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Abstract

Acquiring high-quality data for AI applications in the manufacturing sector is challenging

due to the complex and proprietary nature of manufacturing processes, as well as the cost

of gathering real-world data, resulting in data scarcity. Synthetic data generation offers

a promising solution to this issue by creating artificial datasets for AI model training and

testing. This study investigates various synthetic data generation methods for manufactur-

ing assembly lines and introduces a comprehensive framework for producing and validating

synthetic datasets. The proposed framework consists of four stages: data collection, pre-

processing, synthetic data generation, and validation. Through the case study, it was found

that synthetic data can significantly improve model performance on imbalanced datasets for

assembly line processes. The study concludes that the proposed framework for synthetic

data generation can be a valuable resource for researchers seeking to generate synthetic data

and conduct studies on assembly line processes.
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Chapter 1

Introduction

Modern manufacturing has undergone a remarkable transformation, thanks to the advent

of assembly lines[1]. From automobiles to smartphones, these systems have revolutionized

production by seamlessly fitting together every component with clockwork precision to create

a flawless end product. However, optimizing assembly line procedures is a delicate balanc-

ing act that requires engineers and researchers to navigate complex tradeoffs between speed,

accuracy, and quality control[2]. Significant advancements in increasing production, decreas-

ing waste, and improving product quality have been accomplished through years of devoted

research and development. Despite these advances, there are still significant challenges as-

sociated with creating and testing new assembly line models and algorithms. One of the

major obstacles is the need to obtain and utilize actual production data, which is essential

for effective optimization[3]. As such, ongoing research in this area remains critical to ensure

the continued success of modern manufacturing.
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1.1 Motivation

Efficient and rapid production of intricate products heavily relies on assembly line sys-

tems, but the optimization of these systems requires precise and dependable data[3]. Unfor-

tunately, practical scenarios present numerous challenges in acquiring such data, including

high costs, data privacy concerns, and proprietary information constraints[4]. As a result,

manufacturers must seek innovative solutions to address these challenges and ensure the

effective optimization of assembly line procedures.

However, the challenges of data scarcity and its proprietary nature are significant obsta-

cles for developers and academic researchers in the manufacturing industry when it comes to

running machine learning models and conducting data analysis. In addition, assembly line

manufacturers are also confronted with a significant challenge of inadequate data, particu-

larly for small and medium-sized businesses with limited capacity to gather extensive volumes

of data. Obtaining enough authentic real-world data can be an arduous and costly process,

which restricts the ability to optimize assembly line procedures effectively[4]. Furthermore,

even when data is available, it may be restricted in breadth or not fully representative of

the range of operating circumstances, which can limit the performance of assembly line

systems[4]. Incomplete or inaccurate data can be a potential issue due to factors like sample

selection or measurement errors, leading to data bias. Hence, it becomes crucial to consider

alternative solutions that can overcome these challenges and gather the required data for

efficient and effective assembly line optimization.

Additionally, it is important to consider that data obtained from real-world scenarios

may be limited by proprietary restrictions, preventing sharing with external entities or uti-

lization for research and development purposes[5]. This can hinder collaboration and impede

innovation within the manufacturing industry. Finding other approaches is therefore impor-

tant to get beyond these limitations and promote increased sharing and cooperation between
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industry players. The industrial sector may gain from increased productivity, creativity, and

competitiveness by encouraging more data exchange and cooperation.

Over the past few years, there has been an increasing focus on leveraging synthetic data as

a means of addressing these challenges and enhancing the efficacy of assembly line systems[5].

Synthetic data refers to data that is artificially generated to replicate the statistical charac-

teristics of actual data. In the realm of manufacturing assembly lines, synthetic data can be

utilized to complement or substitute real-world data, particularly in instances where genuine

data is limited or deficient[6].

With the advancements in machine learning and artificial intelligence, generating syn-

thetic data has become an alternative solution that can replace the costly processes of data

collection and storage. The ability to create synthetic data at a high scale and accuracy

level has enabled the creation of realistic digital copies of manufacturing assembly lines.

This flexibility facilitates the development of data sets that represent diverse circumstances,

including those that may be arduous or expensive to obtain through real-world data. The

digital replicas can be used to simulate various scenarios and identify optimization areas to

enhance productivity and efficiency within the manufacturing industry[7].

