the surveyed studies.
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Comparative Performance of Tree-Based and Deep Learning Models: The experimental results
indicate that TBML models and DL models exhibit comparable performance overall. Among their
respective subcategories, SPTB models and RNNs emerge as the best performers, further underscoring why
these models dominate much of the research focus in this paper. However, TBML models demonstrate a
slight overall edge due to the stronger performance of their weakest algorithms. Notably, RF and GBDT
outperform the weakest DL models, FFNN and its variants.

At the individual algorithm level, CatBoost, LSTM, and LightGBM stand out as the best-performing
models. While CatBoost had limited representation in the surveyed papers, it is highly similar to LightGBM
and XGBoost—both of which had much greater representation and demonstrated strong performance—
further supporting the conclusion that CatBoost is a top-performing model. On the other hand, attention-
based architectures (e.g., Transformers) also show strong potential, but unlike CatBoost, there are no
directly comparable algorithms in this category with more extensive research in the surveyed papers. This
lack of broader representation underscores the need for further validation of Transformers through more

illustrative studies.

Domain-Specific Performance: Performance analysis across application domains reveals distinct

advantages for specific model groups:

e TBML Models: Outperform in tasks related to energy and utilities, transportation and urban
mobility, anomaly detection, and miscellaneous applications.

e DL Models: Outperform in tasks related to environmental and meteorological predictions,
structural and mechanical health monitoring, and financial/market trend forecasting.

e SPTB Models: Outperform in tasks related to transportation and miscellaneous applications, while
RNN models dominate in environmental, healthcare, and finance-related tasks.

e RNN Models: Outperform in tasks related to Environmental and Meteorological Predictions,
Water and Air Quality, Structural and Mechanical Health Monitoring, Stock

Market/Finance/Market Trends, Healthcare and Biomedical Predictions.

38



It is important to note that the dataset includes relatively small representations for some categories
(ranging from 3.85% to 21.8% of the total papers). As a result, the findings presented here do not present
definitive evidence that any one type of model is dominant within a given domain. Instead, they highlight

interesting patterns and trends that merit further investigation and validation with larger datasets.

Dataset Size: Analysis of the influence of dataset size on the relative performance of machine learning
models for time series prediction reveals some interesting trends. In ML tasks with the least amount of data,
DL models perform comparably to TBML models overall. However, RNN models demonstrate a significant
advantage over SPTB models. As dataset size increases, DL models begin to show a slight edge over TBML
models in the lower mid-sized range (2173-7800 samples), although the gap narrows in the upper mid-
sized range (7800-35712 samples). Across this range, RNN models continue to outperform SPTB models,
though the margin diminishes, reflecting SPTB models’ growing robustness with increasing data. For larger
datasets, TBML models gain a clear advantage over DL models, with their performance gap widening at
the largest dataset range (206573-11275200 samples). This trend demonstrates the scalability of TBML

models, particularly SPTB models, in handling vast amounts of data.

Temporal Resolution: This study examines the impact of time interval lengths on the performance of ML
models for time series prediction. However, no consistent pattern or trend emerges across the time intervals.
DL models perform better in some intervals, while TBML performs better in others. As such, there is no

common thread that unites these results across all temporal resolutions studied.

Influence of Research Focus: A notable finding is the inherent bias in performance outcomes depending
on the research focus of the paper. DL models significantly outperform TBML models in papers focused
on DL techniques, and vice versa for TBML-focused research. This suggests that researchers may devote
disproportionate attention to optimizing models aligned with their research focus while investing less effort
in models they are using for comparative efforts. Readers should exercise caution when interpreting
comparative results in such studies. In studies with no specific focus, TBML models slightly edge out DL

models providing an interesting case for their superior performance in “bias-free” papers.
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Computational Efficiency: One of the most impactful findings is the disparity in training times between
TBML and DL models. TBML models were found to be, on average, 2 to 4 orders of magnitude faster than
DL models. This makes TBML models particularly appealing for real-world applications where

computational cost is a critical consideration.

Error Metrics: Popular error metrics for evaluating classification and regression tasks may provide
valuable benchmarks for future research. These include classification metrics such as Recall, Precision, F1
Score, and Accuracy, as well as Regression Metrics such as RMSE, MAE, MAPE, and MSE. Future
research may benefit from aligning evaluation methods with these metrics to ensure comparability across

studies.

Hyperparameter Optimization: Grid search is the most frequently used hyperparameter optimization
method, but it is also the most computationally intensive. Bayesian Optimization offers a promising
alternative, providing similar performance with much lower computational demands. Methods such as
OPTUNA'’s automatic hyperparameter tuning software are also emerging as viable options for

hyperparameter tuning.

Hybrid Models: This study found strong evidence that combining models generally enhances performance,
as evidenced by numerous surveyed papers that implemented hybrid approaches. These hybrid models
consistently outperformed individual models, with performance often improving as more models were
integrated. There are notable exceptions to this trend, discussed in Section 2.5.3.9, where individual models
showed superior performance compared to hybrids. These individual model examples exclusively involved
SPTB models, further underscoring the robust performance of these algorithms. When comparing hybrid
configurations, the results reveal that combinations of SPTB models with RNN models yield particularly
strong outcomes. Additionally, hybrid models incorporating either SPTB or RNN architectures with

attention-based or CNN models also demonstrated notable performance improvements.

Anecdotal Findings: Beyond the quantitative analysis across all surveyed papers, several anecdotal

observations offer additional insights:

40



1. Feature Sensitivity: GBDT models are less affected by redundant or removed features, whereas
ANN performance drops significantly when redundant features are added (Bagherzadeh et al.,
2021).

2. Feature Selection: When all features are provided, XGBoost consistently delivers the best
performance. However, when variables are selected using forward selection, other DL models
begin to outperform it. Interestingly, the XGBoost model utilizing all features outperforms the
XGBoost model that uses only the forward-selected features (Shin et al., 2020).

3. Domain-Specific Findings: LightGBM produces more accurate results for top research terms in
emerging topics, even though it generally has higher errors than NN (Liang et al., 2021).

4. Inference Time: One study reported inference times for their models. They compared an XGBoost
model (0.001 sec), with an LSTM model (0.311 sec), and a Bi-LSTM model (1.45 secs), finding
XGBoost to be 311 times faster than Bi-LSTM and 1450 times faster than LSTM. This drastically
faster inference time emphasizes its practicality in time-sensitive applications (Zrira et al., 2024).

5. Simulated vs. Real-World Data: LightGBM matches neural network performance on simulated
data but outperforms on real-world datasets (Hewamalage, Bergmeir, & Bandara, 2022).

6. Time-Series Image Data: CNN models excel in prediction tasks involving time-series image data

(Seydi, Amani, & Ghorbanian, 2022; Su et al., 2021; Zhong, Hu, & Zhou, 2019).

