
Automatic Classification of Circulating
Blood Cell Clusters based on

Multi-channel Flow Cytometry Imaging

by

Subhadeep Sengupta

(Under the Direction of He Li)

Abstract

Standard clotting tests usually do not suffice in investigating the mechanisms of throm-

bosis in COVID-19 patients. Flow cytometry provides a superior alternative since it enables

research on sub-cluster cellular components from blood samples. Manual gating has conven-

tionally been used to detect and analyze such sub-clusters, but it is labor-intensive and prone

to subjective mistakes on behalf of human experts. This work proposes a deep learning-based

method that automatically identifies and classifies cellular clusters to facilitate more efficient

analysis of immuno-thrombosis. The method consists of two stages. The first stage employs a

customized convolutional neural network (CNN) to classify grayscale images into clusters and

non-clusters, with a test accuracy of 87.5%. The second phase focuses on multi-cell cluster

images, using pre-defined color-based criteria to identify sub-cluster elements and obtain

85.6% accuracy. In addition, the viability of few-shot learning using ChatGPT 4o is explored,

followed by a comparison with the customized CNN, the pre-trained deep learning models,

and machine learning classifiers. The customized CNN outperformed the ML classifier and

ChatGPT 4o and was outperformed by pre-trained deep learning models. Grad-CAM visual-

izations were used to perform a misclassification analysis of the CNN-based model predictions

to enhance the interpretability of test results.

Index words: Machine Learning, Medical Imaging, Image Classification, Neural

Networks

Automatic Classification of Circulating Blood Cell Clusters

based on Multi-channel Flow Cytometry Imaging

by

Subhadeep Sengupta

B.Tech., National Institute of Technology Karnataka, India, 2022

A Thesis Submitted to the Graduate Faculty of the

University of Georgia in Partial Fulfillment of the Requirements for the Degree.

Master of Science

Athens, Georgia

2025

©2025

Subhadeep Sengupta

All Rights Reserved

Automatic Classification of Circulating Blood Cell Clusters

based on Multi-channel Flow Cytometry Imaging

by

Subhadeep Sengupta

Major Professor: He Li

Committee: Tianming Liu

Frederick Maier

Electronic Version Approved:

Ron Walcott

Dean of the Graduate School

The University of Georgia

August 2025

Dedication

For Mumma and Babai.

iv

Acknowledgments

I want to thank Dr. He Li for his invaluable support with the whole project and being there

to guide me through every difficulty I faced on the way. I am also deeply grateful to Dr.

Tianming Liu and Dr. Frederick Maier for their advice and constructive feedback.

I am truly honored to have had the opportunity to receive the support, encouragement,

and mentorship of my committee. Thank you for your time and for believing in me.

v

Contents

Acknowledgments v

List of Figures vii

List of Tables x

1 Introduction 1

1.1 Aim and General Overview . 1

1.2 Brief Summary of Results . 2

1.3 Immunothrombosis due to COVID-19 and Treatments 2

1.4 Techniques for studying cell clusters . 4

1.5 Machine Learning on Flow Cytometry Imaging 5

1.6 Pretrained Models . 8

1.7 Few-Shot Learning . 13

1.8 Metrics . 15

1.9 Interpretability Analysis . 17

2 Dataset 18

2.1 Manually Labelled Grayscale Images . 22

2.2 Groundtruth Preparation . 22

3 Methodology and Results 24

3.1 Tools . 24

3.2 Grayscale Channel 1 Classification . 24

vi

3.3 Color Classification . 27

3.4 Few-Shot Learning . 31

3.5 Performance on Test Set . 33

4 Conclusion 38

Appendices 40

A Supplementary Materials 40

A.1 Grayscale Classification Additional Figures 41

A.2 Color Classification Additional Figures . 43

A.3 Grayscale Misclassifications . 45

A.4 Color Misclassifications . 53

Bibliography 55

vii

List of Figures

1.1 Residual Learning Block . 8

1.2 Scaling strategies for Convolutional Neural Networks 9

1.3 Comparison of convolution blocks . 11

1.4 5-layer Dense Block . 12

1.5 SAM Model Architecture . 14

2.1 Color staining for different channels . 20

2.2 Channels stacked in the dataset . 21

3.1 Grayscale Classification ConvNet . 25

3.2 Multi-channel ConvNet Architecture . 30

3.3 Misclassified Examples and Grad-CAM Visualizations (Part 1) 35

3.4 Misclassified Examples and Grad-CAM Visualizations (Part 2) 36

3.5 Misclassified Examples and Grad-CAM Visualizations (Part 3) 37

A.1 Custom ConvNet Cross-Validation Training curves 41

A.2 Grayscale Classification Confusion Matrix 42

A.3 Multi-Channel ConvNet Cross Validation Training curves 43

A.4 Color Classification Confusion Matrix . 44

A.5 Custom ConvNet Misclassifications . 45

A.6 ResNet Misclassifications . 46

A.7 EfficientNet Misclassifications . 47

A.8 MobileNetV2 Misclassifications . 48

A.9 DenseNet Misclassifications . 49

viii

A.10 ChatGPT 4o Misclassifications Part 1 . 50

A.11 ChatGPT 4o Misclassifications Part 2 . 51

A.12 ChatGPT 4o Misclassifications Part 3 . 52

A.13 Color Misclassifications Part 1 . 53

A.14 Color Misclassifications Part 2 . 53

A.15 Color Misclassifications Part 3 . 53

A.16 Color Misclassifications Part 4 . 54

A.17 Color Misclassifications Part 5 . 54

ix

List of Tables

2.1 Patient demographics and clinical outcomes in the COVID-19 cohort from the

study (n = 37). Adapted from Dorken-Gallastegi et al.[4]. 19

2.2 Median cluster counts and interquartile ranges (IQR) in COVID-19 patients

and healthy controls. Statistically significant differences were observed in PLA

and PEA levels. Adapted from Dorken-Gallastegi et al.[4]. 19

2.3 Dataset summary showing task-specific splits and class distributions across

grayscale and color image classification. 21

3.1 ConvNet Training Cross-Validation . 26

3.2 Pre-trained Models Training Cross-Validation 27

3.3 Clustering Scores . 28

3.4 ML Classifier Validation Scores . 28

3.5 Multi-Channel ConvNet Cross Validation . 29

3.6 Grayscale Classification Test Performance 33

3.7 Color Classification Test Performance . 34

x

Chapter 1

Introduction

1.1 Aim and General Overview

Existing flow cytometry methods can prove useful for identifying circulating cellular clusters.

Applying an automated classification algorithm to such data can be an efficient solution,

allowing for a deeper study of the relationship between relevant cell aggregates and im-

munothrombosis in COVID-19 patients compared to a healthy patient.

This thesis explores two methods; the first employs a simple convolutional neural network

architecture adapted to handle the multi-channel input from the flow cytometry data and

with a relatively low amount of labelled data to offer reasonable results. The second method

uses ChatGPT and context-based image understanding to classify the images. The first

method is further split into two parts. In the first part, single-cell images and multi-cell

clusters are separated using channel 1 grayscale images. In the next part, we use the color

histogram features of the multi-cell cluster images to sort images into their respective classes

using predefined criteria using the different channels (2, 3, 7, and 11). The goal is to take

flow cytometry images and classify them into,

• Single cells images,

• Multiple cells consisting only of RBCs,

• Multiple cells with RBCs and platelets,

1

• Multiple cells with WBCs which may or may not have platelets,

Doing this reliably in an automated fashion speeds up the diagnosis process, whereas

earlier experts would have to manually gate images.

1.2 Brief Summary of Results

For grayscale classification, a customized CNN with minimal layers gave an 87% accuracy

and 0.95 ROC-AUC score on the test set. The best-performing model turned out to be

EfficientNet, with 93.8% accuracy, while GPT 4o has an accuracy of 76%. The machine

learning algorithms outperformed GPT 4o but were inferior to the pre-trained models and

simple CNN.

Experiments with GPT 4o showed different results based on the approach to the input.

For instance, a batch of images was effective only if the LLM’s short-term memory was

configured with the proper rules and training examples. The best results were obtained by

reminding GPT 4o of a summary of the rules and a few training examples every 5-10 batches

of input images.

For color classification, the customized Multi-Channel CNN had an 85.6% accuracy and

a 0.948 ROC-AUC score, being more effective than the machine learning algorithms, namely

Random Forest, SVM, etc., having roughly 68% accuracy and 0.69 ROC score. EfficientNet

was again the best-performing model with 88% accuracy and 0.97 ROC-AUC score.

1.3 Immunothrombosis due to COVID-19 and Treat-

ments

Thrombosis occurs in two kinds of states, the first being physiological, where the defense

mechanism is properly regulated, and pathological states include conditions such as sepsis

or autoimmune diseases where the mechanisms fail to be regulated appropriately, leading to

excess clotting.

