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Abstract

Cilia are hairlike organelles found on the surface of most cell types. Cilia segmentation is fundamental
to many biological studies and primary ciliary dyskinesia (PCD) diagnosis. Previously, biologists and
clinicians detected and classified cilia manually, which was time consuming and error-prone. Previous
studies have been using traditional and deep learning-based image segmentation methods for segmenting
cilia. In this study, we propose to use Gabor filters (GFs) to perform feature extraction and train the
U-Net model for cilia segmentation. We show that the composite models with the combination of Gabor
filtered features improve the performances of the U-Net base model. Our best composite model with
Gabor 25 (θ = π/2, σ=1, λ = π*3/4, γ = 0.05, ϕ=0) achieved an IoU of 0.37, almost 8% of improvement
of the performance of the base model. By comparing the performances of the GF composite model
with previous studies analyzing the cilia video set, we show that the presented framework outperformed
previous models in terms of IoU score. Using GF as a data augmentation tool can help to enhance the
robustness of features, and achieve a better performance.
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Chapter 1

Introduction

Cilia are hair-like structures found on the surface of nearly all eukaryotic cells in vertebrates. Cilia play an
important role in many biological processes such as fluid movement and cell locomotion. In the airway,
motile cilia beat in a coordinated manner to propel the pathogens and debris out of the airway. Figure
1.1 shows an example airway cilia image. The coordinated beating of cilia plays a key role in maintain-
ing effective mucociliary clearance (MCC), which is the primary innate defense mechanism of the lung
(Bustamante-Marin & Ostrowski, 2017). Dysfunction of cilia causes severe diseases known as ciliopathies,
including primary ciliary dyskinesia (PCD) and polycystic kidney disease (PKD), which lead to chronic
lung infections and fluid-filled cysts respectively (McConnachie et al., 2021; Waters & Beales, 2011). There-
fore, the effective analysis of ciliary function is critical in the diagnosis of cilia-related diseases. Currently,
the assessment of ciliary function and characteristics remains challenging, and a fundamental part of
overcoming this challenge is effective cilia segmentation.

1.1 Introduction to Cilia
Cilia can be broadly divided into two types: motile and non-motile (also known as primary cilia) (Mitchi-
son & Valente, 2017). Primary cilia have sensory functions and play an important role in signal trans-
duction (Goetz & Anderson, 2010). Motile cilia are mostly found on the apical surface of epithelial cells
in the airways, brain, and oviduct (Brightman & Palay, 1963; Dirksen, 1971; Jeffery & Reid, 1975).The
coordinated beating pattern of motile cilia sweeps the luminal contents over the epithelial surface. In the
human respiratory tract, a ciliated epithelium has 200-300 motile cilia with a surface density around 5-8
cilia/µm (Salathe, 2007; Spassky & Meunier, 2017; Tilley et al., 2015). Motile cilia in the airways are the
major functional components of MCC, which is the the primary innate defense mechanism of the lung
(Bustamante-Marin & Ostrowski, 2017). In the airways, cilia coordinate with mucus to transport foreign
particles out the the airway.

Dysfunction of cilia causes severe diseases known as ciliopathies, including PCD and PKD, which
lead to chronic lung infections and fluid-filled cysts respectively (Hildebrandt et al., 2011; McConnachie
et al., 2021; Waters & Beales, 2011). PCD is an autosomal recessive genetic disease characterized by ciliary
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Figure 1.1: Airway cilia sample image. Left, a sample frame image of a cilia video. Right, diagram showing
ciliated epithelial cells.

dysfunction and clinical features including chronic respiratory infection, heterotaxy and infertility (Ho-
rani et al., 2016; Knowles et al., 2013). Mutations in cilia-related genes result in abnormalities in ciliary
structure and function in PCD patients. Defects in ciliary structure can be detected using transmission
electricity microscope (TEM). For example, DNAH5 mutations are associated with outer dynein arm
(ODA) defects (Omran et al., 2000). However, TEM analysis can only confirm ciliary structure using
fixed samples. In fact, 30% PCD patients have normal or near-normal ciliary ultrastructure but abnormal
ciliary function (Greenstone et al., 1983; Knowles et al., 2012). The analysis of cilia motion using high-
speed video microscopy aids in the diagnosis of PCD. Reduced ciliary beat frequency (CBF) and abnormal
ciliary beating such as immotile, stiff or circular can result in compromised MCC function, leading to
chronic airway infection (Chilvers et al., 2001). CBF can be calculated using fast Fourier transform (FFT)
or optical flow-based methods (Eshel et al., 1985; Kim et al., 2011; Smith et al., 2012). The assessment of
ciliary function still largely relies on expert reviewers, which is time-consuming and error-prone. Cilia are
tiny structures and only appear in a small percentage of an image, therefore the segmentation of cilia can
help to reduce noisy background and mitigate human errors.
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1.2 Image Segmentation
Image segmentation is a computer vision technique of splitting image data into multiple image segments,
which reduces the data complexity and allows for further processing and analysis. Image segmentation
has been used in many fields including biomedical imaging, robotics, and autonomous vehicles.

In biomedical studies, cell segmentation is fundamental for image-based cell biology research, which
drives important fields such as diagnostics and drug-discovery. Cell segmentation, or identifying and
splitting an image domain into cell instances, helps scientists to quickly analyze and evaluate biological
features such as cell size, count, and shape. Traditionally, biologists or researchers had to manually label
these targets, which is time-consuming and error-prone. In recent years, many tools have been developed to
automatically segment targets of interest, which help researchers to acquire annotated data more efficiently.
Those tools are built based on either traditional image processing methods, such as thresholding and
clustering (Cheriet et al., 1998; Lauring et al., 2019), or deep learning-based methods such as Labkit (Arzt
et al., 2022) and Cellpose (Stringer & Pachitariu, 2022; Stringer et al., 2021). However, those tools often
provide models which are pre-trained on specific datasets, limiting their application to other biomedical
tasks.