The use of synthetic data in industrial assembly line systems has the potential to com-

pletely transform the sector by offering a quick and affordable way to analyze data, improve

workflows, and improve collaboration. Synthetic data is not subject to the same proprietary

restrictions as real-world data, enabling easy sharing between industry players, which in turn

fosters innovation and enhances the competitiveness of the manufacturing industry. There-

fore, the incorporation of synthetic data in manufacturing assembly line systems can have

far-reaching implications for the industry, driving productivity and efficiency improvements

while also promoting collaboration and knowledge sharing.

This thesis aims to examine the existing literature on synthetic data generation in man-

ufacturing assembly lines and present a framework for producing synthetic data that can
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replicate various production scenarios. This approach allows researchers and engineers to

assess and optimize assembly line procedures in a secure, regulated, and effective manner.

The objective of this study is to demonstrate the effectiveness of synthetic data gener-

ation as a robust tool for designing and testing machine learning algorithms and models

for manufacturing assembly lines, while also overcoming issues arising from data scarcity

and sensitivity. By offering a method for producing high-quality data, we strive to make a

valuable contribution towards developing more productive, secure, and dependable assembly

line processes.

1.2 Challenges

Synthetic data has gained prominence as a valuable tool across several industries, in-

cluding manufacturing. This kind of data is produced by algorithms that create artificial

data that resembles actual data. Synthetic data may replace costly and time-consuming

physical tests in the manufacturing industry when it comes to testing and verifying pro-

cesses. However, generating synthetic data for manufacturing assembly lines is not without

its challenges. These challenges need to be addressed to ensure the accuracy and usefulness

of the data. This discussion will explore the various hurdles encountered when generating

synthetic data for manufacturing assembly lines.

1. Complexity: Manufacturing assembly lines are intricate and multi-layered systems

that comprise numerous components and connections between production stages. The in-

teractions among these components and stages are highly dynamic and non-linear, posing

a challenge in capturing all variations and interactions in a synthetic dataset. Considering

the complexity of these assembly lines, it is essential to use advanced algorithms that can

precisely model how each step of the procedure behaves[5]. It is still difficult to accurately
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represent all the nuances of the manufacturing process, even with sophisticated modeling

approaches.

2. Realism: To ensure that synthetic data is an accurate representation of real-world

data, it must mimic the characteristics of the actual manufacturing processes. This requires

a profound comprehension of the underlying physics and mechanics of the process to generate

realistic synthetic data[4]. In generating synthetic data, the simulation models used must

rely on precise and dependable data sources such as sensor readings, production logs, and

other operational data. Failure to access these data sources can result in synthetic data that

does not accurately depict the behavior of the manufacturing process.

3. Data volume: Manufacturing assembly lines produce an enormous volume of data

comprising sensor readings, production logs, and other operational data. Generating syn-

thetic data that effectively captures the diversity and variability of the process can be quite

challenging[3]. Synthetic data must be produced at scale to facilitate the effective testing

and validation of manufacturing processes. However, generating large volumes of synthetic

data can be quite resource-intensive, necessitating substantial computational resources.

4. Cost: Generating synthetic data demands a considerable amount of computational

resources and expertise, which can be expensive for several manufacturing organizations[5].

The generation of synthetic data necessitates advanced simulation algorithms, high-performance

computing resources, and skilled data scientists to develop and validate the models. These

resources can be costly, rendering them prohibitive for many organizations, particularly

smaller manufacturers with restricted budgets.

5. Legal and ethical considerations: The generation of synthetic data can potentially

infringe on intellectual property rights or personal privacy, highlighting the need to guarantee

that synthetic data produced on manufacturing assembly lines complies with legal and ethical

regulations[3]. Synthetic data should exclude any proprietary or confidential information

that could jeopardize a company’s competitive edge. Moreover, synthetic data generated
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from manufacturing processes should not expose any personal information about employees

or customers. It is incumbent upon manufacturers to recognize these legal and ethical

considerations and guarantee that synthetic data is generated and utilized appropriately.

1.3 Knowledge Gap

The field of synthetic data generation for assembly lines is constantly developing and has

the potential to revolutionize manufacturing. Significant gains in sustainability, productivity,

and efficiency may be made by producing a sizable amount of realistic synthetic data. Then,

these revelations may be utilized to solve actual-world issues. Notwithstanding the benefits,

there are still a lot of knowledge gaps that need to be addressed in order to achieve these

goals. In this regard, some of the knowledge gaps in synthetic data generation for assembly

lines are discussed below.