2.6 M5 and M6 Forecasting Competitions

Besides looking at research papers that focus on using ML models for real world applications in time series
prediction, competitions that challenge teams to create models for a common dataset provide valuable
insights into the comparative performance of machine learning methods for time series prediction. These
contests enable direct comparisons under the same controlled conditions. Among such competitions, the M
Forecasting Competitions stand out as the most prominent, well-structured, and well-funded. This section

focuses on the two most recent iterations: the M5 and M6 Forecasting Competitions.
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2.6.1 M5 Forecasting Competition

The M5 Forecasting Competition, held in 2020, focused on predicting retail sales using real-world data
comprising 42,840 time series of Walmart unit sales. The competition had two components: the Accuracy
Competition and the Uncertainty Competition, each with a prize pool of $50,000. These incentives attracted

thousands of participants, creating a large dataset for analysis.

2.6.1.1 M5 Accuracy Competition

The M5 Accuracy Competition (Makridakis, Spiliotis, & Assimakopoulos, 2022) tasked participants with
providing the most accurate point forecasts, evaluated using a Weighted Root Mean Squared Scaled Error
(WRMSSE) metric. A total of 5,507 teams from 101 countries participated, with LightGBM emerging as
the dominant model among the top 50 best performing teams. Brief insights from the top 5 models include:
1. First Place: Combined recursive and non-recursive LightGBM models to create 220 models, where
the average of 6 models was used to forecast the series, each exploiting a different learning
approach and training set.
2. Second Place: Created 50 LightGBM models, 5 for each of the 10 stores, utilizing a DL neural
network to adjust multipliers based on historical sales data for each store.
3. Third Place: Employed 43 recursive neural networks (LSTMs) incorporating over 100 features
4. Fourth Place: Created 40 non-recursive LightGBM models

5. Fifth Place: Utilized 7 recursive LightGBM models.

Nearly all top 50 submissions applied the last four 28-day windows of data for cross-validation to fine-
tune hyperparameters. Many top performing teams, including 1% and 3" place, used exogenous features like
special days and zero-sales periods in their models. The researchers of this challenge concluded that the
competition reinforced the value of model combination, cross-learning, and cross-validation. New findings
included the superior performance of the LightGBM model compared to all others, as well as the importance

of exogenous/explanatory variables used for forecasting.
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2.6.1.2 M5 Uncertainty Competition

The Uncertainty competition (Makridakis et al., 2022) tasked participants with forecasting the distribution
of realized values, requiring predictions of nine quantiles (0.005, 0.025, 0.165, 0.250, 0.500, 0.750, 0.835,
0.975, and 0.995). The Weighted Scaled Pinball Loss function was used to evaluate performance. Although
this competition was less popular, attracting 892 teams, the reliance on LightGBM models remained
consistent, with four of the top five submissions incorporating it in their frameworks. Brief insights from

the top 5 models include:

1. First Place: Utilized 126 LightGBM maodels, one for each quantile and aggregation level.

2. Second Place: Combined recursive LightGBM models, statistical methods, and simple time series
forecasting techniques.

3. Third Place: Employed a hybrid approach integrating LightGBM and neural networks.

4. Fourth Place: Used two LSTM-based neural networks.

5. Fifth Place: Implemented 280 LightGBM models in a comprehensive ensemble.

A Monte Carlo simulation, used by the sixth-place team, was the only top-50 method not involving
LightGBM, XGBoost, or neural networks. The findings from the Uncertainty competition mirrored those
of the Accuracy competition, reaffirming the dominance of LightGBM and the importance of model
combination. A notable observation was the stark contrast in participant expertise: while the Accuracy
competition was won by an undergraduate student with limited knowledge in the domain of retail sales, the
Uncertainty competition was dominated by Kaggle masters and grandmasters with strong statistical

backgrounds.

2.6.2 M6 Forecasting Competition

The M6 forecasting competition from 2022 to 2023 (Makridakis et al., 2024) marked a significant evolution

in the M series. With a prize pool of $300,000, it attracted 226 teams to participate. The challenge revolved
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around creating investment portfolios using real-time data from 50 U.S. stocks and 50 exchange-traded
funds (ETFs). Unlike prior iterations, the M6 competition emphasized both forecasting and investment
decision-making, awarding prizes for forecasting accuracy, investment performance, and overall
performance. Participants were given flexibility in their data sources and methodologies. While organizers
provided an optional dataset of adjusted closing values, teams could choose their own data, frequency, and
supporting information, such as economic indicators or news. The competition spanned 12 months, with
teams submitting monthly forecasts and investment strategies for the subsequent 20 trading days.

The winners in forecasting, investment, and the combined "duathlon™ category all used distinct
methods. The top forecasting model used a Bayesian dynamic factor model. The best-performing
investment model relied on AutoTS, an open-source Python library for probabilistic time series forecasting.
The duathlon champion employed a meta-learning model using NNs, which ranked fourth in forecasting.
Notably, an XGBoost-based approach secured second place in both forecasting and the duathlon.
Interestingly, the team that won the investment challenge placed 92nd in forecasting, and the second-place
investment team, which used a type of exponential smoothing model (ATA), ranked 110th in forecasting.
In fact, the researchers found zero correlation between forecasting and investment performance
emphasizing that a team’s ability to accurately predict a stock’s future price was not the driving factor in
creating the most profitable investment portfolio.

The researchers were not surprised that the best performing methods included both conventional
econometric time series methods as well as sophisticated machine learning methods because of the unique
challenges present in financial forecasting including external factors, seasonality, stochastic trends, etc. The
key takeaway from the M6 competition is that the choice of data and its usage is as critical as the forecasting

techniques themselves in achieving superior results.

2.6.3 Takeaways from M5 and M6 Forecasting Competitions

One of the most notable takeaways from the M5 competition was the dominance of LightGBM. Its ease of

use allowed even relatively inexperienced participants to excel, as evidenced by the first-place finisher in
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the M5 Accuracy Competition, an undergraduate student. Most top-performing teams relied on ensembles
of LightGBM models, leveraging its efficiency in handling large datasets. The results of the M5 competition
also emphasized the importance of combining multiple models. Most top teams utilized ensembles, often
containing hundreds of individual models, to enhance the accuracy of their predictions. Across both the M5
and M6 competitions, cross-validation (CV) and hyperparameter tuning emerged as indispensable
components of successful forecasting methodologies. All top-performing teams employed thorough CV to
optimize their models.

One critical takeaway from the M6 competition was the importance of data quality, feature engineering,
and the inclusion of exogenous variables. Unlike the M5 competition, where all participants worked with a
standardized dataset, M6 participants were responsible for sourcing their own data. The complexity of this
competition, including the unique challenges in the financial domain, also resulted in the number of
participating teams to decrease to less than 4% of the M5 competition’s turnout (despite a substantial
increase in incentives). The results of the competition showed no clear consensus on the best-performing
methodology and suggest that the importance of data quality and strong feature engineering, including the

exogenous variables chosen, often outweigh the importance in the choice of the prediction model itself.

2.7 Conclusion

This survey of machine learning methods for time series prediction illuminates several key strategies for
approaching time series forecasting tasks. Based on these findings, the following approach is recommended
for researchers and practitioners tackling time series prediction problems.