Cilia segmentation is used to detect and segment cilia from the images. Segmenting cilia can help to
reduce background information and filter useful information for future quantitative cilia analysis or cilia
motion phenotyping. Cilia are tiny compared to the other cellular compartments, therefore it is difficult
to segment cilia from differential interference contrast (DIC) images. To detect cilia, many approaches
have been developed (e.g. ACDC (Lauring et al., 2019), CiliaQ (Hansen et al., 2021)), however, those
tools either rely on user’s manual correction or fluorescent labels to identify cilia, and therefore, would
not work on DIC images for cilia segmentation. Previous studies have used traditional image processing
and deep learning-based methods for cilia segmentation of DIC images (Lu et al., 2018; Quinn et al., 2015;
Zain et al., 2022; Zain et al., 2020).

1.2.1 Traditional image segmentation techniques
Traditional image segmentation techniques are low-level operations utilizing classic image processing
methods and optimization algorithms. Those methods take a local or global view of the features and gain
a segment map by comparing pixel values. Common image processing techniques include edge-based,
threshold-based, region-based, cluster-based and watershed segmentation.

For cilia segmentation, the majority tools utilizing traditional techniques are designed to analyze
fluorescent images, where cilia are stained with fluorescent labels. For example, automated cilia detection
in cells (ACDC) utilized adaptive thresholding and Gaussian filter to detect fluorescence-labeled cilia
(Lauring et al., 2019). CiliaQ is a software with a module utilizing various traditional techniques such
as standard intensity thresholding and canny edge detection for cilia segmentation in fluorescent images
(Hansen et al., 2021). For segmenting cilia in DIC images, Quinn et al. used intensity-based thresholding
(Quinn et al., 2015) to segment cilia area from frame images. In this study, the authors calculated the
standard deviation of the time-varying intensity changes at each pixel value and constructed a histogram.
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The distribution peak is set as the pruning threshold value to segment cilia. This method achieves simple
and fast segmenting map, however, the threshold value is specific to each experiment setting.

1.2.2 Gabor filter
Gabor filters (GFs), named after Dennis Gabor (Gabor, 1946), are bandpass filters applied to many image
processing tasks, such as texture segmentation (Dunn et al., 1994; Weldon et al., 1996), edge detection
(Mehrotra et al., 1992), and image representation (Porat & Zeevi, 1988). It is essentially a Gaussian modu-
lated by a sinusoidal plane with frequency and orientation that can be used to separate edges and textures
in an image. The advantage of using GFs is that the representations are similar to those of the human
visual cortical cells. In addition, GF-based feature extraction has been extensively explored for texture
analysis, face recognition, and fingerprint identification (Grigorescu et al., 2002; Idrissa & Acheroy, 2002;
Kong et al., 2003; Lee, Wang, et al., 1999; Rahman & Bhuiyan, 2008). GFs are highly flexible in the
function shape because of a set of parameters. By manipulating the parameters of GF, a set of filters can
be generated with combinations of multiple wavelengths and orientations. Cilia are hair-like structure,
which can be viewed as specialized texture with certain frequency and orientation, so we propose to apply
Gabor filter for cilia feature extraction, which has not yet been explored.

1.2.3 Deep learning-based methods
With the rapid development of artificial intelligence (AI) and deep learning algorithms, many approaches
have been established for the study of cilia (Bansal et al., 2021; Djenoune et al., 2023; Lu et al., 2018;
Quinn et al., 2015; Zain et al., 2020). Bansal et al. used AI-based module to detect cilia and measure
length, fluorescence intensity and co-localization (Bansal et al., 2021). However, this module only works
on fluorescent images, where cilia are labeled in green or red channel. To segment cilia, methods such as
densely-connected convolutional networks (DenseNets) (Lu et al., 2018), fully connected DenseNets (FC-
DenseNets) (Zain et al., 2020) have been proposed to segment cilia on DIC images. In recent years, the
U-Net (Ronneberger et al., 2015) has become a dominate deep learning architecture for biomedical image
segmentation tasks. U-Net consists of two parts: the encoder, which is used to extract relevant features
from images, and the decoder, which takes the extracted features and reconstructs a reconstruction a
segmentation mask. After the convolutions in the contracting path, a rectified linear unit and a 2x2
max pooling are applied for downsampling. Although U-Net is able to perform feature extraction, the
modification of a specialized architecture is a difficult task. Zain et al. used the U-Net backbone for
segmenting cilia and achieve an Intersection over Union (IoU) of 0.399 (Zain et al., 2022). However, the
performance of the U-Net architecture on the cilia dataset is still not ideal. The authors propose to use
two low-level feature extraction, zero-phase PCA sphering (ZCA) and sparse autoencoder (SAE), to aid
the U-Net base model. ZCA can normalize the data using the significant spacial features across the dataset
and ’rotate’ the data through the dataspace. SAE is a deep learning model with an additional constraint to
reconstruct images as low-level representation. Both ZCA and SAE are used as data augmentation tools
that can improve the performances of the U-Net segmentation model by 10%.
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1.3 Cilia Data
For cilia segmentation, we used cilia data from our previous studies (Lu et al., 2018; Quinn et al., 2015)
containing 325 videos of ciliary motion and their corresponding ground-truth masks. Briefly, the cilia
videos were obtained using nasal epithelial tissues from patients with ciliopathies and healthy controls.
DIC videos were recorded at 200 frames per second for 1.25 seconds using a Phantom v4.2 high speed
camera. Manual masks were drawn using ITK-SNAP software with four annotation classes: side-view
cilia, top-down cilia, cell body, and background. For cilia segmentation tasks, we simplify the masks into
cilia and non-cilia. For image preprocessing, we cropped the first frame of each video and its manual masks
into 128x128 patches and only selected the patches with more than 5% cilia area.