1. Generating synthetic data that can effectively capture the complexity and variability

of assembly line production processes requires accurate and realistic models. However, the

current models have limitations in accurately representing real-world production processes,

which poses a significant gap in knowledge. Addressing this gap is crucial to developing more

effective synthetic data generation methods.

2. Human operators play a critical role in assembly line production processes, and incor-

porating their behavior and physiology into synthetic data generation is important. However,

there is limited research on accurately modeling human factors in synthetic data generation,

which is a significant gap in knowledge. Understanding the behavior and physiology of

human operators and incorporating this knowledge into synthetic data generation models

can help generate more realistic data that better represents actual assembly line production

processes.
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3. The validation and testing of synthetic data is essential to ensure that it accurately

represents the underlying data distribution. Comparing and contrasting various synthetic

data production techniques can be challenging since there are presently no standardized

validation and testing procedures for synthetic data. For the purpose of creating more

dependable and precise synthetic data creation methods, this offers a huge knowledge gap

that has to be filled.

4. Synthetic data must be impartial and accurately represent the distribution of the

underlying data to be effective in assembly line production processes. However, there is

limited research on identifying and mitigating biases in synthetic data generation, which is a

significant gap in knowledge. Developing techniques to reduce potential biases in synthetic

data generation methods can help generate more accurate and reliable synthetic data.

5. Physiological data, such as heart rate, breathing, or electrodermal activity, can pro-

vide valuable insights into human operator behavior and improve decision-making and pre-

diction models in assembly line production processes. However, the accurate modeling of

physiological responses in synthetic data generation is still a significant gap in knowledge.

Understanding the complex interactions between physiological responses and assembly line

production processes can help develop more sophisticated synthetic data generation models

that better represent real-world scenarios. Table 1.1 summarizes the research questions that

need to be addressed to fill the knowledge gaps in synthetic data generation for assembly

lines.

1.4 State-of-art solutions

Manufacturing researchers are continually exploring ways to generate realistic synthetic

data for machine learning model training. Physical simulations are one state-of-the-art

method for generating synthetic data by creating a virtual environment that simulates real-
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Research Questions
What are potential approaches for generating synthetic data in
manufacturing?
What is an effective framework design for generating, validating,
and testing synthetic data sets for Industry 4.0 practices?
How can the effectiveness of generated synthetic data for down-
stream tasks be evaluated through a case study?

Table 1.1: Research questions

world scenarios, but accurately simulating the complexity and diversity of assembly lines

remains challenging.

Data augmentation, which modifies existing data to create new variations, is another

approach for generating synthetic data. However, it may not be sufficient for generating

highly diverse and complex data.

Generative Adversarial Networks (GANs) are widely used to generate synthetic data by

learning statistical patterns of the source data to create synthetic data that closely resemble

the original data. GANs have been successfully applied to synthesize images and videos in

assembly line settings.

Variational Autoencoders (VAEs) are a deep learning model that can generate synthetic

data by learning the underlying latent space of the data. VAEs can produce data that is

similar but not identical to the original data, making them useful for data augmentation in

assembly line quality control.

Transfer learning is another method for generating synthetic data by fine-tuning pre-

trained models on similar datasets. When there are few data sources for a particular assembly

line, this method might be helpful.
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The generation of synthetic data using these cutting-edge approaches is promising, but

each methodology has advantages and disadvantages of its own. Because of this, it is essential

that researchers and assembly line makers thoroughly assess each method and select the one

that would best suit their unique requirements. In an assembly line scenario, doing so can

aid in producing high-quality synthetic data that will enhance the performance of machine

learning models.

1.5 Organization of this thesis

The organization of this thesis is as follows. Chapter 1 provides an introduction to the

challenges of data scarcity and bias in assembly line optimization, and highlights the need

for alternative solutions such as synthetic data generation. Chapter 2 discusses the system-

atic review process and the current state-of-the-art in synthetic data generation literature.