First and foremost, the domain and data play a pivotal role in determining the success of a forecasting
model. Careful domain analysis to identify the most impactful data sources, coupled with meticulous feature
engineering to extract and construct relevant features, should be the initial focus. The importance of high-
quality data and strong exogenous features cannot be overstated, as evidenced by both the findings of this

study and the results of recent forecasting competitions. Investing significant effort in this phase is likely
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to yield the greatest dividends in predictive performance. Once the data is prepared, starting with a Tree-
Based Machine Learning (TBML) model like LightGBM—or CatBoost for datasets with a high proportion
of categorical features—is a logical choice. These gradient boosting methods offer several advantages: they
are computationally efficient, require less feature selection, and have demonstrated competitive or superior
performance compared to deep learning approaches in various settings. Such models serve as a low-cost
baseline for experimentation and iterative improvement.

Model evaluation should be guided by task-specific metrics. For regression problems, metrics such as
Mean Absolute Error (MAE) or Root Mean Squared Error (RMSE) are appropriate, while classification
tasks should use Recall, Precision, F1 Score, and Accuracy. Hyperparameter tuning is another critical
component of the modeling process. If prior knowledge exists about potential hyperparameter values, a grid
search can be employed for systematic exploration. Otherwise, techniques like Bayesian Optimization or
libraries such as OPTUNA are recommended for their ability to efficiently explore large parameter spaces
and identify optimal configurations. If the initial model fails to meet desired performance standards or
further enhancements are required, Recurrent Neural Networks (RNNSs), such as LSTMs or GRUSs, are a
logical next step. When building a deep learning model, it is crucial to carefully select and preprocess
features to optimize the model's performance and ensure it delivers the best results. As with earlier stages,
hyperparameter tuning should be employed to maximize performance. Finally, combining models—such
as the initial TBML model with a deep learning model—can often yield superior results. Ensemble methods
leverage the strengths of multiple methodologies, capturing diverse patterns and mitigating weaknesses
inherent to any single approach, as demonstrated in this study.

In conclusion, effective time series prediction is a combination of domain knowledge, data quality,
rigorous preprocessing, and the strategic application of the best machine learning methodologies. Starting
with scalable and interpretable TBML models, fine-tuning their parameters, and iteratively incorporating
advanced techniques like DL provides an efficient framework for tackling time series forecasting
challenges. By following this approach, researchers and practitioners can maximize predictive accuracy

while optimizing computational costs in a variety of domains.
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Appendix A: Surveyed Papers

The following 79 papers were selected based on citation count and adherence to inclusion criteria:

Bagherzadeh et al., 2021; Barrera-Animas et al., 2022; Chakraborty & Elzarka, 2019; Chen, Guan, & Li,
2021; Comert et al., 2021; Cui et al., 2021; Farsi, 2021; Galicia et al., 2019; Ge et al., 2019; Geng et al.,
2021; Ghimire et al., 2023; Gong et al., 2020; Hewamalage, Bergmeir, & Bandara, 2022; Hussein et al.,
2020; Ibafez et al., 2022; Jing et al., 2021; Joseph et al., 2022; Ju et al., 2019; Kang et al., 2020; J. Ke et
al., 2017; Khan et al., 2020; Kumar et al., 2023; Kwon, Kim, & Han, 2019; G. Li et al., 2022; Li et al.,
2020; Y. Lietal., 2022; Li, Yang, & Sun, 2022; Liang et al., 2021; S. Liu et al., 2021; L6pez Santos et al.,
2022; Luo et al., 2021; Mazzia, Khalig, & Chiaberge, 2020; Nan et al., 2022; Ngarambe et al., 2020; Pan
et al., 2023; Paudel et al., 2023; Pham Hoang et al., 2022; Priyadarshi et al., 2019; Prodhan et al., 2021;
Qiu et al., 2020; Rafi et al., 2021; Ravichandran et al., 2021; Ribeiro et al., 2022; Safat, Asghar, & Gillani,
2021; Seydi, Amani, & Ghorbanian, 2022; Shangguan et al., 2022; Shen et al., 2022; Shi, He, & Liu, 2018;
Shin et al., 2020; Srivastava & Eachempati, 2021; Su et al., 2021; Sundararajan et al., 2021; Teinemaa et
al., 2018; Ting et al., 2020; Torres, Martinez-Alvarez, & Troncoso, 2022; Wang et al., 2021; Wei et al.,
2021; Wu etal., 2021; Yang et al., 2020; Yu et al., 2020; Zahoor Ali et al., 2020; Zhang et al., 2022; Zheng
et al., 2020; Zhong, Hu, & Zhou, 2019; Zhu et al., 2023, Abdikan et al., 2023; Guan et al., 2024; Phan et
al., 2023; Wang et al., 2023, Inbar & Avisar, 2024; Li et al., 2024; Mangukiya & Sharma, 2024; Oyucu et
al., 2024; Pavlov-Kagadejev et al., 2024; Saravanan & Bhagavathiappan, 2024; Singh et al., 2024; Zhang

et al., 2024; Zhao et al., 2024; Zrira et al., 2024
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Abstract

Day trading is a high-risk trading strategy where individuals attempt to capitalize on short-term price
movements in financial markets. This paper investigates whether modern machine learning (ML)
techniques can outperform human day traders by mimicking technical analysis tools used by humans.
This study uses a dataset of all U.S. equities from over two years of data between 2023 and 2025 to
develop a combination of LightGBM models to processes second-by-second trade and quote data. The
model utilizes a wide array of engineered features including multi-timeframe technical indicators,
contextual stock attributes, and fundamental data to predict risk-reward ratios over multiple forward time
horizons. Performance is benchmarked against the best human traders with simulations incorporating
realistic bid/ask execution scenarios. Results show that the best-performing model achieves average daily
returns more than 500 times higher than top performing human day traders, suggesting that ML based

systems offer a compelling alternative to human day traders in the domain of day trading.

3.1 Introduction

Day trading refers to the practice of buying and selling financial instruments such as equities,
cryptocurrencies, or forex within a single trading day. These trades aim to capitalize on short-term price
volatility and are often held for only seconds or minutes. Day traders typically focus on highly liquid assets
to facilitate rapid execution and to ensure that there exists sufficient market depth for timely exits.

Unlike longer-term investment strategies that base decisions on fundamental analysis, day trading
predominantly relies on technical analysis. Technical Analysis (TA) involves studying price charts, trading
volume, and a variety of other statistical indicators to identify patterns that suggest future price movement.
TA assumes that historical price and volume is all the information needed to predict future price
movements. Fundamental Analysis (FA), on the other hand, is more commonly used by long-term investors.
It focuses on evaluating a financial asset's intrinsic value by analyzing economic and financial factors such

as a company's earnings, revenue, and growth prospects. FA makes trading decisions based on the asset
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being undervalued or overvalued relative to its current market price. The primary objective of day traders
is not to invest in the underlying fundamentals of a company, but rather to capture temporary market
opportunities, often triggered by some catalyst such as news events, shifts in market sentiment, or surges
in volume identified by TA.