2

Thrombosis associated with COVID-19 was demonstrated to be closely related to mor-

bidity and mortality [1]. Hanff et al. [2] attempted to explore the biomarkers that might

potentially help with the prognosis of such thrombotic complications; they observed a cy-

tokine storm, a severe immune reaction where excess cytokines are released, and high amounts

of the IL-6 molecule in COVID-19 patients.

Jayarangaiah et al. [3] showed the clotting mechanism in patients with COVID-19, with

the virus promoting clot formation by damaging the inner walls of blood vessels, which would

trigger cytokine production and leukocytes (white blood cells) and platelets; these would

further lead to complications like deep vein thrombosis (VTE) or blocked arteries. Dorken-

Gallastegi, Ander, et al.[4] studied the role of circulating cell clusters in the immunothrombotic

states that arise in patients with COVID-19; the motivation was that while previous work

had studied platelet-leukocyte aggregates, others, such as platelet-erythrocyte aggregates

(PEAs) and circulating leukocyte clusters (CLCs) had not received similar scrutiny; they

found that PLA and PEA aggregates were present in noticeably higher levels in COVID-19

patients while CLC aggregates were not as distinguishable in healthy patients and COVID-19

patients. However, there was a link between worse outcomes for CLC aggregates and COVID-

19 patients. Another link was bacterial infections causing higher levels of PEA aggregates

during some patients’ hospital stays.

Marcos-Jubilar[5] highlighted that traditional blood thinning or anticoagulant strategies

are risky due to the possibility of bleeding; other treatments attempt to deal with inflam-

mations that can reduce the risk of bleeding while treating clots. Tissue factor is a protein

present on cells outside of the bloodstream; during vascular injury, it comes in contact and

binds with a plasma protein called Factor VII, which initiates the clotting process[6], so some

strategies involve suppressing TF expression and have shown some promise. Inflammasomes

are protein complexes that, depending on the signal, activate and initiate inflammation via

the release of cytokines, as studied by Li et al. [7]. Inhibitors for inflammasomes are another

area that has been explored. Neutrophils are white blood cells that form Neutrophil Extra-

cellular Traps (NETs), web-like structures that trap pathogens, preventing their spreading

[8]. Treatments involving blocking harmful NETs from forming were also discussed in [5].

3

1.4 Techniques for studying cell clusters

Flow cytometry is a method of analyzing cells by passing single or multiple lasers through

them. Bonner et al. [9] introduced the procedure, which involved taking a sample of blood

cells and suspending them in a salt-based fluid, passing lights of different wavelengths through

them to analyze scattering patterns.[10] Flow cytometry has proved useful when providing

a heterogeneous sample containing various kinds of cells or molecules and can distinguish

them.

While there are many different kinds of flow cytometers based on instrumentation, this

thesis focuses on data from imaging flow cytometry. Schneck et al. [11] using flow cytometry

studied Neutrophil Extracellular Traps (NETs) levels to check for a distinction between

septic shocks and post-surgical inflammation and understand its relationship to coagulation

compared to a healthy response. Heestermans et al. [12] studied the role of platelets

in venous thrombosis, which could help develop antiplatelet therapies for treating Venous

Thromboembolism (VTE).

1.4.1 Gating

Gating is a process in which a cell group or population is identified from a heterogeneous

sample. Traditionally, this is done manually by experts and is considered to be a time-

consuming process. Verschoor et al. [13] proposed an automatic gating method using

software they named FLOCK, which partitions data into grids and analyzes the density

distribution of cell clusters. Liu et al. [14] analyzed three different ways of gating and

the various solutions under each type. They concluded that manual gating works on small

datasets or when flexibility is needed, unsupervised clustering is used for more complex and

large datasets, and supervised automatic gating works well for predefined tasks but not so

much for exploratory analysis.

Eslami et al. [15] proposed a deep learning model, AutoGater, to identify healthy cells in

flow cytometry data without fluorescent stains. Traditionally, staining like Sytox is needed

to identify dead or dying cells, which delays experiments and uses up valuable fluorescence

channels. AutoGater instead uses only light-scatter data to separate viable from non-viable

4

cells. Fisch et al. [16] presented a neural network, GateNet, to fully automate the gating

process in flow cytometry. The model was trained on over 8 million events from peripheral

blood and cerebrospinal fluid samples, and matched human expert performance with F1

scores between 0.910 and 0.997 on unseen data. It also generalized well to public datasets,

requiring only 10 labeled samples to perform at an expert level. The processing time for each

cell was about 15 microseconds using a GPU. For their thesis, W Sriphum [17] introduced

FLOPTICS, an automated method for gating flow cytometry data that combined density

and grid-based clustering to offer faster cell classification with fewer user-defined parameters,

outperforming other state-of-the-art tools.

The proposed methodology in this thesis also avoids this problem by using the images

obtained directly for inference.

1.5 Machine Learning on Flow Cytometry Imaging

Analysis of Flow Cytometry imaging is split based on the number of cells present in the image.

For multiple cells in the image, detection and tracking become harder. Single Shot Detector

models are used for cell detection. Real-time CNN-based models have been recommended

for identifying microbeads and cells [18]. Monaghan et al. [19] used flow cytometry data

to distinguish acute leukemias from nonneoplastic cytopenias. The model framework was

split into two stages. The first stage used a Gaussian Mixture Model (GMM) to get features

on a higher dimension, and the second stage used a Support Vector Machine for a 4-class

classification, and grid search was used to optimize the model. Cohen et al. [20] presented

a label-free imaging flow cytometry technique that captured multiple holographic views

of rotating cells, using a modified ResNet-18 model to accurately distinguish between cell

types, namely, cancerous, healthy breast cells, and various white blood cells by analyzing

their 3D phase profiles. Using five interferometric projections instead of one projection

improved accuracy by 1%. This approach also reduced the number of training samples

needed. Lewis et al. [21] presented a deep learning approach using attention-based multi-

instance learning models (ABMILMs) to automate the diagnosis of acute myeloid leukemia

using flow cytometry data. Compared to traditional AML manual analysis and slow molecular

5

tests, this method better detected AML and distinguished it from other leukemias. Cheng et

al. [22] trained a deep learning model on data from 241 patients using the EuroFlow ALOT

protocol; the AI achieved a sensitivity of 94.6% for detecting AML and 98.2% for B-ALL and

performed reasonably well in identifying healthy cells. Models like ResNet-50 combined with

EverFlow were shown to perform efficient leukemia screening and cell classification. Cheng,

Zhangkai et al. [23] developed a machine learning-based tool to help detect childhood leukemia

early by analyzing blood biomarkers, including nutritional and immune-related indicators.

Comparing data from children with ALL, AML, and healthy controls, the model identified

key differences and achieved an AUC score of 0.950 for predicting leukemia types and 0.909

for AML specifically. Hybel et al. [24] used imaging flow cytometry and deep learning to

distinguish leukemia stem cells (LSCs) from healthy stem cells (HSCs) in AML based on cell

morphology. CNNs trained on brightfield, side scatter, and DNA images achieved up to 93%

accuracy in identifying LSCs. Performance varied in patients due to LSC heterogeneity, but

the proposed approach is feasible given that it could monitor AML without relying on a single

molecular marker. Vora et al. [25] proposed a deep learning method for detecting circulating

tumor cell clusters (CTCCs) in whole blood using confocal backscatter and fluorescence flow

cytometry (BSFC). While traditional methods work outside the body, this method works in

real-time and does not require labels to perform at high accuracy and a low false alarm rate.

The model achieved a 72% detection purity and 35.3% sensitivity and was validated across

different species and cancer types using transfer learning.

Becht et al [26] used machine learning on multiple overlapping flow cytometry panel data to

analyze proteins on the surfaces of cells. They used dimensionality reduction and clustering to

simplify the high-dimensional data. Lippeveld et al. [27] attempted to explore flow cytometry

data without relying on stains. They tested two approaches, the first with traditional

machine learning algorithms using custom features and deep learning algorithms that would

automatically learn features, and they found traditional machine learning algorithms to

outperform the latter by a slight edge. Park et al. [28] introduced a deep learning-enhanced

image cytometry (DLIC) method to study treatment response in patients with aggressive

extranodal NK/T cell lymphoma (ENKTL). Researchers quantified key biophysical features

across treatment stages by analyzing about 270,000 peripheral blood mononuclear cells from

6

23 patients using a label-free, high-throughput optical system. They found distinct patterns

linked to disease progression and relapse, and created a 3D single-cell map to standardize

these changes.

Lemieux et al. [29] introduced an early lung cancer detection pipeline that is non-invasive,

using only the sputum samples and flow cytometry data along with machine learning algo-

rithms for a classification model. Rosenberg et al. [30] used flow cytometry to analyze cell

abnormalities for improved diagnosis of myelodysplastic syndrome (MDS), which is a type

of blood cancer where the bone marrow produces premature blood cells instead of healthy

ones. Machine learning algorithms were used to identify binucleated erythroblasts (BNEs),

and their occurrences were compared across patient groups. Wilkins et al. [31] compared

the performance of different clustering algorithms for phytoplankton classification on flow

cytometry data.