1.4 Contributions
Gabor filter (GF) is widely used for recognizing patterns with different orientations and frequencies for
texture analysis, therefore we propose to use GF for highlighting and extracting cilia features. Since the
performances of current deep learning-based approaches for cilia segmentation are not ideal, we propose
to combine GF with U-Net to improve model performances. Although U-Net itself can perform feature
extraction and localization, U-Net architecture capability is limited in localizing objects with non-standard
shape (Shahedi et al., 2020). Additionally, modifying the architecture or layer is an intricate task.

To improve the performances of the U-Net model in cilia segmentation, we proposed to use GFs for
feature extraction and combine them with the U-Net framework for generating cilia segmentation maps.
We generated a set of GFs and used random forest to select GFs with high feature importance based on
mean decrease in impurity. The Gabor filtered feature maps are concatenated to the original image as
an additional channel to train the U-Net model. The addition of features extracted by our selected GFs
improved the performances of the base model. Our best composite model with Gabor 25 (θ = π/2, σ=1,
λ = π*3/4, γ = 0.05, ϕ=0) achieved an IoU of 0.37, almost 8% of improvement.

1.5 Structure of the thesis
The organization of the thesis is as follows. Recent and related work in image segmentation is reviewed
in Chapter 2. In Chapter 3 we describe the cilia dataset and the methodology of the proposed study. In
Chapter 4, we present the experimental results. Finally, in Chapter 5 conclusions are drawn and future
work is proposed.
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Chapter 2

Related Work

Image segmentation has many practical applications including biomedical imaging, autonomous vehi-
cles, facial recognition, and traffic control systems. There are two types of image segmentation: semantic
segmentation, which detects multiple objects within a category as one entity, and instance segmentation,
which distinguishes between different instances of the same category. Semantic image segmentation is
important for image analysis in removing background noises, improving precision and area detection. It
is also a difficult task in computer vision and digital image processing. Traditional approaches such as
thresholding and watershed compare pixel values in order to achieve the segment map. With the develop-
ment of deep learning and neural networks, there are many tools and architectures developed for image
segmentation.

Our group is interested in cilia segmentation, which is to detect and segment cilia from images. Cilia
segmentation is the fundamental step for many biological studies and PCD diagnosis. Visualization of
ciliary movement is critical in diagnosing cilia-related diseases. Previously, biologists and clinicians used
to detect and classify cilia manually, which is time consuming and error-prone. In recent years, there have
been attempts to segment cilia using traditional and deep-learning based methods (Hansen et al., 2021;
Lauring et al., 2019; Lu et al., 2018; Quinn et al., 2015; Zain et al., 2022; Zain et al., 2020).

This chapter is organized as follows: 1) traditional image segmentation methods, 2) deep learning-based
methods.

2.1 Traditional image segmentation methods
Traditional image segmentation techniques are based on threshold, edge, region, and cluster to divide an
image into areas of similar nature. Conventional methods produce fast and simple segmentation masks.
To detect features or characteristics in images, a large number of studies have reported numerous manually-
designed, or handcrafted, features with variations in scale and illumination. Handcrafted algorithms such
as Gabor (Gabor, 1946), Histogram of Oriented Gradients (HOG) (Dalal & Triggs, 2005), and Scale-
invariant feature transform (SIFT) (Lowe, 2004) are commonly used to extract features from images. The
drawbacks of image segmentation with traditional methods are that they are not flexible and exhibiting
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low accuracy. Moreover, they often require manual labor to fine-tune parameters for specific segmenting
tasks.

For cilia segmentation, Zhang et al. utilizes two thresholding-based methods to segment fluorescent
signal-labelled cilia (Zhang et al., 2019). Specifically, they used the Transflour module and MultiWave-
length Scoring (MWS) module within MetaXpress software. Both modules require the users to set pa-
rameters such as size, intensity and area to threshold cilia signal from the fluorescent images. Automated
cilia detection in cells (ACDC) is a software for automated cilia detection in fluorescent images (Lauring
et al., 2019). To detect cilia, the authors applied the Gaussian filter as an adaptive thresholding method
to binarize the cilia image. Then the directional score parameter is applied as a threshold for optimiz-
ing cilia detection. This method achieved a high F1 score of 0.96 on fluorescently-labeled cilia images.
CiliaQ is an open-source software for automatic quantification of ciliary function in 2D and 3D images
(Hansen et al., 2021). The first step of CiliaQ workflow is to segment images into cilia and background
using classic algorithms such as Renyi Entropy or Canny3D. However, this approach can only provide
a coarse segmentation and require user’s input for manual correction. Therefore, the above-mentioned
thresholding methods have very limited application for the study of cilia. They can only be applied to
fluorescent images where cilia are stained with a specialized antibody against Arl13b or acetylated alpha-
tubulin. Those labeled cilia signals are acquired in a channel different from the rest of cells. For a live cell
setting such as differential interference contrast (DIC), thresholding methods work poorly to segment
cilia. In a study analyzing cilia video data, Quinn et al. (Quinn et al., 2015) designed a pruning method to
segment cilia and discard the noisy background. The prune algorithm is an intensity-based thresholding
method by calculating the standard deviation of the time-varying changes at each pixel and setting an
adaptive threshold to filter out background pixels. This method achieves a cilia segmented map quickly
with decent accuracy. However, the threshold of the prune method is adaptive and specific to each video
set, therefore it is not ideal for batch work.

Gabor filters (GFs), named after Dennis Gabor, are bandpass filters used in image processing. It is
essentially a Gaussian modulated by a sinusoidal plane with frequency and orientation (Gabor, 1946).
After being convolved with GFs, patterns in images are highlighted at edges and points where the texture
changes. GFs are extensively used for pattern analysis and feature extraction due to its reliability in lo-
calizing spatial-frequency domain properties. There are several advantages of GFs: first, the frequency
and orientation representations of GFs are similar to those of the human visual system; second, GF can
achieve fast and robust segmentation results by varying parameters according to the specific visual objects
(Tadic et al., 2021); third, GFs specialize in detecting small, localized stretches or blobs.