Day trading is frequently confused with high-frequency trading (HFT); however, these trading
strategies are not the same. The biggest difference is the execution speed required to execute trades. HFT
is 100% automated and executes trades in microseconds or milliseconds, much faster than a humans
reaction time, targeting minuscule arbitrage opportunities across exchanges for incremental but frequent
profits. In contrast, day trading relies on human judgment and predictive insights, with positions held longer
than one second; in this study, trades last on average around 30 minutes. This necessitates accurate short-
term price forecasting and risk management, rather than purely speed-based arbitrage where the fastest
player is guaranteed to make a profit. Nonetheless, both HFT and day trading enhance market liquidity and
efficiency by narrowing bid-ask spreads, and thereby facilitating more accurate asset pricing. This crucial
value allows investors to buy and sell assets quickly and at desirable prices.

Despite its potential profitability, day trading is considered highly risky, and most day traders end up
losing money. Most of these traders incur losses due to psychological and cognitive limitations. Emotional
biases such as fear, greed, and confirmation bias frequently impair human decision-making, leading to
suboptimal trading outcomes where traders essentially end up just gambling their money like a casino in
Las Vegas. Additionally, human traders face inherent constraints in information processing capacity,
resulting in analysis paralysis when attempting to interpret excessive data simultaneously. These challenges
are not unique to day trading but exist in all trading activities. This motivation has led to the increased
interest and use of algorithmic trading as well as the application of Artificial Intelligence (Al) and Machine
Learning (ML) techniques to algorithmic trading. While algorithmic and ML methods have been
extensively explored for medium and long-term trading horizons, their use in replicating or outperforming

human day traders remains underexplored.
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This paper aims to bridge this research gap by employing state-of-the-art time series machine learning
methodologies outlined by Hall (2025) to replicate and evaluate day trading strategies. Specifically, this
study investigates whether advanced ML algorithms can consistently outperform human day traders,
offering insights into the capabilities and limitations of Al-driven approaches within this unique trading
environment.

The remainder of this paper is structured as follows: Section 2 reviews related literature, Section 3
outlines the research methodology, Section 4 presents the results of experimentation, Section 5 provides a

discussion of findings, and Section 6 concludes the study and provides insight into future directions.

3.2 Related Works

Day trading has historically faced scrutiny regarding its profitability compared to long-term investment
strategies. Many financial advisors advocate for long-term investing strategies and emphasize the
importance of backing trading decisions with fundamentals over short-term speculation. Prominent
investors like Warren Buffett advocate for investing based on company fundamentals and maintaining
positions over an extended period. This philosophy has historically outperformed more active trading
approaches. Nevertheless, the question remains: can state-of-the-art ML techniques overcome the
limitations that often lead human day traders to underperform, or can they match or exceed the consistently
profitable subset of day traders?

To contextualize the risks and outcomes of day trading, Barber etal. (2014) conducted a comprehensive
14-year study of individual traders in Taiwan. Their findings revealed that fewer than 1% of day traders
consistently achieved positive net returns when accounting for transaction fees. Notably, the top 500 traders
earned an average gross return of 61.3 basis points (0.613%) per day, which fell to 28.1 basis points
(0.281%) after fees. Similarly, Jordan and and Diltz (2003) suggest that about twice as many day traders

lose money as make money and about one trader in five is more than margin-ally profitable.
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Given the thin profit margins and significant risks, successful day trading demands precise decision-
making and a variety of analytical tools. Human day traders typically employ a range of technical strategies
rather than relying on fundamental analysis. While fundamental indicators such as earnings per share (EPS),
return on equity (ROE), and operating margins are useful for long-term investing as shown by Khanpuri,
Darapaneni and Paduri (2024), they are less relevant for intraday trading.

Instead, day trading decisions are made through technical indicators. This paper incorporates several
widely used tools, including the Moving Average Convergence Divergence (MACD), with both the
standard 12-26-9 configuration (Eric, Andjelic, & Redzepagic, 2009) and the 3-10-16 variation popularized
by Linda Bradford Raschke (Rosenbloom, 2010). Other popular indicators used include the Relative
Strength Index (Rodriguez-Gonzaélez et al., 2010), Bollinger Bands (Day et al., 2023), and Exponentially
Weighted Moving Average Indicators (Deng & Sakurai, 2014).

Beyond indicators, Wang and Wang (2019) discuss the feasibility of candlestick pattern strategies,
while Chan et al. (2022) emphasize the relevance of support and resistance levels in algorithmic trading.
This paper also incorporates Volume Weighted Average Price (VWAP), as suggested by Zhou, Kalev and
Frino (2020), and VVolume Profile techniques, including the Point of Control (POC) as detailed by Rizvanov
et al. (2024). Trade types, such as odd lot trades explored by Johnson (2014) and intermarket sweep trades
examined by Mclnish, Upson and Wood (2014), are shown to impact market dynamics by indicating
potential volatility and thus are considered in this study.

The increasing complexity and speed of computers have led many investors to transition from manual
strategies to algorithmic trading where computer programs and algorithms execute trades in the financial
marketplace. By 2009, algorithmic systems accounted for approximately 73% of U.S. stock market volume,
primarily driven by institutional traders and managers of hedge funds, pension funds, and mutual funds as
documented by Hendershott, Jones and Menkveld (2011). More recently, ML and deep learning (DL)
techniques have become dominant within algorithmic trading systems. Henrique, Sobreiro and Kimura
(2019) survey 57 studies employing ML models to forecast various market variables including price

direction, returns, risk, and volatility, minimums, maximums, or a combination of these variables. These
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studies focus primarily on daily or longer timeframes. One example of this is Patel et al. (2015) who
compare the predictive performance of several models (ANN, SVM, RF, Naive Bayes) on two stocks using
10 technical indicators over a decade of daily data. Kumbure et al. (2022) also conduct a large survey in
this field as they provide analysis of 138 papers, finding that most focus on daily predictions, with only
limited attention paid to intraday trading.

These limited papers that focus on ML applications at intraday intervals include Sun et al. (2019) where
experiments are carried out on intraday movements of S&P 500 data and Borovkova and Tsiamas (2019)
who examine 22 different stocks on 5 minute data intervals aggregated from high frequency trade data.
Huddleston, Liu and Stentoft (2020) demonstrate that tree-based models can effectively predict 5-minute
equity returns even after accounting for transaction costs. Taroon et al. (2020) push the horizon further,
modeling next-minute price movements in the SPDR S&P 500 ETF, reinforcing that a model can be used
to successfully predict price movements in stocks as granular as a one-minute time interval. Labiad, Berrado
and Benabbou (2016) take this one step further by using tick-by-tick data and classifying 10-minute forward
price movements as binary outcomes (up/down) on individual stocks from the Maroc Telecom stock
exchange. They employ Random Forests and Gradient Boosting Machines, an approach similar to the one
taken in this paper.

Among deep learning methods, Long Short-Term Memory (LSTM) networks have emerged as
particularly effective. Li and Bastos (2020) identify LSTM as the most widely adopted DL technique in
stock prediction, corroborated by Fischer and Krauss (2018), where LSTM outperforms traditional models
like RF and DNN when models are only given past price sequences. This suggests that LSTMs are
especially adept at modeling time dependencies without requiring extensive feature engineering. More
recently, large language models (LLMs) have been applied to financial sentiment analysis. Fatouros et al.
(2023), for example, use ChatGPT to enhance sentiment-based trading signals which showcases a novel
frontier in the integration of Al and the stock market.