Li, Yueqin et al. [32] presented an improved deep learning pipeline that avoids traditional

signal processing and feature extraction. Instead, a CNN is trained directly on raw time-

stretch data, speeding up classification to a few milliseconds, and fast enough for real-time cell

sorting. They demonstrate the effectiveness of this approach by distinguishing between OT-II

white blood cells and SW-480 cancer cells with over 95% accuracy without labels. Eulenberg

et al. [33] showed that deep CNNs combined with nonlinear dimensionality reduction can

reconstruct biological processes and disease progression directly from raw image data. The

approach outperforms traditional methods in imaging flow cytometry, is unsupervised, and has

good accuracy. A Gupta et al. [34] reviewed deep learning applications in microscopy images

of cells and tissues, explaining important neural network aspects through a neuroscience

analogy. Liu et al. [35] introduced high-content video flow cytometry (VFC), a label-free

method for imaging single cells at high throughput without disrupting cell function; achieving

over 90% accuracy in distinguishing three cervical cancer cell lines. Bini et al. [36] proposed

FlowCyt, a publicly available benchmark for multi-class and single-cell classification on flow

cytometry data. It includes bone marrow samples from 30 patients, each cell labeled as one

of five key hematological types. It supports supervised and semi-supervised learning up to a

million cells per patient.

7

1.6 Pretrained Models

1.6.1 ResNet

Residual Networks [37] use skip connections to deal with the vanishing gradient problem.

Vanishing gradients occur when backprop gradients become too small, leading to ineffective

learning if there are too many layers. Having skip connections allows for deeper model

architectures without sacrificing performance.

Figure 1.1: Diagram of a residual learning block used in the ResNet. The input x passes
through two weight layers and a ReLU activation function. The output of these layers,
denoted F(x), is then added to the original input x through a skip connection; this helps
preserve the original information and reduce vanishing gradients. Reproduced from He et
al.[37]

Residual Blocks pictured in Figure 1.1 consist of skip connections where the output

of a layer is regularized with the input from the previous layer, any layer that degrades

performance too much is avoided. The architecture has multiple variants, namely, ResNet-18,

ResNet-34, ResNet-50, and ResNet-101, each with increasing layers. These deeper versions

use bottleneck residual blocks to improve efficiency.

Ma et al. [38] proposed using a DC-GAN and ResNet for a WBC classification frame-

work with a modified loss function. Zhu, Ziquan, et al. [39] proposed RDNet, a model

with ResNet-18 as the backbone with dropout for automatic classification of four blood cell

types achieving 86.53% accuracy and outperforming the standard ResNet-18. Farooq et al.

[40] introduced COVID-ResNet leveraging progressive resizing and automatic learning rate

selection to classify COVID-19, pneumonia, and normal cases, achieving 96.23% accuracy in

about 41 epochs.

8

Figure 1.2: Illustration of different scaling strategies used to modify convolutional neural
network architectures. (a) The baseline model shows the original network structure in depth,
width (number of channels), and input resolution. (b) Scaling by width, increasing number
of channels at each layer. (c) Scaling by depth, increasing number of layers. (d) Resolution
scaling, increasing input image resolution. (e) Compound scaling simultaneously balances
depth, width, and resolution according to a fixed scaling coefficient, aiming to improve overall
model performance and forming the basis for EfficientNet. Reproduced from Tan et al.[41]

1.6.2 EfficientNet

EfficentNets [41] uses compound scaling, which accounts for and optimizes network depth

(for layers), width (for filters), and resolution (for image size). Scaling is done in a constant

ratio across the different aspects.

depth: d = αϕ

width: w = βϕ

resolution: r = γϕ

s.t. α · β2 · γ2 ≈ 2

α ≥ 1, β ≥ 1, γ ≥ 1

(1.1)

9

In Figure 1.2, we see the scaling done across the different aspects. The formula for this

is shown in Equation 1.1. The ϕ refers to the uniform scaling ratio, and the values for α, β,

and γ are found using a grid search algorithm.

Batool et al. [42] proposed a lightweight EfficientNet-B3 model using depthwise separable

convolutions for acute lymphoblastic leukemia (ALL) classification. It outperformed existing

deep learning methods and demonstrated strong generalization for leukemia detection. Ra-

mamurthy et al. [43] proposed an EfficientNet-B7-based deep learning model for automated

Gleason grading of prostate cancer. The model was trained on the Harvard Dataverse dataset,

namely the H&E-stained samples from prostate cancer Tissue Microarrays(TMAs); it out-

performed state-of-the-art and achieved a Kappa score of 0.5775. Ravi et al. [44] proposed

a stacked ensemble EfficientNet for lung disease detection, achieving 99% accuracy for TB

and 98% accuracy for COVID-19 and pediatric pneumonia.

1.6.3 MobileNetV2

MobileNet as a model was originally designed to be lightweight and for mobile and edge

devices with a keen focus on improving computational efficiency. MobileNetV2 [45] uses

inverted residuals with a linear bottleneck to reduce information loss; this is done by avoiding

nonlinear transformations on the features when compressed into lower dimensions.

Inverted residual blocks and depthwise separable convolutions are used to reduce compu-

tational cost without compromising accuracy.

Compared to regular residual blocks that pass information through identity shortcuts, it

reverses this structure by using:

• Pointwise expansion: Projects input into a higher-dimensional space via a 1x1 convolu-

tion.

• Depthwise convolution: Applies shallow 3x3 convolutions independently to each chan-

nel.

• Pointwise projection: Uses another 1x1 convolution to drop dimensions back down to

keep it computationally efficient.

10

Figure 1.3: Comparison of regular convolution with optimized convolution blocks. (a) Reg-
ular convolution performs spatial and depth-wise filtering jointly using a standard kernel.
(b) Separable convolution splits the spatial and channel-wise operations; each channel goes
through depthwise convolution, and then a 1x1 pointwise convolution combines the chan-
nels, reducing computation. (c) Separable convolution with a linear bottleneck removes
the ReLU activation and preserves more information by avoiding nonlinear transformation.
(d) Bottleneck with expansion layer (used in MobileNetV2) increases the input dimensions
before performing the separable convolution to learn richer representations while keeping the
computation efficient. Reproduced from Sandler et al.[45]

• Linear bottleneck: Unlike ReLU in regular residual connections, linear activation is

used at output to prevent information loss while working in low-dimensional space.

This inverse residual block helps pass through thin bottleneck layers, making MobileNetV2

efficient and powerful for mobile vision tasks.

Akay et al. [46] proposed a mobile deep learning network using UNet and MobileNetV2

for Systemic Sclerosis (SSc) skin classification, achieving 95.2% and 97.2% accuracy on two

datasets, outperforming traditional CNNs. Kumar et al. [47] used MobileNetV2 for the

classification of WBCs in blood smear images, achieving 94.0% accuracy in identifying five

WBC subtypes. Other models, namely VGGNet, were also tested. Ragab et al. [48] tested

MobileNetV2 with transfer learning for COVID-19 detection from chest X-rays, reporting up

to 100% accuracy at a dropout rate of 0.4.

11

Figure 1.4: Structure of a typical 5-layer dense block used in the DenseNet. Each layer
receives the feature maps of all previous layers via direct connections, enabling dense feature
reuse and strengthening gradient flow. The concatenated outputs grow in length at each
layer, and the dense connectivity pattern helps avoid the vanishing gradient problem. The
block ends with a transition layer to reduce dimensionality before passing to the next block.
Reproduced from Huang et. al[49]

1.6.4 DenseNet

DenseNets [49] have dense connections between layers, ensuring each layer receives inputs

from all previous layers. Dense connections reduce the vanishing gradient problem, improve

feature propagation, and minimize redundancies. Fewer parameters are required due to

features being reused.

The Dense Block is a fundamental block of the DenseNet architecture, an example of

which is shown in Figure 1.4. Its design allows for the following:

• Dense connectivity: Every layer receives input from all previous layers, which makes

for efficient feature reuse and improved gradient flow.

• Bottleneck layers: 1x1 convolutions are used to reduce dimensionality before expensive

3x3 convolutions, making computation efficient.

• Compression: Transition layers use average pooling and 1x1 convolutions to control

network growth by downsampling feature map size.

12

• Fewer parameters: Unlike ResNet, where summation is required in skip connections,

DenseNet prevents redundant learning by explicitly reusing feature maps.

This dense connectivity provides the capacity for stronger feature propagation with fewer

parameters than traditional architectures.

Houssein et al. [50] presented a DenseNet-161-based CAD system with cyclical learning

rate (CLR) optimization for WBC classification, achieving 99.8% accuracy on blood smear

images. Bozkurt et al. [51] tested the DenseNet121 for WBC classification; experimental

results had it outperforming state-of-the-art models (Xception, VGG19, EfficientNetB1),

achieving a 94% accuracy. Hasan et al. [52] proposed a DenseNet-121-based CNN for

COVID-19 detection on CT images aiming for early diagnosis and achieved 92% accuracy

and 95% recall.