Traditional methods are often combined with classifiers such as random forest and Support Vector Ma-
chine (SVM) for image segmentation to increase accuracy and flexibility. Nguyen-Thanh et al. proposed
to use an orientation adaptive GF to extract features and implement with k-nearest neighbor (k-NN),
SVM and neural network-based classifiers for mitochondria segmentation (Nguyen-Thanh et al., 2019).
Their proposed method showed high accuracy in segmenting mitochondria. Since cilia can be viewed as
specialized hair-like texture with certain frequency and orientation, we propose to use GF for cilia feature
extraction.
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2.2 Deep learning-based methods
With the rapid advancements in deep learning, great efforts have been made in segmenting biological
images. For cell segmentation, several bio-image segmentation tools including StarDist (Schmidt et al.,
2018), PlantSeg (Wolny et al., 2020), Cellpose (Stringer et al., 2021), and LABKIT (Arzt et al., 2022) have
achieved great performances. However, most of the state-of-the art segmentation methods require a large
dataset with human-labelled ground-truth data for training.

Fully Convolutional network (FCN) was first introduced by Long and colleagues (Long et al., 2015).
FCN can train end-to-end and use skip connections to enhance image segmentation. U-Net (Ronneberger
et al., 2015) contains encoder layers and decoder layers. The encoder block reduces the spatial dimensions
of the image, while the decoder repairs the details in the spatial dimension of the image. The architecture
of standard U-Net is shown in figure 2.1. However, the drawback of U-Net is that it fails to separate
objects when they are crowded or overlapped. The usage of skip connections would need redundant
information, causing training overhead.

Figure 2.1: Schematic of a U-Net architecture (Ronneberger et al., 2015)

In the StarDist method, the cell nuclei is localized via star-convex polygons instead of bounding boxes,
then the U-Net-based framework is trained to predict cell instances as polygons (Schmidt et al., 2018). The
advantage of Stardist is that it can segment crowded cells with high accuracy. However, StarDist works for
segmenting roundish-shape targets, thus it can not be used to segment rod- or hair-like structures. PlantSeg
uses a 3D U-Net to predict cell boundaries of dense plant tissues on images from confocal and light
sheet settings (Wolny et al., 2020). It achieves high accuracy in segmenting plant and non-plant samples.
Cellpose is a deep learning-based pipeline utilizing a modified U-Net as a backbone for cell segmentation
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(Stringer et al., 2021). The pre-trained models provided by the Cellpose platform were trained on a broad
set of images with cells of different shapes and types and thus can not provide a generalized high quality
cell segmentation. Cellpose 2.0 (Stringer and Pachitariu, 2022) solves this problem by providing a zoo
of pretrained models and a human-in-the-loop pipeline. This approach significantly reduced manual
segmentation work to 100-200 regions of interest (ROIs) while achieved near-maximal performance.

The segmentation of biological images is highly diverse due to different imaging techniques, cell shapes
and structures. For cilia segmentation, Ram et al. introduced the convolutional neural random forest
classifier to classify the primary cilia in fluorescence images. Input images are fed in a CNN model with
the U-Net architecture, and then the learned features are passed to the random decision forests classifier.
Their approach achieved the Fβ - score of 0.9102, outperforming the k-means and multi-layer perceptron
(MLP) classifiers (Ram et al., 2018).

Our group is interested in segmenting motile cilia, which are highly overlapping hair-like structures
with low convexity and hence extremely difficult to segment. Besides, cilia motility videos are usually
recorded as DIC images, which often achieves poor segmenting results due to low contrast. Quinn et al.
developed a computational pipeline to classify cilia motion (Quinn et al., 2015). In this framework, ciliary
motion is considered as dynamic texture, which can be estimated by using autoregressive (AR) model
with the optical flow features. Lu et al. developed an end-to-end pipeline utilizing a densely-connected
convolutional network (DenseNet) with 74 layers to automatically recognize cilia area (Lu et al., 2018).
This proposed framework achieved an accuracy of 86.2% in cilia segmentation. Zain et al. modified Lu’s
model and built a fully Connected DenseNet with 103 layers. This model achieved a IoU score of 33.06%
and a accuracy of 88.3% (Zain et al., 2020). In a most recent work, Zain and Miller combined zero-phase
PCA sphering (ZCA) and Sparse Autoencoders (SEA), which served as low level feature extraction, with
U-Net. This new model achieved a 10% improvement with an IoU of 0.441 and an accuracy of 0.77 (Zain
et al., 2022). Table 2.1 summaries the above mentioned cilia segmentation techniques.

To improve the performances of deep learning models, several studies incorporate low-level feature
extraction to aid deep learning frameworks. Luan et al. proposed to incorporate Gabor filters into the
deep convolutional neural networks (DCNNs) (Luan et al., 2018). By manipulating GF parameters, the
proposed Gabor Convolutional Networks (GCN) framework effectively reduced the training complex-
ity and improved performances over several benchmarks. Reyes and colleagues proposed an approach
combining GF with U-Net for image segmentation (Reyes et al., 2022). They applied the framework on
two benchmark datasets, the ISLES 2018 dataset and the 2018 Atrial Segmentation Challenge dataset, and
outperformed U-Net and other state-of-the-art architectures in mIoU and Dice scores. However, this
work is relatively computational expensive and not efficient because the input contains the original dataset
plus additional features extracted by a whole set of GFs. Some of the filters extract meaningless feature
information compared to the other filters in the bank. An optimized GF bank with selected parameters is
critical in the performance of the GF-embedded U-Net architecture for specific segmentation tasks.
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Chapter 3

Methodology

In this work, I propose to use Gabor filters (GFs) to extract cilia features and apply the features to U-Net
for cilia segmentation. For chapter 3, I will introduce the details of the dataset, Gabor filters, U-Net and
the training strategies.