While promising in certain applications, the existing research suffers from some critical limitations. As

shown, many previous models are stock-specific, lack sufficient feature diversity (particularly technical
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indicators), or are constrained to longer timeframes making them unsuitable for day trading.
Simultaneously, human day traders remain limited by cognitive biases, slower execution speeds, and
inability to process large data volumes in real time. This paper addresses these gaps by leveraging state-of-
the-art ML models on a high-frequency, feature-rich dataset to emulate and assess day trading strategies

with second-by-second decision-making precision.

3.3 Methodology

This study employs a comprehensive methodological framework encompassing data acquisition, feature
engineering, model development, and performance evaluation. The goal of this study is to replicate, and
potentially enhance, the decision-making process of an experienced day trader through the application of
ML algorithms trained on a feature-dense financial dataset. The methodology is structured to mimic the
typical workflow of technical day trading, while leveraging the scalability and pattern recognition

capabilities of modern ML systems.

3.3.1 Data Collection and Preprocessing

To build a dataset representative of real-world day trading conditions, all U.S. equities were queried for the
period spanning January 1, 2023 to January 17, 2025 using the Alpaca Markets API. Initially, hourly
OHLCV (Open, High, Low, Close, Volume) data were retrieved, including after-hours trading, and
subsequently aggregated into daily OHLC candles. To focus on high-volatility trading opportunities that
are consistent with the preferences of technical day traders, only date-symbol pairs satisfying the following

three conditions were retained:

1. Price Range Filter: Restricts attention to stocks whose opening price fell between $0.60 and $30.00.
This range targets lower-cap, more volatile equities, which are frequently favored by day traders due

to their potential for substantial intraday movement. By setting a lower bound above $0.60, the filter

64



also helps exclude most penny stocks which often suffer from extreme illiquidity, wide bid-ask spreads,
and heightened susceptibility to manipulation.

2. Liquidity Filter: Retains only those stocks trading at least 200,000 shares on the given day. This helps
eliminate stocks where bid-ask spreads and slippage would otherwise distort the practical feasibility of
short-term strategies.

3. Volatility Filter: Only include days where the intraday price range exceeded 15%. This ensures that

only days exhibiting substantial price fluctuation, and thus potential profit windows, are considered.

After applying these criteria, the dataset was narrowed from the full U.S. equity universe to a specific set
of 82,883 symbol-date pairs. To prevent bias introduced by structurally distinct instruments, the dataset
was narrowed to exclude all non-common stock equities including ETFs and preferred shares resulting in

81,322 valid pairs.

3.3.1.1 Granular Data Construction

To construct a robust dataset for modeling high-frequency trading behavior, high-resolution intraday data
was collected from the Securities Information Processor (SIP) feed, accessed via the Alpaca Markets API,
which consolidates trade and quote data across all U.S. exchanges. For each stock under consideration, two
consecutive trading days were selected: one characterized by heightened volatility and the immediately
preceding day. For both days, the complete set of raw SIP-reported quotes and trades was retrieved,
capturing every market event timestamped to the millisecond. This tick-level data was aggregated into 1-
second bins, each containing OHLC values, along with a comprehensive set of trade and quote statistics
necessary for technical indicator computation. Adjustments were applied in cases of stock splits between
the two days to ensure continuity in price and volume metrics.

Further filtering was applied to maintain trading realism and avoid introducing sampling bias due to

the initial inclusion criteria of a stock. Specifically, a sample was discarded if:

o Total daily volume for the specific stock was not yet at 200,000 shares,
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e Intraday price fluctuation had not yet crossed 15%
o Liquidity thresholds were not met. These included:
o At least 10 individual trades of 5,000+ shares in the last 1 minute, or
o At least 15 trades of 10,000+ shares in the last 5 minutes and at least 5 trades in the last 1

minute

These constraints help simulate realistic trading conditions under which a human trader could feasibly

engage with the market.

3.3.2 Feature Engineering

The feature set consists of 506 features, designed to mimic how human traders assess opportunities using
only price action and historical data. Many retail day traders do not incorporate news-based data in real
time, instead depending on price action, momentum, volume dynamics, and key technical indicators.

Therefore, no sentiment analysis or natural language inputs were utilized in model construction.

3.3.2.1 Fundamental Features

Although not used for real-time decision-making, fundamental variables are incorporated to provide context
and assist the model in differentiating between different categories and types of stocks. These features,

sourced from EOD Historical Data (EODHD), include:

e Structural attributes: shares outstanding, sector, industry, country of headquarters, time since
IPO, and time since last stock split

e Financial: earnings per share (EPS), revenue, net income, free cash flow, debt-to-equity ratio, gross
margin, operating margin, return on equity (ROE), EPS growth rate, price-to-earnings (PE), price-

to-book (PB), and price-to-earnings growth (PEG) ratio.
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All features reflect only the financial data available in balance sheets, income statements, and cash flows

prior to the evaluated trading day, maintaining temporal consistency.

3.3.2.2 Market Context and Time Features

To estimate the macro-market environment, intraday SPY (S&P 500 ETF) movements were included, along
with daily exponential moving averages (EMAs) of SPY. These indicators serve as proxies for market
sentiment and help gauge the directional bias of the broader indices. Intraday time and day-of-week features
were used to capture seasonal trading behavior, as certain hours and weekdays are statistically more volatile
or liquid than others. Notably, day trading activity is notoriously concentrated at the beginning of the trading
day as stocks tend to exhibit significantly higher volume and volatility during these hours. This surge in
early-session activity reflects rapid price discovery and heightened trader participation, making it crucial

for the model to account for temporal patterns like this when learning market dynamics.

3.3.2.3 Technical Features

To mimic multi-timeframe candlestick chart analysis, features were derived across multiple of the most
popular day trading windows: 10-second, 1-minute, 2-minute, 5-minute, 15-minute, and 30-minute
intervals.

Feature groups include:

e Candlestick chart metrics: size and direction of last two candles, including relative size
comparison, and wick and body ratio

e Technical indicators: Moving Average Convergence Divergence (MACD), Relative Strength
Index (RSI), Ichimoku Cloud Indicator, Stochastic Oscillator, Bollinger Bands, Williams Alligator
Indicator, Aroon Indicator, Average Directional Index (ADX), On-Balance Volume (OBV),

Klinger Volume Oscillator, Rate of Change (ROC), Accumulation/Distribution Line (ADL),
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Volume Weighted Average Price (VWAP), Exponential Moving Average (EMAS) including EMA
slopes, and volume profile

Quote and trade statistics: spread width, quote imbalance, bid/ask momentum, odd-lot vs round-
lot trade behavior, intermarket sweep order activity

Pattern recognition features: recent pullbacks, breakouts, and directional streaks

Support and resistance levels: recent pivot points and duration since last price interaction with
those levels

Psychological barriers: proximity to half-dollar and whole-dollar levels was used to reflect
psychological support/resistance zones

Daily context features: longer-term technical statistics (52-week high/low, 3-month trends, 1-
month trends, 1-week trends, previous-day performance, relative volume, and average true range)

were included to provide broader trend context for each individual stock.