1.7 Few-Shot Learning

1.7.1 ChatGPT

This thesis also explores using a large language model (LLM) such as ChatGPT [53][54] for

the grayscale classification section. The first way ChatGPT reads images is on a pixel level,

where it performs the standard image analysis; the second is a text-based understanding

using an external image-to-text model whose insights it uses for further processing. The

text-based understanding is generated in real-time as the user inputs images, and GPT works

solely with this and any specific instructions provided.

Johnson et al. [55] carried out experiments prompting GPT with a variety of images and

asked questions regarding the contents of the image and their understanding of it. They found

that it can effectively explain the general context shown in the image and integrate it into

a broader context, but it could sometimes fall short when attempting to tell specific details

of the visual content. They also concluded by saying that in certain cases, human intuition

does outperform GPT. Ren et al. [56] explored the use of the CLIP model. CLIP is a neural

network introduced by OpenAI that is pre-trained on image-text pairs. The problems they

found with CLIP were that they tended to favor certain classes and if some classes were

13

Figure 1.5: A high-level overview of SAM. The image encoder is a Masked Autoencoder that
generates an image embedding. The prompt encoder accepts two categories of prompts; sparse
(points, boxes, and text) and dense (masks) prompts combined with the embedding. The
mask decoder consists of a lightweight transformer decoder that combines image embeddings
with the prompt to generate multiple candidate segmentation masks. Reproduced from
Kirillov et al. [58]

too similar, it had a hard time distinguishing them. They propose a solution that involves

class hierarchy by building a knowledge tree for grouping and their descriptions generated by

LLMs which improves its performance on state of the art. Wu et al. [57] introduced Visual

ChatGPT, a combination of the LLM with Visual Foundational Models(VFM), allowing

users to give both text and image input. Currently, its main issues are model inaccuracies

and problems with prompting. One way to mitigate this was to implement a self-correcting

module that checks if the system output is in sync with the user’s intentions; however, this

slowed the inference time.

1.7.2 Segment Anything Model

Meta AI released the Segment Anything model (SAM) [58] to achieve good zero-shot seg-

mentation in generalized domains. The model was designed to perform this segmentation on

an image using a prompt in the form of a bounding box, point, or mask.

The SAM model architecture is shown in Figure 1.5. There are three variants of the SAM

model.

• ViT-Base is the lightweight version with about 91 million parameters.

• ViT-Large that has about 308 million parameters.

14

• ViT-Huge is the largest version with about 636 million parameters.

A text-based SAM was also tested with the help of Grounding Dino [59], a vision-language

model that accepts a text prompt and generates bounding boxes that can then be used with

SAM to perform effective segmentation.

Upon checking model performance on the training set, the results were not reliable enough,

more of which is discussed in the results and then in the future work section.

1.8 Metrics

This thesis will use some metrics for clustering:

1.8.1 Homogeneity

After clustering, a cluster is homogeneous when all its points belong to its true class. The

score between 0 and 1 indicates whether points are random or perfectly homogeneous, and

this calculation is done by comparing the entropy of the class labels in each cluster.

1.8.2 Completeness

After clustering, completeness means checking for how well a certain true class was represented

in clusters. If a true class is split across multiple clusters, then completeness is low. A perfect

completeness score implies every true class fits perfectly into its cluster.

1.8.3 V-measure

This is the harmonic mean of homogeneity and completeness and gives a balanced measure

of clustering performance based on cluster purity and true class completeness.

Additionally, for classification, the following metrics are used:

1.8.4 Accuracy

Correct Predictions

Total Predictions
(1.2)

15

This metric gives the correct predictions over total predictions; it works well if there is a

balanced distribution of class labels and all labels are equally important to classify.

1.8.5 Precision

True Positives

TruePositives + FalsePositives
(1.3)

This metric measures how well the positive class was predicted, i.e., as few false positives as

possible.

1.8.6 Recall

True Positives

True Positives + False Negatives
(1.4)

This metric identifies how well the actual positive class is predicted even if it means taking

on more false positives.

1.8.7 F1-Score

2 × Precision × Recall

Precision + Recall
(1.5)

This metric is the harmonic mean of precision and recall offering a good indicator of how

well the model performs on specific class labels thus being ideal on imbalanced datasets.

1.8.8 ROC-AUC

This metric is a curve that plots the trade-off between the true positive rate and the false

positive rate at different thresholds. The area under the curve gives a score on whether the

model can tell apart positive and negative cases. A score of 1 is a perfectly accurate model

awhile 0.5 is a model guessing at random.

16

1.9 Interpretability Analysis

1.9.1 Grad-CAM

Gradient-weighted Class Activation Maps (Grad-CAM) [60] help produce a visual explanation

of why a CNN model predicts a certain class. This is done by using the gradients flowing into

the last convolutional layer to make a coarse localization map, a low-resolution heatmap that

highlights the regions of the image that the model is focusing on to make their prediction.

The map is not pixel-precise because the activation layer at the last layer is usually of a much

smaller resolution than the input image dimension.

17

Chapter 2

Dataset

The dataset was collected as part of a study to analyze circulating cell clusters (CCC)

in COVID-19 patients [4]. Blood samples were collected from COVID-19 patients at the

Massachusetts General Hospital (MGH) in July-August 2020; 46 samples were collected from

COVID-19 patients, while 12 samples were collected from healthy controls. Images were

obtained using the AMNIS ImageStream instrument. The imaging method was multi-channel

fluorescence staining to highlight different cell components.

• CD61 – Green staining (channel 2) identifies platelets in cell clusters.

• CD45 – Yellow staining (channel 3) used for identification of leukocyte (white blood

cell).

• DAPI - Purple staining (channel 7) for the nuclei (indicating cell count and viability).

• CD235a – Red staining (channel 11) distinguishes erythrocytes (red blood cells).

• Merged Composite Channel - Combined multiple channels for better feature represen-

tation.

The main classes saw the dataset divided into clustered and non-clustered cell images, with

the subclass annotations being Platelet-Leukocyte Aggregates (PLAs), Platelet-Erythrocyte

Aggregates (PEAs), Circulating Leukocyte Clusters (CLCs).

18

Table 2.1: Patient demographics and clinical outcomes in the COVID-19 cohort from the
study (n = 37). Adapted from Dorken-Gallastegi et al.[4].

Characteristic COVID-19 Patients

Age (median, IQR) 57 years (37–70)

Sex 61% Male, 39% Female

Ethnicity 30% Hispanic or Latino

Race 48% White, 22% Black or African American, 4% Asian, 26% Other

Thrombotic events 24%

Acute kidney injury (AKI) 52%

ICU admission 24%

Mortality 13%

Table 2.2: Median cluster counts and interquartile ranges (IQR) in COVID-19 patients and
healthy controls. Statistically significant differences were observed in PLA and PEA levels.
Adapted from Dorken-Gallastegi et al.[4].

Cluster Type COVID-19 Healthy Controls p-value

PLA 131.93 (IQR: 66.67–210.42) 53.61 (IQR: 48–68.50) 0.002

PEA 24.12 (IQR: 18.26–32.03) 10.82 (IQR: 0.85–2.23) <0.001

CLC No difference No difference n.s.

1

Figure 2.2 shows example images in the dataset with the channels stacked next to each

other. These images are split into individual channel images for separate tasks, as shown

in Figure 2.1. The images in the data set do not have uniform dimensions and thus require

generalized splicing and processing to make them uniform.

1n.s. = not statistically significant

19

(a) Brightfield microscopy - Grayscale (Channel
1) used to visualize cell morphology

(b) CD61 – Green staining (channel 2) identifies
platelets

(c) CD45 – Yellow staining (channel 3) used for
leukocyte.

(d) DAPI - Purple staining (channel 7) for nuclei.

(e) CD235a – Red staining (channel 11) distin-
guishes erythrocytes

Figure 2.1: Color staining for different channels

20

(a) Image of Platelet Cluster

(b) Image of WBC-Platelet Cluster

Figure 2.2: Example images showing a platelet cluster and a white blood cell-platelet cluster
across all imaging channels. From left to right: brightfield(grayscale), CD61 (green, platelets),
CD45 (yellow, leukocytes), DAPI (purple, nuclei), brightfield repeat, and CD235a (red,
erythrocytes). The stacked images demonstrate the contribution of the different markers and
serve as input for cell-cluster identification.

Table 2.3: Dataset summary showing task-specific splits and class distributions across
grayscale and color image classification.

Grayscale Images (Channel 1)

Manually Labelled Images 1,568 (initially 500 by visual inspection)

- Cluster 855

- Non-Cluster 713

Training + Validation 1,253

Testing 315

Color Channel Images (Channels 2, 3, 7, 11)

Labeling Method HSV threshold-based staining detection

Total Annotated Images 1,647

- WBC–Platelet 1,104

- Platelet only 206

- WBC only 136

- RBC (unstained) 201

Training + Validation 1,152

Testing 495

21

2.1 Manually Labelled Grayscale Images

For the first part of the neural network method, the channel 1 images are organized into a

separate grayscale image dataset, manually labelled into either cluster or non-cluster classes.