3.1 Cilia Dataset
The cilia dataset is sourced from our previous study (Quinn et al., 2015). Briefly, the cilia dataset contains
325 videos of nasal cilia motion acquired from patients as well as healthy controls. Cilia videos were
recorded at 200 frames per second (fps) in grayscale. The corresponding ground-truth masks are manually
generated using ITK-SNAP from Lu’s study (Lu et al., 2018). Figure 3.1 shows an example of original
image patch and its manual mask patch. For data preprocessing, the frame images and their corresponding
masks are cropped into 128x128 patches. Since cilia are tiny structures in the frame images, we exclude
cropped patches with less than 5% cilia area. Overall, our cilia dataset contains 1267 patches and their
corresponding masks. Images are normalized to [0, 1] and masks are also rescaled to 0 to 1.

Figure 3.1: Example of a cilia image patch (left) and its ground-truth mask patch (right)
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3.2 Gabor Filter
Gabor filter (GF), named after Dennis Gabor, is a linear filter commonly used for feature extraction,
texture analysis, edge detection etc. The Gabor wavelets are defined as follows:

g(x, y;λ, θ, ψ, σ, γ) = exp([−x
′2 + γ2y′2

2σ2
)exp[i(2π

x′

λ
+ ψ)]

x′ = x cos θ + y sin θ

y′ = −x sin θ + y cos θ

where λ represents the wavelength of the sinusoidal component, θ represents the orientation from
normal to the parallel stripes of the Gabor function, ϕ represents the phase offset, σ is the standard
deviation of the Gaussian envelope and γ is the spatial aspect ratio specifying the ellipticity of the support
of the Gabor function.

A response matrix can be obtained by convolving the original image I(x,y) with the GF as follows:

R(x, y;λ, θ, ψ, σ, γ) =
∑
x′

∑
y′

I(x− x′, y − y′)g(x′, y′;λ, θ, ψ, σ, γ)

By manipulating the parameters λ, θ, ψ, σ and γ, a GF bank can be generated with a set of different GFs.
In this study, a set of 54 GFs with various parameters is generated for the cilia image so that the outputs

highlight cilia patterns and edges. The generated Gabor bank of 54 filters is shown in Figure 3.2. This
Gabor bank is achieved with the following parameters: θ: {π/4, π/2, π*3/4}; σ: {1,3}; λ: {π/4, π/2, π*3/4};
γ: {0.05, 0.25, 0.5}; ϕ: {0}. The kernel size is set as 9.

By applying the GF bank to a cilia image, we achieve a set of convoluted outputs. Figure 3.3 shows an
example of the GF bank applied to a cilia sample image. The output figures showed a variety of highlighted
patterns and edges based on the orientation of GFs. Some of the filtered images present highlighted cilia
textures. There are also meaningless filtered outputs with all 0-value pixels.

3.3 Random Forest
Random forest (RF) is a popular machine learning tool for regression and classification introduced by
Amit and German (Amit & Geman, 1997). RF consists of a multitude of decision trees that operate as an
ensemble, thus handling a variety of visual features. RF has high computational efficiency in training and
classification and avoids overfitting. During the training process, each tree randomly picks the features,
which provides the opportunities to find the feature that influences the majority of trees. Therefore,
we use RF to find the features and their corresponding GFs with maximum importance. Due to high
computational cost, we did not apply all filtered images as input for the U-Net model. Instead, we use RF
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Figure 3.2: Gabor filter bank

for classifying the generated feature vectors and selecting the GFs that give us the distinguishing features
of cilia at the spatial location.

Figure 3.4 shows the flow diagram of using RF to select GFs with high importance. Specifically, we
extract features through the bank of 54 GFs with various parameters and then we train RF with the original
image vector and 54 feature vectors. The most relevant features and their GFs that contribute most to the
segmentation accuracy are selected for training the U-Net model.

3.4 U-Net for cilia segmentation
The standard U-Net is used as the backbone of the model. To begin with, we only train the U-Net model
with the original image as a single channel input. For the composite models with feature extraction, we
utilize the selected GFs with modified parameters. The Gabor filtered image is stacked to the original image
as the second channel to train the U-Net model. The original U-Net paper (Ronneberger et al., 2015)
used stochastic gradient descent optimizer, but here we use Adam (Kingma & Ba, 2014) optimizer and
binary cross entropy as a loss function. The Adam algorithm is an extension to stochastic gradient descent
for training deep learning models. Adam tends to converge faster and achieves better results in image
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Figure 3.3: Illustration of Gabor filters applied to a cilia sample image

segmentation tasks (Anand et al., 2022; UYSAL et al., 2022). The dataset is split into 8:2 for training and
testing. During the training process, the training set is randomly split into 8:2 for training and validation,
respectively. We also use k-fold cross validation with k as 5.

3.5 Evaluation metrics
For image segmentation task, we use metrics including Intersection over union (IoU) or Jaccard similarity,
accuracy, precision, recall and F1 or Dice similarity coefficient to evaluate our model performances of cilia
segmentation.