Most numerical indicators were normalized using min-max scaling to maintain comparability across assets,

calculated as:

Where:

X, — cummin(x);

X',

~ cummax(x), — cummin(x),

x, is the raw feature value at time t
cummin(x), is the minimum of x from time 0 to t
cummax (x), is the maximum of x from time O to t

x', is the normalized feature value at time t
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3.3.2.4 Target Variable Construction

In order to replicate the decision framework used by day traders who seek trades with favorable risk-reward
profiles, this study does not predict a single price or direction. Instead, it forecasts the maximum upward
and downward price movements over short horizons: 30 seconds, 1 minute, 2 minutes, 3 minutes, 4 minutes,
and 5 minutes after each second-level data point. Each of these 12 prediction targets (6 upswings and 6

drawdowns) is trained using two normalization strategies:

Percentage Change, calculated as:

Pt+A_ Pz

Return; = x 100

Where:

e P, isthe price attime t
e P, , isthe future price at the forecast horizon A seconds ahead

e Return, is the Percentage return between the current and future price

Min-Max Scaling, calculated as:

Piyn— P
cummax(P); — cummin(P),

Return, =

Where:

e P isthe price attime t

e P, , isthe future price at the forecast horizon A seconds ahead
o cummin(P), is the minimum price from time O to t

e cummax(P), is the maximum price from time O to t

e Return; scales the movement relative to the observed price range up to time t
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This produces a total of 24 target variables (2 metrics x 6 horizons x 2 transformations), and these outputs

are used to compute a risk-reward ratio for every potential trade opportunity:

6 ) ;
;=1 W; MaxUpswing;

RR, =
' Z?: 1 W; * MaxDrawdown;

Where:

e RR,is the risk-reward ratio at time t

e w; is the weight assigned to each horizon where weighted w; (WRR) decreases for longer time
horizons, placing greater emphasis on near-term movements and equal weighted w; (EQRR)
assigns each horizon the same weight (w; =[21, 19, 18, 16, 14, 12] or [16.67, 16.67, 16.67, 16.67,
16.67, 16.67])

e MaxUpswing; is the maximum upward price movement over horizon i

e MaxDrawdown; is the maximum downward price movement over horizon i

3.3.2.5 Model Architecture and Training

All predictive models were implemented using LightGBM (Ke et al., 2017), a gradient boosting framework
optimized for speed and memory efficiency. LightGBM was selected based on empirical findings from Hall
(2025) that demonstrate its performance superiority to deep learning methods on large-scale time-series
data. Furthermore, its ability to handle high-dimensional feature spaces without explicit feature selection is
beneficial for this application. Moreover, the M5 (Makridakis, Spiliotis, & Assimakopoulos, 2022) and M6
(Makridakis et al., 2024) forecasting competitions top performing submissions demonstrate that a
combination LightGBM models consistently outperforms other types of ML or DL models.

Each of the 24 target variables is modeled independently using a separate LightGBM regressor and
trained on 80% of the available data. Hyperparameter tuning was conducted using the Optuna framework,

leveraging Bayesian optimization to balance predictive accuracy with computational cost. Training was
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executed on an Amazon EC2 r7i.16xlarge instance, equipped with 512 GB of RAM and 64 vCPUs. This
configuration enabled the entire dataset to be held in memory, which in turn allowed LightGBM to exploit

its highly parallelized CPU-optimized algorithms for efficient training.

3.3.2.6 Evaluation and Testing Strategy

Model profitability was evaluated on a 20% holdout set. The first 10% of this set was used to calibrate trade
entry/exit thresholds based on predicted risk-reward ratios, and the final 10% served as a pure test set to
assess model performance in real-time conditions. Instead of selecting the threshold combination that yields
the absolute highest profit, this study selects the threshold combination that is most centralized within a
broader region of stable profitability. This approach promotes generalizability by reducing the risk of
overfitting to a narrowly optimal point. VVarious experiments were conducted to find the most optimal model

using the following metrics:

Profitability under different risk-reward thresholds

e Sharpe Ratio

e Max Drawdown

o Profit Factor (The ratio of stocks that were positively traded per day to the ratio of negatively traded
stocks per day)

o  Profitability comparison to human day traders

3.4 Results

To evaluate the efficacy of machine learning in day trading, a series of simulation models was constructed
and tested on unseen data from the final 10% of the dataset and optimized using a separate 10% validation
partition. The performance of these models is benchmarked against the findings of Barber et al. (2014), one
of the most comprehensive studies on human day traders to date. According to this study, top-performing

human traders average 28.1 basis points (bps) of profit per day after fees. This figure serves as a baseline
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for evaluating the profitability of the following simulations. Additionally, Chague, De-Losso and
Giovannetti (2019) conducted a study on day traders in the Brazilian equity index futures market, reporting
that only 3% of traders were profitable after fees. The most successful trader in their sample of 1,551
individuals earned an average of $310 per day. While this study does not express profitability in bps and is
therefore not used as a direct benchmark, it reinforces that the findings in Barber et al. (2014) have not

changed significantly in recent years. This further supports the validity of the benchmark used in the study.

Model 1: Idealized Execution Test

This initial experiment is designed as a baseline sanity check to determine whether the model can accurately
identify profitable trading opportunities under idealized conditions. Entry and exit prices are defined using
the close price of the current second as the entry point and the close price at the model-determined exit time

for the exit point. This represents the price of the last transaction in the stock market. While this approach
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Figure 3.1: Heatmap of buy and sell values used to optimize total profit for Model 1
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Cumulative Profit vs. Human Day Trader Benchmark
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Figure 3.2: Cumulative profit and comparison to human day traders for Model 1

is unrealistic in a live trading environment, it provides a reference point for the upper bound of model
potential. Model 1 employs the use of min-max normalized target variables and a WRR ratio. As shown in
Figure 3.1, the heatmap of total profit® across different buy and sell thresholds identified 1.0 as the optimal
value for both. Using these parameters, Model 1 is evaluated on the final 10% of the holdout data.

When evaluated on the test set, Model 1 produced an implausibly high 16,693% average profit per
day (Figure 3.2) due to perfect market timing assumptions. This means that, assuming a $100 stake per
trade, the model would generate an average daily profit of $16,693. The model also achieved this figure
through an unrealistic volume of 31,351 trades daily with zero days of drawdown (Table 3.1) across the
entire period. This corresponds to an average return of 1,669,300 bps per day, which exceeds the human

benchmark by several orders of magnitude. Although informative as a proof of concept, these results are

& The values displayed within the heatmap figures represent the total profit accumulated over the 35-day validation
period.
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not feasible under real market conditions due to slippage and bid/ask spreads, highlighting the need for a
more realistic execution assumption.