Cluster here implies the presence of at least two or more cells in an image that show a distinct

sign of overlap, while

Manual labelling was performed by visual inspection of overlapping morphology. Cluster

class images consisting of two or more cells generally have partial to complete cell overlap.

The non-cluster class includes single or multiple cells with no significant overlap and noise

particle images with no cells present.

The manually labelled training data comprised 1,568 images, with the cluster class con-

taining 855 images and the non-cluster class containing 713 images. The source images

varied in resolution and required resizing to a uniform size of 224×224 before training. The

dataset was organized by batch size of 16. Data augmentation, namely, random horizontal

and vertical flips, was also used. Normalization was done using the mean and standard

deviation of the channel-wise mean of the training set.

A secondary form of the above dataset was to generate feature vectors using the Histogram

of Oriented Gradients (HOG) feature extractor introduced by Dalal et al.[61]. All images

were resized to 64×64, each producing a vector of size 1,764. HOG is typically used on

single-channel images such as grayscale and measures the direction of the highest intensity

changes. As demonstrated later, extracting features this way dramatically improved machine

learning classifier performance.

2.2 Groundtruth Preparation

After the first part, the model with saved training weights was used to predict unseen data

to obtain cluster class images. A dataset of about 1647 images was obtained for the second

phase’s training.

These images were converted from RGB to HSV color space for easier detection of colors.

Using a mask for the respective HSV color ranges, we obtained information on whether the

22

colors green were present in channel 2 (implying the presence of platelets), the colors yellow,

purple, and red were present in channels 3, 7, and 11 respectively (for the presence of white

blood cells) and the absence of staining to imply red blood cells. This simple mask-based

classification yielded the ground truths for automatic classification training.

The color histograms from all channel images were also obtained and stacked to form a

feature vector for each image. The shape of the feature vector would be (n x 1,024), where n

represents the number of images in the dataset, and 1024 represents the 256 color frequency

for each of the 4 channels.

23

Chapter 3

Methodology and Results

3.1 Tools

The code for this thesis was developed in the PyCharm IDE, using the deep learning library

PyTorch with CUDA enabled, Torchvision, Scikit-learn, and Torchcam. Numpy, Pandas,

Matplotlib, and OpenCV were used for basic image processing. The machine specifications

include 8 GB RAM and an NVIDIA GeForce GTX 1650 GPU with 4 GB storage. For version

control, the project is hosted on GitHub.
1

3.2 Grayscale Channel 1 Classification

The network consists of four convolutional layers all with kernel sizes of 6x6. The first layer

has 6 filters, then 12, 16, and 32 subsequently. Every convolutional layer is followed by batch

normalization and a 2-D Max pooling layer. The network ends with four fully connected

layers using the flattened features and giving outputs of sizes 120, 84, 42, and 3. Dropout at

a rate of 0.5 was used after the first three fully connected layers as well. The architecture is

shown in Figure 3.1

1Generative AI was used in producing LaTeX code and helped debug project code for this thesis. Addi-
tionally, ChatGPT was used for experiments; text from its configuration is mentioned in this section.

24

Figure 3.1: Overview of the proposed simple CNN architecture. The model accepts input
images of dimensions (3, 224, 224). The network consists of four convolutional layers, each
using 6×6 kernels, followed by ReLU activation and max-pooling to reduce spatial dimensions.
The final feature map flattens into a vector of size 2592, which passes through four fully
connected layers. The batch size used during training is 16.

25

For training, cross-entropy loss was chosen with class weights for the classes cluster and

non-cluster at 0.5 and 0.5 respectively. Adam optimizer was used at a learning rate of 0.0009

and weight decay of 0.0001. Cross-validation was implemented at k=3, with each fold trained

for 80 epochs monitored for overall accuracy, loss, weighted accuracy, and f1 score for class

‘cluster’ and class ‘non-cluster’. The best-performing model according to the f1 score for

‘cluster’ was saved for further inference for part two. The cross-validation scores are recorded

in Table 3.1.

Table 3.1: ConvNet Training Cross-Validation

Fold Accuracy F1 ROC-AUC Recall Precision Loss

0 89.7129 0.8966 0.9508 0.8978 0.8958 7.8272

1 88.0383 0.8789 0.9435 0.8776 0.8809 8.4031

2 87.2902 0.8721 0.9374 0.8725 0.8717 8.6384

3.2.1 Pretrained Models

Four pre-trained models namely, ResNet50, EfficientNet, MobileNetV2, and DenseNet were

used for comparison; they were trained with a cross-validation of k=3 and 20 epochs each

accounting for reasonable constraints in computing power.

ResNet’s total training time was about 30 minutes, EfficientNet and MobileNet took about

10 minutes for the same configuration, and DenseNet took 18 minutes. The cross-validation

scores are shown in Table 3.2

26

Table 3.2: Pre-trained Models Training Cross-Validation

Model Fold Accuracy F1 ROC-AUC Recall Precision Loss

ResNet

0 91.6268 0.9154 0.976 0.9145 0.9165 5.552

1 90.6699 0.9057 0.9628 0.9048 0.9068 7.4054

2 91.1271 0.9104 0.9682 0.9099 0.9111 6.8872

EfficientNet

0 92.823 0.9275 0.9745 0.9268 0.9284 6.0049

1 92.823 0.9279 0.9743 0.9298 0.9271 6.2632

2 92.5659 0.9246 0.9787 0.9223 0.9287 6.2796

MobileNetV2

0 93.0622 0.929 0.9779 0.9246 0.9406 7.3889

1 90.9091 0.9086 0.9658 0.9096 0.9078 8.1074

2 92.3261 0.9228 0.9668 0.9235 0.9222 8.1796

DenseNet

0 92.1053 0.92 0.9756 0.918 0.9232 5.6749

1 92.3445 0.9227 0.9793 0.9224 0.9231 5.154

2 90.8873 0.9084 0.9645 0.9094 0.9077 7.5255

3.3 Color Classification

3.3.1 Clustering

The feature vectors obtained after ground truth preparation were used for a preliminary clus-

tering operation using common clustering techniques. These ended up yielding unsatisfactory

results. Homogeneity scores, completeness scores, and v-measures were used as metrics to

check performance independent of the absolute value of the classes and the predicted clusters.

27

Table 3.3: Clustering Scores

Clustering Algorithm Homogeneity Completeness V-measure

Kmeans 0.0488 0.0540 0.0513

Gaussian Mixture 0.0522 0.0668 0.0586

Kmeans + PCA 0.0488 0.0540 0.0513

Kmeans + TSNE 0.0116 0.0089 0.0101

Autoencoder + Kmeans 0.0039 0.0036 0.0038

3.3.2 Machine Learning Classifiers

The next approach used feature vectors for tabular data classification using machine learning

classifiers, such as random forest, k-neighbors, support vector machines and gradient boosting

methods.

Table 3.4: ML Classifier Validation Scores

Model Accuracy F1 ROC-AUC Precision Recall Loss

SVC 68.7879 0.5957 0.7027 0.5298 0.6879 0.864

KNeighborsClassifier 66.9697 0.6169 0.7211 0.6011 0.6697 1.8072

RandomForestClassifier 70.6061 0.6223 0.7562 0.7048 0.7061 0.7942

XGBClassifier 66.6667 0.5838 0.7349 0.5267 0.6667 0.836

LGBMClassifier 66.9697 0.6067 0.7235 0.5743 0.6697 1.8438

3.3.3 Convolutional Neural Network

The third approach was to repurpose the convolutional neural network used in the first

phase with slight modifications and perform multi-class image classification using the labels

obtained from the first phase as ground truth.

The following modifications were implemented as shown in Figure 3.2. The last convo-

lutional layer was removed and for each channel a separate set of convolutional layers used

to obtain four different outputs which were flattened and concatenated together and passed

28

into the same set of fully connected layers. For training, stratified k-fold cross-validation at

k=3 was implemented.

Table 3.5: Multi-Channel ConvNet Cross Validation

Fold F1 Accuracy ROC-AUC Precision Recall loss

0 0.8868 89.3229 0.9 0.8896 0.8932 5.15569

1 0.8796 88.2812 0.9 0.8798 0.8828 9.5609

2 0.8809 89.5833 0.9 0.9068 0.8958 3.74867

29

Figure 3.2: Overview of the proposed multi-channel CNN architecture. Four separate input
channels are processed independently through identical CNN branches. Each branch consists
of three convolutional layers with 6×6 kernels, ReLU activation and max-pooling layers. The
output from each branch flattens into a vector of size 8464. The four vectors obtained are
concatenated to form a combined feature vector of length 33,856; these are then passed
through four fully-connected layers. The model learns channel-specific representations before
merging for joint inference. The batch size was set to 16 for training.

30

3.4 Few-Shot Learning

3.4.1 ChatGPT

The GPT 4o model was accessed under the OpenAI Plus subscription and a GPT was

configured explicitly to accept grayscale flow cytometry channel 1 images and classify them

into cluster and non-cluster classes based on minimal training images. The primary focus

was for the GPT model to learn to identify the image features using simple descriptions and

with minimal examples.