IoU, also referred to as Jaccard similarity, can evaluate how similar a predicted mask is to the ground-
truth mask. It measures the number of pixels common between the target and prediction masks divided
by the total number of pixels present across both masks. IoU score ranges between 0 to 1, where 0 means
no overlap and 1 indicates perfect overlap. IoU can be calculated as following:

IoU =
Area of Overlap
Area of Union

Pixel accuracy is simple to report and commonly used for semantic segmentation. It is a metric to
compare each pixel with the ground-truth mask. There are two drawbacks of accuracy for semantic
segmentation. First, it can provide misleading results when there is a class imbalance. Second, pixel
accuracy is informative as a standalone metric.
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Figure 3.4: Random Forest flow diagram

We also use confusion matrix to evaluate the accuracy of the model’s performance. A confusion
matrix is generated using scikit-learn and presents four numbers: true negative (TN), false negative (FN),
false positive (FP), true positive (TP) (Figure 3.5). From the confusion matrix, we can calculate metrics
including precision, recall and F1. Precision is a measure of the quality of the predictions, indicating how
precise the model is. Recall is a ratio of predictions of the number of true positives by ground truth to
the total number of positive samples. Higher recall score indicates more positive samples the model has
detected. F1 score is a harmonious mean of precision and recall. The accuracy, precision, recall, and F1 (or
Dice) scores are computed as following:

Accuracy =
TP + TN

TP + FP + FN + TN
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Figure 3.5: Confusion Matrix

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 =
2 ∗ Precision ∗Recall
Precision+Recall

3.6 Code availability
Python code for Gabor filter generation and U-Net architecture is available at https://github.com/lizchenx/
Gabor_UNet_Cilia_Segmentation.
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Chapter 4

Experiments

4.1 Cilia Dataset
In this study, we use the cilia dataset containing 325 grayscale frame images and their corresponding
masks with various sizes. All the images and ground-truth masks are from Lu et al., 2018; Quinn et al.,
2015. For image processing, the images and their masks are cropped into small patches of 128x128. After
cropping, we remove the patches containing less than 5% cilia area. Finally, the dataset has 1267 patches
and corresponding mask patches. In addition, the dataset is split in a ratio of 8:2 for training and testing
set correspondingly. During the training, 20% of the data is split for validation purpose. We also perform
k-fold cross validation where k is set to 5. Table 4.1 shows the number of images and masks for training,
validation and test.

Table 4.1: The number of images and masks for training, validation and testing
Type Training (# of images) Validation (# of images) Test (# of images) Total (# of images)

Images 810 203 254 1267
Masks 810 203 254 1267

4.2 Selected GFs
Previously, we generated a set of 54 GFs and used Random Forest (RF) to select a list of meaningful GFs.
Figure 4.1 shows samples of applying RF for selecting GFs based on feature importance. Several of the
GF feature vectors rank higher than the original image in feature importance for cilia segmentation. We
select the GFs with high feature importance, reducing the set of GFs from 54 to 8. The list of GFs and
their parameters is provided in Table 4.2. GFs with selected combination of parameters are applied to the
cilia images for feature extraction. Figure 4.2 shows sample images filtered with the selected GFs. The
extracted features are then concatenated with the original image as an additional channel for the input.
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Figure 4.1: Feature importance of GFs on sample images

4.3 Experimental Setup
For the U-Net and composite models, we run the experiments for a total of 250 epochs with a batch size
of 16. We use Adam optimizer and binary cross-entropy (BCE) loss function. For learning rate, we use
learning rate monitor from PyTorch Lightning, which automatically monitor and logs learning rate for
learning rate schedulers with a log rate of 10 during training. We train our models on 2x NVIDIA TITAN
X GPU cards and NVIDIA Quadro RTX 5000.

For the FC-DenseNet model, we train the model for 100 epochs with a batch size of 12, learning rate
of 0.001, learning rate decay of 0.995, and weight decay of 0.0001. The model was trained with the Adam
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Table 4.2: Selected Gabor filters
Gabor filter names θ σ λ γ ϕ

Gabor 7 π/4 1 π*3/4 0.05 0
Gabor 22 π/2 1 π/2 0.05 0
Gabor 23 π/2 1 π/2 0.25 0
Gabor 24 π/2 1 π/2 0.5 0
Gabor 25 π/2 1 π*3/4 0.05 0
Gabor 26 π/2 1 π*3/4 0.25 0
Gabor 27 π/2 1 π*3/4 0.5 0
Gabor 43 π*3/4 1 π*3/4 0.05 0

Figure 4.2: Gabor filter comparison examples.

optimizer and cross-entropy loss. To implement the ZCA/SAE composite model, we set the parameter ϵ
of ZCA as 1e-4, α of SAE as 1e-3. During the training process, we use BCE loss function with a learning
rate of 1e-3 and batch size of 12 for 225 epochs.

4.4 Results
The experiments are conducted on the training set from the cilia dataset. We first trained U-Net with orig-
inal image patches, then we trained U-Net model with the original image concatenated with an additional
Gabor-filtered image. We evaluated the models with five metrics: Intersection over Union (IoU) or Jaccard
score, accuracy, F1 (or Dice) score, precision and recall. Table 4.3 provides a summery of experiments
performed with selected GFs. The U-Net base model trained with the original image as a single channel
achieved an IoU of 0.3461, accuracy of 0.8527, F1 of 0.4590, precision of 0.5976 and recall of 0.4394. Sev-
eral of our GF models (e.g, Gabor 7, 22, 24, 25, 43) improved the performances with a higher IoU score
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than that of the U-Net base model. The composite model with Gabor 25 achieves the highest scores of
IoU (0.3726), F1 (0.4994) and recall (0.5161). The composite model with Gabor 26 achieves the highest
precision of 0.6201. We also calculated the average scores of our composite models for each metric, the
average performance of composite models outperformed the base model in terms of IoU, F1, and recall.