Table 3.1: Performance Metrics for Model 1

Metric Buy Sell Average Max Profit Sharpe Average
Threshold Threshold  Profit Per Drawdown Factor Ratio  Trades

Day Per Day

Value 1.0 1.0 166.93 0.0 1.716 40.28 31,351

Model 2: Realistic Execution Test

To address the limitations of Model 1, Model 2 employs a more realistic trading mechanism using quote
data. The entry price of a stock position is defined as the last ask price of the current time period. This
reflects the price at which a seller is willing to transact, ensuring a trade will occur if the model places a
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Figure 3.3: Heatmap of buy and sell values used to optimize total profit for Model 2
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buy order matching this price. Similarly, the exit price is determined by the last bid price of the exit period,
representing a buyer's standing order. A trade is guaranteed if the model places a sell order at this bid price.
The model again uses min-max normalization and the WRR ratio calculation. As illustrated in Figure 3.3,
optimal buy and sell thresholds were determined to be 2.5 and 0.44, respectively. With these settings, Model
2 achieved an average daily return of 1.42 (or 14,200 bps) as illustrated in Table 3.2. This still vastly

outperforms human traders by a factor of approximately 500x (Figure 3.4).
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Figure 3.4: Cumulative profit and comparison to human day traders for Model 2

Table 3.2: Performance Metrics for Model 2

Metric Buy Sell Average Max Profit Sharpe Average
Threshold Threshold  Profit Per Drawdown Factor Ratio  Trades

Day Per Day

Value 2.5 0.44 1.42 -1.928 2.884 11.95 1,069
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Model 3: Percentage Change Normalization

Model 3 tested an alternative approach to target normalization by applying percentage change rather than
min-max normalization. This model continued to use bid/ask quotes for entry and exit execution and WRR
ratio for risk/reward combination. As illustrated in Figure 3.5, optimal buy and sell thresholds were
determined to be 2.1 and 0.44, respectively. Testing shows that although this model remained profitable,
with an average daily profit of 0.53 (5,300 bps) as illustrated in Figure 3.6, performance declined relative
to Model 2, particularly in terms of drawdown, which increased to -5.34 (Table 3.3). These findings suggest
that min-max normalization yields superior signal quality for the learning algorithm both in terms of

profitability and volatility.
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Figure 3.5: Heatmap of buy and sell values used to optimize total profit for Model 3
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Figure 3.6: Cumulative profit and comparison to human day traders for Model 3

Table 3.3: Performance Metrics for Model 3

Metric Buy Sell Average Max Profit Sharpe Average
Threshold Threshold  Profit Per Drawdown Factor Ratio  Trades
Day Per Day

Value 2.1 0.44 0.53 -5.34 2.67 5.82 883

Model 4: Hybrid Normalization

To explore whether combining min-max and percentage change normalization might offer complementary
benefits, Model 4 averaged the RR ratios derived from both methods. Model 4 also uses the same model
combination weighting (WRR) techniques and bid/ask prices as previous models, and the resulting heatmap
of this is shown in Figure 3.7. Despite this hybrid strategy, the results underperformed compared to Model
2, with average daily profits dropping to 0.43 (visualization of this cumulative profit shown in Figure 3.8)

and drawdown dropping to -4.77 (Table 3.4). This indicates that the addition of percentage-based features
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may dilute model performance, and that min-max regularization is the best target normalization technique

as a standalone technique.
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Figure 3.7: Heatmap of buy and sell values used to optimize total profit for Model 4
Table 3.4: Performance Metrics for Model 4
Metric Buy Sell Average Max Profit Sharpe Average
Threshold Threshold  Profit Per Drawdown Factor Ratio  Trades
Day Per Day
Value 2.14 0.472 0.43 -4.77 2.61 4.08 1,213.17
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Figure 3.8: Cumulative profit and comparison to human day traders for Model 4
Model 5: Equal Weighting of RR Components

Finally, Model 5 investigates the effect of the decaying weighting scheme (WRR) used in the computation
of the RR ratio in the preceding four models, where more recent periods are weighed more heavily than
longer periods, by implementing the EQRR ratio as a point of comparison. The model uses min-max
normalization and bid/ask prices for execution, and the resulting heatmap is shown in Figure 3.9. The
performance statistics are displayed in Table 3.5 and the cumulative profit graph is shown in Figure 3.10.
The outcome was the best performance among all five models, with an average daily profit of 2.00 (20,000
bps), moderate drawdown, and the highest Sharpe ratio (15.78) observed in the study. Since this model
demonstrated the best performance, an additional statistic was calculated to provide further context: the
average time per trade, which was 38 minutes and 29 seconds. Overall, this suggests that an equal weighting

approach to RR calculation may provide a more stable and effective signal for day trading in this model.
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Table 3.5: Performance Metrics for Model 5

Metric Buy Sell Average Max Profit ~ Sharpe Average
Threshold Threshold  Profit Per Drawdown Factor Ratio  Trades
Day Per Day
Value 2.3 0.44 2.00 -1.67 2.8717 15.78 999

3.5 Discussion

This section interprets the results of the ML simulations conducted in this study, comparing them to human
benchmarks and evaluating the impact of various design decisions. The experiments demonstrate that a
well-engineered ML system, when applied to high-frequency market data, can significantly outperform
human traders in intraday trading. However, these results also expose several limitations that must be

addressed before these models are considered viable for live trading scenarios.

3.5.1 Comparing Al Performance to Human Traders

The most striking result from this study is the clear performance advantage that ML-based trading strategies
exhibit over human day traders. The best-performing model (Model 5) achieved an average daily return of
2.00 (20,000 bps/day), compared to the 28.1 bps/day benchmark reported by Barber et al. (2014) for elite
human traders. Additionally, this outperformance occurred during a period when the S&P 500 declined by
0.4% (40 bps), suggesting that the model’s success was largely independent of broader market trends. This
performance gap stems from several fundamental differences.

One of these differences is the ML models created here operate on a per-second granularity across the
entire trading day, evaluating thousands of opportunities across hundreds of tickers simultaneously. In
contrast, human traders are constrained by both attention span and reaction time, often focusing on a handful
of stocks per day and often focusing only on the hours immediately following market open. Barber et al.
(2014) note that the top-performing human traders typically focus on a few familiar stocks, suggesting that

this specialization accounts for their limited capacity, an issue that does not constrain ML models.
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Another difference is machines are immune to emotional and cognitive biases that often impair human
decision-making. While human traders might hesitate to re-enter the market after experiencing a significant
drawdown, the model continues executing trades as designed, recovering losses without hesitation, as
evidenced in the simulations. One other difference is ML models can detect microstructure patterns and
subtle statistical signals invisible to human perception. These can include rapid shifts in spread dynamics,

temporary inefficiencies, or high-probability entry conditions that occur only for a few seconds.

3.5.2 Impact of Target Normalization Techniques

The study found that using min-max normalization on the target variable led to superior model performance
and lower variance in returns when compared to percentage change normalization. This is particularly
noteworthy because the model's input features were also min-max normalized, which likely led to more
coherent signals during training and improved generalization. This may indicate that when both are scaled
within the same range, the model can learn patterns more effectively because the relationship between
inputs and outputs remains proportionate. This reinforces the importance of keeping the preprocessing
techniques of the model aligned and provides insight that opens avenues for further experimentation with
alternative normalization schemes. For example, applying a percentage-change normalization to both
features and target variables may better capture the relative movements in asset prices and could help
improve the predictive capability of the percentage change target normalization technique demonstrated in

Model 3.