Instructions

The following were the instructions in the GPT configuration verbatim.

This GPT is designed to classify grayscale flow cytometry channel 1 images into ’Cluster’

and ’Non-Cluster’ categories based on their visual content. It incorporates five key modes: Im-

port, Training, Validation, Testing, and Export. Filenames are used strictly for identification

purposes, not for classification.

Modes:

Import Mode: - Allows the user to import a CSV file containing filenames, class labels,

and detailed descriptions of each image for reference and processing.

Training Mode: - Allows two types of inputs: 1. A batch of up to 5 images, all belonging

to the same class, requiring only the class label and no filenames. 2. A single image with

no filename and only the class label. - Analyzes and records visual features of the images

for reproducible learning. - Elaborates on criteria such as overlap, spacing, and shapes for

detailed and logical classification.

Validation Mode: - Classifies a single image based on visual criteria without referencing

its filename. - Provides a concise output: ‘Class: [Cluster/Non-Cluster]‘.

Testing Mode: - Processes and classifies batches of images based on visual feature analysis.

- Does not store or remember images or filenames between batches; classification is done one

image at a time within the batch. - Batches are capped at 5 images. If exceeded, issue a

31

warning without proceeding. - Outputs batch results in a text-formatted CSV style with the

structure:

Some key observations were that the model occasionally forgot its instructions and required

reminding along with some training images to maintain consistency in its performance. This

reminding needed to be done between 5-10 batches of inputs, beyond which there would be a

risk of wildly incorrect predictions in the testing stage. In addition to incorrect predictions, the

model would sometimes hallucinate filenames and batch numbers unless explicitly provided

with the same. Image inputs needed to be spaced across input timeouts every 10-15 batches,

including training and testing batches.

3.4.2 Segment Anything Model

The Segment Anything Model was tested on an image-by-image basis and ended up with

unreliable segmentation output. The aim was to use the model to generate masks for different

cells in the image and look for multi-cell images first before addressing the issue of overlapping.

The automatic mask generator from SAM did not do well with this likely due to the noisy

nature of the images and the varying contrasts and types of cell images in the dataset.

The ViT-B and ViT-H variants were used; ViT-H overfit to the noisy pixels and produced

incorrect masks while ViT-B failed to identify the important regions.

GroundingDINO was used along with SAM to attempt to guide the mask generation

process using text prompts. Some examples of prompts were:

Circular cell clusters. Circular or oval cells. Clustered bright circular or oval cells with

dark boundaries with overlap. Overlapping cells with contrast.

32

3.5 Performance on Test Set

3.5.1 Grayscale Classification

Table 3.6: Grayscale Classification Test Performance

Model Accuracy F1 Roc-auc Precision Recall Loss

ConvNet 87.0751 0.8716 0.951 0.8728 0.8708 6.0191

ResNet 91.0311 0.9129 0.9714 0.9178 0.9103 4.9353

EfficientNet 93.8283 0.9391 0.9741 0.94 0.9383 5.2785

MobileNetV2 90.7363 0.9121 0.9795 0.9255 0.9074 5.2531

DenseNet 92.6614 0.9291 0.9833 0.9335 0.9266 3.3195

ChatGPT 76.04 0.7553 0.7354 0.7587 0.7604 8.633

SVC 0.8286 0.8247 0.8974 0.8333 0.8218 0.3943

KNeighborsClassifier 0.8413 0.8397 0.9024 0.8402 0.8393 0.6908

RandomForestClassifier 0.819 0.8164 0.8854 0.8193 0.8148 0.4626

XGBClassifier 0.7841 0.7811 0.8758 0.7833 0.7799 0.4318

LGBMClassifier 0.8413 0.839 0.9014 0.8417 0.8376 0.6243

33

3.5.2 Color Classification

Table 3.7: Color Classification Test Performance

Model Accuracy F1 ROC-AUC Precision Recall Loss

Multi-Channel ConvNet 85.6566 0.7129 0.948 0.8153 0.6994 0.4539

Single-Input ConvNet 80.8081 0.758 0.8959 0.7176 0.8081 0.3349

ResNet 81.4141 0.7706 0.9511 0.8565 0.8141 0.2488

EfficientNet 88.0808 0.8703 0.97 0.8879 0.8808 0.1639

MobileNetV2 84.0404 0.825 0.9251 0.8617 0.8404 0.281

SVC 69.4949 0.5944 0.6932 0.5385 0.6949 0.8759

KNeighborsClassifier 67.4747 0.6054 0.7016 0.5726 0.6747 2.2183

RandomForestClassifier 68.6869 0.5906 0.7268 0.5743 0.6869 0.8513

XGBClassifier 67.4747 0.5994 0.696 0.5785 0.6747 0.8901

LGBMClassifier 68.6869 0.621 0.6851 0.6008 0.6869 2.1485

3.5.3 Misclassifications

Misclassifications were recorded for the custom CNN, the pre-trained models, and GPT 4o;

these are highlighted in Figures 3.3 3.5. The CNN-based models were also analyzed using

Grad-CAM visualizations.

In Figure 3.3a, the model appears to focus on background artifacts, at times focusing on

too many regions of the image to obtain any valuable insight.

Both ResNet in Figure 3.3b and EfficientNet in Figure 3.4a seem to do relatively well

with highlighting the important regions but still draw incorrect conclusions.

Example misclassifications by the ChatGPT 4o model are shown in Figure 3.5b. LLMs

are designed to have generalized image understanding and are not specifically trained on flow

cytometry images. This likely explains its errors in distinguishing important patterns typical

of cluster and non-cluster cell images. Prompts add uncertainty due to the varied nature of

the images meaning slight changes in phrasing can result in different interpretations.

34

Figure 3.3: Misclassified Examples and Grad-CAM Visualizations (Part 1)

(a) Grad-CAM visualizations from the simple CNN on images misclassified. The mosaic-
like pattern shows the model’s attention in each case. The model misses the appropriate
cluster regions in images 2, 3, 4, and 5. These misclassifications suggest the model’s
limited capacity to distinguish closely associated cells and low-contrast images.

(b) Grad-CAM visualizations from ResNet on misclassified images. While ResNet is closer
to focusing on the correct region, it fails to find the entire cluster in images 1, 2, 3, and
4, likely due to low contrast. Image 5 shows better focus but struggles to distinguish the
cluster region from that of a single-cell image due to ambiguity.

35

Figure 3.4: Misclassified Examples and Grad-CAM Visualizations (Part 2)

(a) Grad-CAM visualizations from EfficientNet on misclassified images. It focuses on too
many regions of the image, implying unneeded importance to the noisy areas and less
importance to the cluster regions. Unlike other images, in image 3 a narrow focus leads
to improper evaluation of cluster region.

(b) Grad-CAM visualizations from MobileNetV2 on misclassified images. Here attention
is narrow in several cases to the point of missing fragments of the clusters. Images 1 and
4 show a single cell, predicted as a cluster, likely due to poor narrow focus. In image
2, the higher contrast cell receives attention, but the blurred-out low contrast cluster
components are missed. Images 3 and 5 are naturally ambiguous, where the former is too
low contrast to make a case for cell boundary overlap conclusively. Meanwhile, the high
contrast thick boundaries make it harder to ascertain overlap in the latter.

36

Figure 3.5: Misclassified Examples and Grad-CAM Visualizations (Part 3)

(a) Grad-CAM visualizations from DenseNet on misclassified images. Among the pre-
trained models, DenseNet has the poorest focus. Low contrast in images 1 and 2 leads
to wrong predictions of the important regions. In image 3, attention is spread across
the image despite good contrast. With image 4, had there been good focus, there could
have been a misclassification based on similarity to single-cell features; however, the
cluster region is missed and classified as non-cluster based on no cell detected. Image 5 is
ambiguous due to the low contrast, leading to attention spread across the image.

(b) Misclassification examples from ChatGPT 4o. Images 1 and 3 show low-contrast cell clusters,
making boundary detection difficult. Image 2 shows minimal overlap to the point undetectable by
the model. In image 4, a single cell with an irregular shape is likely mistaken for two overlapping
cells. Image 5 shows non-overlapping cells, but the high contrast and textured appearance may
have led the model to interpret each region as containing a cluster.

37

Chapter 4

Conclusion

This thesis aimed at exploring deep learning methods on Imaging Flow Cytometry data to

classify cellular aggregates, which would help develop a better understanding of the relation-

ships between said clusters and immunothrombotic states in patients with COVID-19.

The first approach used a customized Convolutional Neural Network defining the problem

as a classification problem split in two stages. The first stage aimed to separate clusters from

non-clusters and the second stage seeked to identify specific cluster groups in the cluster class.

The second approach attempted to perform few-shot learning using the ChatGPT interface

making use of contextual text-based understanding of images to classify images with as little

data as possible. This was carried out using a well-defined set of instructions.