Table 4.3: Performances of Gabor U-Net models over the cilia dataset
Model Evaluation Metrics

IoU Accuracy F1 Precision Recall
U-Net 0.3461 0.8527 0.4590 0.5976 0.4394
Gabor7+U-Net 0.3528 0.8398 0.4709 0.5522 0.4795
Gabor22+U-Net 0.3553 0.8408 0.4795 0.5662 0.4852
Gabor23+U-Net 0.3423 0.8402 0.4605 0.5561 0.4635
Gabor24+U-Net 0.3519 0.8473 0.4751 0.5997 0.4648
Gabor25+U-Net 0.3726 0.8434 0.4994 0.5801 0.5161
Gabor26+U-Net 0.3286 0.8486 0.4468 0.6201 0.4173
Gabor27+U-Net 0.3433 0.8451 0.4620 0.5825 0.4531
Gabor43+U-Net 0.3532 0.8443 4804 0.5804 0.4798

Figure 4.3 shows a qualitative comparison of cilia segmentation results. The U-Net base model fails
to predict the cilia area that is indicated in the ground-truth mask (Sample 1, 2 and 3). For Sample 4, the
U-Net base model predicts non-cilia area as cilia. The composite models with our selected GFs tend to be
more accurate in the location of the the segmentation mask. However, in some samples, a few composite
models either include false positives or fail to predict the cilia areas.

Figure 4.3: The visual comparison of cilia segmentation outputs

Previous models for segmenting cilia from DIC images are trained on different cilia sets and the data
were pre-processed with different strategies. To compare our model performances with previous studies,
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we also implemented previous studies utilizing threshold method (Quinn et al., 2015), FC-DenseNet (Lu
et al., 2018; Zain et al., 2020), U-Net (Lu et al., 2018; Zain et al., 2022), and ZCA/SAE with U-Net (Zain et
al., 2022) using the same training and testing sets. Table 4.4 summaries the comparison of segmenting the
same cilia dataset with different algorithms. We compared the performances for segmenting cilia using non-
deep learning method (intensity-based thresholding) and deep-learning methods, and we found that deep-
learning methods outperformed the thresholding method. Gabor 25 composite model outperformed all
the other deep-learning methods. Figure 4.4 shows a visual comparison of segmentation results achieved
from above mentioned methods. For the intensity-based thresholding method, we set the threshold as 1.5
and applied the method to the testing set. ZCA (1e-4)/SAE (1e-3) composite model did not outperform
U-Net base model because the parameters for ZCA and SAE from the original study might not be the
optimal parameters for the current dataset. Overall, the Gabor 25 composite model outperforms the
aforementioned methods by achieving an IoU of 0.3726, almost 8% improvement of the U-Net base
model.

Table 4.4: Performances comparison over the cilia dataset
Model Evaluation Metrics

IoU Accuracy F1 Precision Recall
Intensity-based thresholding 0.3170 0.8239 0.4508 0.5757 0.4319
FC-DenseNet 103 0.3180 0.8034 0.4472 0.4732 0.5035
U-Net 0.3461 0.8527 0.4590 0.5976 0.4394
ZCA/SAE+U-Net 0.3185 0.8341 0.4388 0.5616 0.4382
Gabor25+U-Net 0.3726 0.8434 0.4994 0.5801 0.5161

4.5 Discussion
In this study, we proposed to use GF to extract features and then train the U-Net model for cilia segmen-
tation. Overall, five out of our eight composite models achieved better performances in terms of the IoU
score than the U-Net baseline model. Some of the composite models with GF extracted features predicted
more accurate segmentation mask than the U-Net base model. Cilia segmentation is important in the
studies of ciliogenesis and ciliopathies. Successful segmentation can detect cilia from background or cells.
After segmentation, quantitative cilia analysis such as cilia length, density and cilia beat frequency can be
estimated.

Ciliopathies are a group of disorders that can cause cilia dysfunction or malformation. Since cilia are
important organelles on almost all vertebrate cells, cilia abnormalities are associated with many diseases
including renal disease, diabetes, obesity and retinal degeneration. Primary ciliary dyskinesia (PCD) is an
autosomoal recessive genetic disease characterized by ciliary dysfunction, which can lead to chronic lung
and ear infection, infertility. So far, over 40 genes have been recognized to be linked to PCD (Zariwala
et al., 2019). Current diagnosis tools of PCD includes nasal nitric oxide (nNO), genetic test, transmis-
sion electron microscopy (TEM), and high-speed video microscopy (HSVM) analysis. TEM can help
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Figure 4.4: The visual comparison of cilia segmentation outputs using different methods

with detecting ultrastructural changes, however, 30% of PCD patients have normal ciliary ultrastructure
(Knowles et al., 2012; Shoemark et al., 2012). As a diagnostic tool for PCD, HSVM is very efficient in
visualizing cilia motility directly and detecting ciliary beat patterns with high sensitivity and specificity.
However, the automation of cilia motion analysis is still under development. Many researchers still an-
alyze cilia motion manually, which is time consuming and subject to selection bias. Software solutions
such as CiliaFA (Smith et al., 2012), CiliarMove (Sampaio et al., 2021), CiliaQ (Hansen et al., 2021) were
developed for quantitatively analyzing cilia. However, classifying cilia beat pattern remains a challenging
task. Correctly segmenting cilia is a fundamental step of cilia quantification.

During the training process, overfitting can happen if the model learns the training dataset too well
and performs well on the training set, but it does not perform well on the data outside of the training set.
We trained for 250 epochs for all our models. To avoid overfitting, we used tensorboard to monitor the
learning rate, training and validation loss.

4.5.1 Cilia dataset
One limitation of this study is that we only have a limited number of frame images and their ground-truth
masks from our previous studies (Lu et al., 2018; Quinn et al., 2015). The original cilia videos were recorded
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using samples from human nasal brush in DIC setting. Normally, each ciliated airway epithelium has 200-
300 motile cilia, which can be presented in the videos in a lateral view or top-down view. This increases
difficulties for both manual and generated masks. The current ground-truth masks were manually labelled
a few years ago by a non-biologist (Lu et al., 2018). Most of the labels are accurate, however, there were a
few masks mislabeled background into cilia or vice versa. Therefore, the current ground-truth masks limit
the model performances to some extent. Building a validation dataset of cilia images with more accurate
ground-truth masks can help the construction of a robust deep learning pipeline for cilia segmentation
tasks.