3.5.3 Impact of Risk-Reward Ratio Weighting

One hypothesis tested in this research was that weighting predictions based on risk-reward ratios, giving
higher importance to near-term forecasts, would enhance performance. However, results indicate that this
added complexity does not translate into improved outcomes. Model 5, which uses equal weighting,
outperforms Model 2, which applies a decaying weight to emphasize nearer-term forecasts. This suggests

that the weighting scheme introduces unnecessary noise into the model, signifying that simplicity in
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weighting is preferable for short-term trading systems. Equal weighting bases its trading decisions on a

more holistic view of future price behavior and thus may allow the model to smooth out erratic signals.

3.5.4 Feature Engineering

The quality and diversity of the feature set, as well as extensive feature engineering, likely serve as the
primary driver of the model’s success. The following are some interesting insights into the model’s most
important features.

Among the 24 trained LightGBM models, the industry classification of a stock emerged as the most
important feature in every model, with country of origin also consistently appearing in the top 10. This
implies that contextual awareness, knowing what type of stock is being evaluated, significantly enhances
the model’s ability to generalize across assets and allows the model to group stocks by similar behavioral
patterns.

Other consistently high-ranking features include:

e Time of day

e Volume Profile metrics, such as the Point of Control (POC) and Value Area, indicating where

trading activity is concentrated.

e Volume Oscillator

These findings highlight the critical role of contextual categorization in replicating how human traders
identify high-probability setups. They also show that volume-based indicators play a central role in

identifying profitable trading setups, especially in intraday markets where liquidity can shift rapidly.

3.5.5 Limitations of Current Model

While the results are promising, the study acknowledges several limitations that impact the real-world
applicability of the proposed models. One major constraint is the assumption of idealized execution. In

Model 1, trades were executed at closing prices, a clearly unrealistic assumption. Model 2 introduced more

83



grounded assumptions using bid/ask prices; however, even this approach omits critical market dynamics
such as order latency and slippage. These factors can significantly degrade performance in live
environments.

Additionally, the model assumes full order fulfillment at the bid or ask price, regardless of the order
book depth. In reality, the number of shares available at a given price may be limited and attempting to
trade large volumes can move the market against the trader. Even though this was in mind and somewhat
accounted for by imposing minimum volume and volatility requirements on the stocks being traded, some
of the smaller cap, lower liquidity stocks may still produce unrealistic trade results and may not be feasible
in practice. An extension of this work would be to incorporate full historical order book (Level II) data to
more accurately model fill probability and slippage.

Furthermore, transaction costs are not accounted for in this study mainly due to the rise of commission-
free trading brokers such as Alpaca, which also serve as the source for most of the market data collected
for this research. While commission-free brokers may seem attractive from a cost perspective, their
execution quality can be inferior due to payment-for-order-flow arrangements, which route trades through
less favorable venues. Conversely, commission-based brokers often provide better order execution and
prices, which may offset the explicit trading fees. Future studies could incorporate broker-specific execution
models to assess how these tradeoffs impact algorithmic performance.

There are also several directions for enhancing the model’s capabilities. For instance, incorporating
short selling would allow the model to trade in both bullish and bearish marketplaces. In addition, the model
currently explores only a limited feature set, and there are virtually infinite combinations of technical
indicators, price patterns, and alternative data sources like news data that could be engineered to improve

predictive performance and robustness.
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3.6 Conclusion

This study set out to investigate whether the state-of-the-art ML techniques for time series analysis laid out
by Hall (2025) can be applied in the domain of intraday trading to outperform human traders. To accomplish
this task, the study constructs a highly granular, feature-rich dataset that mimics the decision-making
process of technical day traders. The dataset is tested through various LightGBM models across different
execution assumptions, target normalization strategies, and risk-reward formulations. The findings indicate
that a properly engineered model can vastly outperform even the most successful human traders
documented in the literature. The best-performing model operates at second-level resolution and can scan
hundreds of stocks in parallel. This approach allows the ML model to hold multiple positions at the same
time, resulting in nearly 1,000 trades executed per day with an average trade duration of approximately 38
minutes from entry to exit. Results from preliminary experimentation forecast average daily returns of over
500 times greater than the benchmark set by Barber et al. (2014).

Among the various design choices tested, min-max normalization of target variables, equal weighting
of predictive horizons, and the inclusion of contextual features like industry, country, and time of day,
emerged as critical drivers of performance. In addition to its modeling contributions, this study also
provides a detailed, end-to-end methodology for data acquisition, preprocessing, and feature engineering,
a component often underexplored in similar research. By outlining the process of sourcing high-frequency
trade and quote data, filtering that data, and engineering both technical and contextual features, this paper
serves as a practical guide for researchers looking to extend this work.

This study acknowledges the limitations in evaluating the profitability of the models created. While
bid/ask-based execution improves realism, it does not fully capture market dynamics such as order book
depth, latency, slippage, and partial fills. Future work should incorporate Level Il order book data, paper
trading simulated environments, and eventually real-world deployment environments to further validate the

findings.
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CHAPTER 4

Conclusion

My overarching objective of this thesis was to examine and demonstrate the effectiveness of advanced ML
methods within the domain of time series prediction and their applicability to complex, real-world tasks
such as financial day trading.

In doing so, this project establishes a comprehensive study that highlights the critical role of domain-
specific knowledge, meticulous data preprocessing, and strategic model selection. It proposes a structured,
iterative framework that starts with TBML models such as LightGBM due to their scalability and
robustness, and then transitions toward more complex DL architectures like RNNs when necessary.
Additionally, the study recommends ensemble approaches to model creation and Bayesian optimized
hyperparameter tuning. This structured approach to time series prediction aims to guide future researchers
by recommending clear, evidence-backed best practices.

This project supports the efficacy of this framework by putting the theoretical insights studied into
practice. Using high-frequency financial data, this project demonstrates that modern ML models when
applied to carefully constructed, feature-rich datasets can significantly outperform even the best-
documented human traders. Key methodological innovations, including min-max normalization, contextual
feature integration, and a nuanced approach to predicting stock movements, were crucial to achieving this
performance. Additionally, the model’s ability to manage many positions in parallel across the entire U.S
stock market, executing close to a thousand trades per day with each lasting about 30 minutes, provides a

unique advantage compared to human day traders, outperforming them by a factor of 500.
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Despite the encouraging predictive results, 1 acknowledge some of the practical limitations related to
execution realism. Future investigations should incorporate advanced market dynamics through Level Il
order book data and simulated or real-world trading environments. Additionally, future work should explore
the efficacy of under researched models in the realm of time series prediction like CatBoost and
Transformer architectures especially in this context of financial markets.

Ultimately, this thesis validates the integration of ML into predictive time series applications and
demonstrates boundless possibilities for innovation across virtually every industry with time series use

cases.
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