In the first stage of cluster classification, the CNN with minimal layers gave an 87%

accuracy and 0.95 ROC-AUC score. Upon comparisons with pre-trained models, EfficientNet

performed the best at 93.8% accuracy and 0.974 ROC-AUC score. GPT 4o reached an

accuracy of 76% and 0.734 ROC-AUC score. The deep learning algorithms were able to

significantly outperform the machine learning classifiers. Experiments with GPT 4o also

highlighted issues with its handling of images beyond a certain limit leading to forgetting its

rules requiring frequent revised training and reminding of rules. The rough sweet spot was

about 5-10 batches of input images before requiring reminders. In the second stage of color

classification, the same CNN architecture with minimal layers was modified to accept multiple

input channels parallelly and performed at about 85.6% accuracy and a 0.948 ROC-AUC

38

score, again outperforming the machine learning classifiers and clustering algorithms by a

significant margin.

4.0.1 Future Work

Another avenue in few-shot learning, the Segment Anything model was explored. The key

issue was that the variability in the cell shapes made it hard to ascribe a single configuration

that could reliably differentiate cells from particles and noisy backgrounds. The problem

that all the models seem to face is difficulty distinguishing clusters in low-contrast images

indicating a need for a more effective image pre-processing pipeline. There is potential in

using better image post-processing that improves contrast and enables models to better

distinguish cells of different shapes and sizes.

Given the small dataset size, further testing is required to confirm whether pre-trained

models such as EfficientNet are not merely overfitting on the dataset and are suitable for

separating cluster cell images. A larger dataset opens up the options to use more advanced

network architectures like residual learning blocks and transformer architectures.

39

Appendix A

Supplementary Materials

The source code for the project is available on GitHub: https://github.com/subhadeep-

sg/flow-cytometry-classification-workflow

40

A.1 Grayscale Classification Additional Figures

(a) CV Fold 0 (b) CV Fold 1

(c) CV Fold 2

Figure A.1: Training and validation accuracy curves for each fold during cross-validation of
the custom convolutional neural network. Each subplot shows the accuracy over training
epochs for one fold. The training curves remain consistently high, while the validation
curves show greater variability, particularly in Fold 1. This variation highlights potential
generalization challenges across different subsets of the data.

41

Figure A.2: Confusion matrix showing the performance of the binary classification model on
the test set. The model correctly identified 154 cluster images and 121 non-cluster images.
Misclassifications included 18 cluster images predicted as non-cluster, and 22 non-cluster
images predicted as clusters. Overall, the matrix reflects reasonably balanced performance
with slightly more false positives than false negatives.

42

A.2 Color Classification Additional Figures

(a) CV Fold 0 (b) CV Fold 1

(c) CV Fold 2

Figure A.3: Training and validation accuracy curves for each fold during cross-validation of
the multi-channel convolutional neural network. All three folds show steady improvement
in training accuracy, while the validation curves follow a similar upward trend with minor
fluctuations. Fold 2 shows the most consistent performance across training and validation,
suggesting better generalization on that split.

43

Figure A.4: Confusion matrix for the multi-class classification of cell types based on color
channel information. The model most accurately identified WBC–platelet clusters, with 329
correct predictions. Some confusion is observed between platelet-only and WBC–platelet
classes, as well as occasional misclassification between RBC and WBC. These results suggest
strong overall performance with minor overlap-driven ambiguity between similar classes.

44

A.3 Grayscale Misclassifications

Figure A.5: Misclassified test images from the custom convolutional neural network. Each
sample is labeled with its ground truth and predicted class. The examples reflect common
errors such as low contrast, minimal overlap, or ambiguous morphology.

45

Figure A.6: Misclassified test images from the ResNet model. Shown are prediction errors
made by ResNet, including ambiguous shapes, partial overlaps, and contrast-related issues
contributing to classification mistakes.

46

Figure A.7: Misclassified test images from the EfficientNet model. Includes samples with faint
or overlapping boundaries and irregular cell shapes, which likely contributed to classification
errors.

47

Figure A.8: Misclassified test images from the MobileNetV2 model. Contains errors likely
due to ambiguous overlap, low contrast regions, or irregular shapes that confuse cluster
identification.

48

Figure A.9: Misclassified test images from the DenseNet model. Errors appear in cases with
subtle cell boundaries, tight clusters mistaken as single cells, or low-contrast artifacts that
reduce model reliability.

49

Figure A.10: Misclassified test images from the ChatGPT 4o model (Part 1). Misclassifica-
tions include faint or low-contrast clusters, ambiguous cell separations, and edge cases where
cell shapes or orientations deviate from typical patterns observed during training.

50

Figure A.11: ChatGPT 4o Misclassifications (Part 2). More examples of incorrectly clas-
sified cell images by ChatGPT 4o, showing a range of subtle overlaps and atypical shapes
contributing to classification errors.

51

Figure A.12: ChatGPT 4o Misclassifications (Part 3). Further misclassified examples by
ChatGPT 4o, including low-contrast cluster images and ambiguous single-cell structures
misinterpreted as clusters.

52

A.4 Color Misclassifications

Figure A.13: Color Misclassifications Part 1 Examples of incorrect predictions in the color-
based classifier, highlighting cases where channel-level staining was misinterpreted.

Figure A.14: Color Misclassifications Part 2 Continued color misclassification examples
showing ambiguity in marker presence and overlap across channels.

Figure A.15: Color Misclassifications Part 3 Additional color classification errors with over-
lapping fluorescence signals or weak staining contributing to incorrect labels.

53

Figure A.16: Color Misclassifications Part 4 Examples of color classification errors where
marker interpretation was affected by weak or ambiguous staining patterns.

Figure A.17: Color Misclassifications Part 5 Final set of color misclassified samples, including
borderline or low-contrast cases challenging for threshold-based detection.

54

Bibliography

[1] Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with

poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost.

2020;18:844-847.

[2] Hanff, Thomas C., et al. "Thrombosis in COVID-19." American journal of hematology

95.12 (2020): 1578-1589.

[3] Jayarangaiah, Apoorva, et al. "COVID-19-associated coagulopathy: an exacerbated

immunothrombosis response." Clinical and Applied Thrombosis/Hemostasis 26 (2020):

1076029620943293.

[4] Dorken-Gallastegi, Ander, et al. "Circulating cellular clusters are associated with throm-

botic complications and clinical outcomes in COVID-19." Iscience 26.7 (2023).

[5] Marcos-Jubilar, María, Ramón Lecumberri, and José A. Páramo. "Immunothrombosis:

molecular aspects and new therapeutic perspectives." Journal of Clinical Medicine 12.4

(2023): 1399.

[6] Butenas, Saulius et al. “Tissue factor in coagulation: Which? Where? When?.”

Arteriosclerosis, thrombosis, and vascular biology vol. 29,12 (2009): 1989-96.

doi:10.1161ATVBAHA.108.177402

[7] Li, Yangxin, et al. "Inflammasomes as therapeutic targets in human diseases." Signal

transduction and targeted therapy 6.1 (2021): 247.

[8] Brinkmann, Volker, et al. "Neutrophil extracellular traps kill bacteria." science 303.5663

(2004): 1532-1535.

55

[9] Bonner, W. A., et al. "Fluorescence activated cell sorting." Review of Scientific Instru-

ments 43.3 (1972): 404-409.

[10] McKinnon, Katherine M. “Flow Cytometry: An Overview.” Current protocols in im-

munology vol. 120 5.1.1-5.1.11. 21 Feb. 2018, doi:10.1002/cpim.40

[11] Schneck, Emmanuel, et al. "Flow Cytometry-Based Quantification of Neutrophil Ex-

tracellular Traps Shows an Association with Hypercoagulation in Septic Shock and

Hypocoagulation in Postsurgical Systemic Inflammation—A Proof-of-Concept Study."

Journal of Clinical Medicine 9.1 (2020): 174.

[12] Heestermans, Marco, et al. "Immunothrombosis and the role of platelets in venous

thromboembolic diseases." International Journal of Molecular Sciences 23.21 (2022):

13176.

[13] Verschoor, Chris P., et al. "An introduction to automated flow cytometry gating tools

and their implementation." Frontiers in immunology 6 (2015): 380.

[14] Liu, Peng, et al. "Comprehensive evaluation and practical guideline of gating methods

for high-dimensional cytometry data: manual gating, unsupervised clustering, and auto-

gating." Briefings in Bioinformatics 26.1 (2025): bbae633.

[15] Eslami, Mohammed, et al. "AutoGater: a weakly supervised neural network model to

gate cells in flow cytometric analyses." Scientific Reports 14.1 (2024): 23581.

[16] Fisch, Lukas, et al. "GateNet: A novel neural network architecture for automated flow

cytometry gating." Computers in Biology and Medicine 179 (2024): 108820.

[17] Sriphum, Wiwat. FLOPTICS: A novel automated gating technique for flow cytometry

data. Diss. University of Southampton, 2023.

[18] Luo, Shaobo, et al. "Machine-learning-assisted intelligent imaging flow cytometry: A

review." Advanced Intelligent Systems 3.11 (2021): 2100073.