4.5.2 Temporal information
Another limitation of the study is the exclusion of temporal information. We only include the first frame
of each video in the dataset due to the high similarity of successive frames. We intend to compare the
augmentation with selected GFs to the base U-Net model. Previously, Quinn et al. (Quinn et al., 2015)
developed a prune method by setting a threshold to filter the background noise by calculating the standard
deviation of pixel intensities across the time. This method gives quick and decent segmenting results with
an IoU score of 0.317 using the dataset in the current study. Xu (Xu, 2019) explored Fourier Transform
method introduced into convolutional neural network and proposed a Fourier W-Net for cilia segmen-
tation. Although the model performance is not satisfactory, the proposed work utilized the frequency
spectrum by considering signals in both spatial and temporal domain. Zain et al. (Zain et al., 2020)
proposed an unsupervised spatiotemporal representation of cilia videos. In this pipeline, the authors
proposed a VAE generative seq2seq module to embed the temporal dynamics. This work is still in early
phase and more research will be done in utilizing temporal information in segmenting cilia.

4.5.3 Gabor filter implementation
In this study, we only use selected GF as a data augmentation tool instead of incorporating GF in the
encoder part of U-Net. We generated a set of 54 GFs and used random forest to select meaningful GFs
with high importance. We did not embed GFs into the U-Net encoder because modifying the U-Net
architecture is an intricate task. For the future work, we will explore the GF-embedded U-Net for cilia
segmentation.

4.5.4 Unbalanced data
Unbalanced data is critical issue in the field of machine learning due to unbalanced class distribution.
Cilia segmentation can be viewed as a image classification task where cilia class is the is the minority class
and non-cilia class is the majority class. The ratio between those two classes in our original video dataset
is around 1:12. After image preprocessing, we selected patches with more than 5% cila area, cilia pixels
account for 23% in our dataset. Figure 4.5 shows cilia and non-cilia distribution of the dataset in the
current study.
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Figure 4.5: Cilia and non-cilia distribution

There are several techniques including traditional oversampling, undersampling techniques, and the
Synthetic Minority Over-sampling Technique (SMOTE) to handle unbalanced data in image segmen-
tation. Focal loss function (Lin et al., 2017) is a deep learning approach to address class imbalance issue.
Currently, we use binary cross-entropy (BCE) loss function, which calculates the logarithm value of the
output. However, BCE can not handle unbalanced dataset very well even with added weight. Focal
loss overcomes the unbalanced dataset problem by adding an extra term to reduce the impact of correct
predictions and focus on incorrect examples. The equation of focal loss is shown as following:

FL = −αc(1− ŷi)
γ ∗ logŷi

where γ is a hyperparameter that can restrain the power of this reduction. We implemented IoU for
evaluating our models, but IoU can also be used as a loss function for image segmentation tasks. Van
Beers et al. (van Beers et al., 2019) tested IoU loss and BCE loss for 2 models on multiple datasets and
found that IoU loss increases model performances significantly compared to training on BCE loss.

4.5.5 Cross validation
Cross validation (cv) is an important model validation technique in machine learning (ML) field to evalu-
ate a model and test its performance. CV helps to select an satisfactory model for the specific modeling
problem thus commonly used in ML tasks. There are several CV techniques: leave-one-out, hold-out,
k-folds, stratified k-folds and so on. K-fold introduces a number of folds-k and split the dataset into k equal
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parts, where k-1 folds are the training set while the remaining is the testing set. During each cv iteration,
a new model is trained independently. Using k-fold technique can take full advantage of the dataset and
give a stable and trustworthy result. However, k-fold method is not commonly used in deep learning due
to its high cost and time-consuming.

Table 4.5: Performances comparison of FC-DenseNet with or without cv over the cilia dataset
Model k-fold cv Evaluation Metrics

IoU Accuracy F1 Precision Recall
FC-DenseNet 103 No 0.3180 0.8034 0.4472 0.4732 0.5035
FC-DenseNet 103 Yes 0.3599 0.8164 0.4892 0.5232 0.5475

We trained the FC-DenseNet with k-fold cv where k is set to 5. Table 4.5 shows the performances of
FC-DenseNet model with or without cv over cilia dataset. k-fold cv improves FC-DenseNet 103 model
performance by 13% in terms of IoU score. We did not apply k-fold cv on U-Net-based models due to the
fact that cv is computationally very expensive and time-consuming in the process of training k different
models. Although FC-DenseNet model with k-fold cross-validation can improve the model performances,
it did not outperform Gabor composite models.
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Chapter 5

Conclusion and future work

In conclusion, this study presents a texture image segmentation using GFs and the U-Net model. We
generated a set of 54 GFs and used random forest to select meaningful GFs with high feature importances.
The Gabor filtered feature maps are concatenated to the original image input as an additional channel to
train the U-Net model. The addition of features extracted by our selected GFs improved the performances
of the base model. By comparing the GF composite model with the previous studies (intensity based-
thresholding (Quinn et al., 2015), FC-DenseNet (Lu et al., 2018; Zain et al., 2020), ZCA/SAE with U-Net
(Zain et al., 2022)), we showed that the presented framework outperformed the non-deep learning and
deep-learning based models in the previous studies in terms of IoU score.

For the future work, more validated cilia videos with accurate ground-truth masks will be added to the
current dataset to improve overall performances of the proposed framework. Currently, we use random
forest to select meaningful GFs with high feature importance. For future direction, we will focus on
developing an optimized GF bank with automatic variation of GF parameters. Also, we will introduce
a reduced number of Gabor filter banks into the U-Net encoder. Although U-Net can perform feature
extraction and localization, but the modification of the architectures or layers is often an intricate task.
For the future direction, we will embed a multi-channel Gabor-filtering in the U-Net model for cilia
segmentation.
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