56

[19] Monaghan, Sara A., et al. "A machine learning approach to the classification of acute

leukemias and distinction from nonneoplastic cytopenias using flow cytometry data."

American journal of clinical pathology 157.4 (2022): 546-553.

[20] Cohen, Anat, et al. "Label-free imaging flow cytometry for cell classification based on

multiple interferometric projections using deep learning." Advanced Intelligent Systems

6.1 (2024): 2300433.

[21] Lewis, Joshua E., et al. "Automated deep learning-based diagnosis and molecular char-

acterization of acute myeloid leukemia using flow cytometry." Modern Pathology 37.1

(2024): 100373.

[22] Cheng, Fu-Ming, et al. "Deep learning assists in acute leukemia detection and cell

classification via flow cytometry using the acute leukemia orientation tube." Scientific

Reports 14.1 (2024): 8350.

[23] Cheng, Zhangkai J., et al. "Artificial intelligence reveals the predictions of hematological

indexes in children with acute leukemia." BMC cancer 24.1 (2024): 993.

[24] Hybel, Trine Engelbrecht, et al. "Imaging Flow Cytometry and Convolutional Neural

Network-Based Classification Enable Discrimination of Hematopoietic and Leukemic

Stem Cells in Acute Myeloid Leukemia." International Journal of Molecular Sciences

25.12 (2024): 6465.

[25] Vora, Nilay, et al. "Deep learning-enabled detection of rare circulating tumor cell clusters

in whole blood using label-free, flow cytometry." Lab on a Chip 24.8 (2024): 2237-2252.

[26] Becht, Etienne, et al. "High-throughput single-cell quantification of hundreds of proteins

using conventional flow cytometry and machine learning." Science advances 7.39 (2021):

eabg0505.

[27] Lippeveld, Maxim, et al. "Classification of human white blood cells using machine

learning for stain-free imaging flow cytometry." Cytometry Part A 97.3 (2020): 308-319.

57

[28] Park, Seongcheol, et al. "A simple approach to biophysical profiling of blood cells in ex-

tranodal NK/T cell lymphoma patients using deep learning-integrated image cytometry."

BMEMat (2024): e12128.

[29] Lemieux, Madeleine E., et al. "Detection of early-stage lung cancer in sputum using

automated flow cytometry and machine learning." Respiratory research 24.1 (2023): 23.

[30] Rosenberg, Carina A., et al. "Exploring dyserythropoiesis in patients with myelodysplas-

tic syndrome by imaging flow cytometry and machine-learning assisted morphometrics."

Cytometry Part B: Clinical Cytometry 100.5 (2021): 554-567.

[31] Wilkins, Malcolm F., et al. "Comparison of five clustering algorithms to classify phy-

toplankton from flow cytometry data." Cytometry: The Journal of the International

Society for Analytical Cytology 44.3 (2001): 210-217.

[32] Li, Yueqin, et al. "Deep cytometry: deep learning with real-time inference in cell sorting

and flow cytometry." Scientific reports 9.1 (2019): 11088.

[33] Eulenberg, Philipp, et al. "Deep learning for imaging flow cytometry: cell cycle analysis

of Jurkat cells." bioRxiv (2016): 081364.

[34] Gupta, Anindya, et al. "Deep learning in image cytometry: a review." Cytometry Part

A 95.4 (2019): 366-380.

[35] Liu, Chao, et al. "High-content video flow cytometry with digital cell filtering for label-

free cell classification by machine learning." Cytometry Part A 103.4 (2023): 325-334.

[36] Bini, Lorenzo, et al. "FlowCyt: A Comparative Study of Deep Learning Ap-

proaches for Multi-Class Classification in Flow Cytometry Benchmarking." arXiv preprint

arXiv:2403.00024 (2024).

[37] He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the

IEEE conference on computer vision and pattern recognition. 2016.

[38] Ma, Li, et al. "Combining DC-GAN with ResNet for blood cell image classification."

Medical & biological engineering & computing 58 (2020): 1251-1264.

58

[39] Zhu, Ziquan, et al. "RDNet: ResNet-18 with dropout for blood cell classification." Inter-

national Work-Conference on the Interplay Between Natural and Artificial Computation.

Cham: Springer International Publishing, 2022.

[40] Farooq, Muhammad, and Abdul Hafeez. "Covid-resnet: A deep learning framework for

screening of covid19 from radiographs." arXiv preprint arXiv:2003.14395 (2020).

[41] Tan, Mingxing, and Quoc Le. "Efficientnet: Rethinking model scaling for convolutional

neural networks." International conference on machine learning. PMLR, 2019.

[42] Batool, Amreen, and Yung-Cheol Byun. "Lightweight EfficientNetB3 model based on

depthwise separable convolutions for enhancing classification of leukemia white blood

cell images." IEEE access 11 (2023): 37203-37215.

[43] Ramamurthy, Karthik, et al. "A deep learning network for Gleason grading of prostate

biopsies using EfficientNet." Biomedical Engineering/Biomedizinische Technik 68.2

(2023): 187-198.

[44] Ravi, Vinayakumar, Vasundhara Acharya, and Mamoun Alazab. "A multichannel Ef-

ficientNet deep learning-based stacking ensemble approach for lung disease detection

using chest X-ray images." Cluster Computing 26.2 (2023): 1181-1203.

[45] Sandler, Mark, et al. "Mobilenetv2: Inverted residuals and linear bottlenecks." Proceed-

ings of the IEEE conference on computer vision and pattern recognition. 2018.

[46] Akay, Metin, et al. "Deep learning classification of systemic sclerosis skin using the

MobileNetV2 model." IEEE Open Journal of Engineering in Medicine and Biology 2

(2021): 104-110.

[47] Kumar, Indrajeet, and Jyoti Rawat. "Segmentation and classification of white blood

SMEAR images using modified CNN architecture." Discover Applied Sciences 6.11 (2024):

1-18.

[48] Ragab, Mahmoud, et al. "COVID-19 identification system using transfer learning tech-

nique with mobile-NetV2 and chest X-ray images." Frontiers in Public Health 10 (2022):

819156.

59

[49] Huang, Gao, et al. "Densely connected convolutional networks." Proceedings of the

IEEE conference on computer vision and pattern recognition. 2017.

[50] Houssein, Essam H., et al. "Using deep DenseNet with cyclical learning rate to classify

leukocytes for leukemia identification." Frontiers in Oncology 13 (2023): 1230434.

[51] Bozkurt, Ferhat. "Classification of blood cells from blood cell images using dense convo-

lutional network." Journal of Science, Technology and Engineering Research 2.2 (2021):

81-88.

[52] Hasan, Najmul, et al. "DenseNet convolutional neural networks application for predicting

COVID-19 using CT image." SN computer science 2.5 (2021): 389.

[53] Radford, Alec, et al. "Improving language understanding by generative pre-training."

(2018).

[54] Achiam, Josh, et al. "Gpt-4 technical report." arXiv preprint arXiv:2303.08774 (2023).

[55] Johnson, Olanrewaju Victor, Osamah Mohammed Alyasiri, and Olabisi Esher John-

son. "Image Analysis through the lens of ChatGPT-4." Journal of Applied Artificial

Intelligence 4.2 (2023): 31-46.

[56] Ren, Zhiyuan, Yiyang Su, and Xiaoming Liu. "ChatGPT-powered hierarchical compar-

isons for image classification." Advances in neural information processing systems 36

(2024).

[57] Wu, Chenfei, et al. "Visual chatgpt: Talking, drawing and editing with visual foundation

models." arXiv preprint arXiv:2303.04671 (2023).

[58] Kirillov, Alexander, et al. "Segment anything." Proceedings of the IEEE/CVF interna-

tional conference on computer vision. 2023.

[59] Liu, Shilong, et al. "Grounding dino: Marrying dino with grounded pre-training for

open-set object detection." European Conference on Computer Vision. Cham: Springer

Nature Switzerland, 2024.

60

[60] Selvaraju, Ramprasaath R., et al. "Grad-cam: Visual explanations from deep networks

via gradient-based localization." Proceedings of the IEEE international conference on

computer vision. 2017.

[61] Dalal, Navneet, and Bill Triggs. "Histograms of oriented gradients for human detection."

2005 IEEE computer society conference on computer vision and pattern recognition

(CVPR’05). Vol. 1. Ieee, 2005.

61

	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Aim and General Overview
	Brief Summary of Results
	Immunothrombosis due to COVID-19 and Treatments
	Techniques for studying cell clusters
	Machine Learning on Flow Cytometry Imaging
	Pretrained Models
	Few-Shot Learning
	Metrics
	Interpretability Analysis

	Dataset
	Manually Labelled Grayscale Images
	Groundtruth Preparation

	Methodology and Results
	Tools
	Grayscale Channel 1 Classification
	Color Classification
	Few-Shot Learning
	Performance on Test Set

	Conclusion
	Appendices
	Supplementary Materials
	Grayscale Classification Additional Figures
	Color Classification Additional Figures
	Grayscale Misclassifications
	Color Misclassifications

	Bibliography