Chapter 3 presents an application of manufacturing where synthetic data is used, and dis-

cusses data challenges related to synthetic data. Chapter 4 describes a detailed framework

for synthetic data generation on assembly lines, including various types of data that can be

collected and synthetic data techniques that can be used for them. This chapter also explores

opportunities for analyzing synthetic data. Chapter 5 demonstrates a case study using the

proposed framework, and provides a detailed analysis of the results. Finally, Chapter 6

concludes the thesis and suggests directions for future research in the field of synthetic data

generation in manufacturing.
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Chapter 2

Background

2.1 Systematic Review Search Process

The main focus of this research paper is to investigate the application of synthetic data

generation in the context of assembly line manufacturing. Assembly line manufacturing

involves the production of products through a series of repetitive tasks performed by workers

or machines and is a critical component of many manufacturing industries. By modeling

and optimizing various production situations, it may be able to increase the efficiency and

accuracy of assembly line operations by generating synthetic data. In applications involving

machine learning and artificial intelligence, synthetic data is widely used to train algorithms

and improve performance.

To achieve my objective, I utilized Google Scholar as a repository to explore appropri-

ate papers. Initially, I employed the keywords ”Synthetic Data” AND ”Generation” AND

(”Manufacturing” OR ”Production”) which generated 35,400 articles. Nonetheless, to cus-

tomize the search specifically to the topic of manufacturing, I eliminated all articles unrelated

to it, resulting in 10,600 articles as shown in Figure 2.1.
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Figure 2.1: Systematic Review Search Process

When manufacturing goods, machinery and technology are utilized to transform raw

materials into completed products. Before the final product is created, the manufacturing

process typically involves several stages such as design, engineering, prototyping, and testing.

Production, on the other hand, encompasses all actions related to creating goods or services

and is a more comprehensive term than manufacturing[8]. By filtering out articles related to

production, the search results were refined, and only articles most relevant to the research

topic and offering valuable insights and information concerning the use of synthetic data in

assembly line manufacturing were obtained.

To further narrow down the results, the keyword “Assembly Line” was used, resulting in

309 articles that were relevant to assembly line manufacturing. The titles of these articles

were screened, and any duplicates were removed, leaving 292 articles. The abstracts of the

11



remaining articles were then screened, and any articles that were not related to manufactur-

ing/synthetic data or were thesis/dissertation were excluded. The study identified 61 papers

pertinent to the subject matter, which were classified into two groups: those that produced

synthetic data (33 papers), and those that employed synthetic data in their investigations

(28 papers). The former category of papers was centered on generating simulated datasets

that imitated real-world data attributes, while the latter category of papers utilized syn-

thetic data for experimentation and analysis. These two classifications serve as a valuable

framework for comprehending the diverse applications of synthetic data in research.

2.2 Synthetic data generation methods

There are two primary methods used in scientific research to create synthetic data: phys-

ical simulations and data-driven algorithms.

2.2.1 Physical Simulations

In manufacturing and assembly line industries, the use of physical simulations has become

increasingly popular for generating synthetic data. Physical simulations employ mathemati-

cal models to replicate real-world phenomena. This enables researchers to generate synthetic

data that perfectly mimics the behavior of the system under investigation.

Assembly lines are intricate systems that require the interaction of various components

and processes. Physical simulations can model these interactions and create synthetic data

that accurately reflects the system’s behavior. Through simulations with various parameters

and configurations, researchers can produce a synthetic dataset that can be utilized to test

and enhance assembly line processes.

Moreover, physical simulations can aid in enhancing the performance and efficiency of

assembly line processes. By simulating various assembly line configurations and parameters,
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Type of data Synthetic data generation
method

Application of manufactur-
ing

Discrete

Binary ADASYN[9],Random
Sampling[10],Digital Twin
Simulation[11], GMM[12],
SMOTE[13]

Quality Control(Fault
Detection)[9, 10, 11, 13],Process
monitoring[12]

Point-cloud IPS cable simulation and
Blender[14]

Quality Control(Automated
optical inspection)[14]

2D coordinates GANs[15] Human Robot Collaboration[15]
Multi-class Simufact additive software[16] Quality Control[16]

Continuous

Image Unity 3D and Revit
software[17], Unity 3D and
CAD models[18, 19], Domain
Roandomization[20],
Geometric transformations[21],
By varying levels of
environmental noise[22],
Through rotating and
modifying the colors of the
images[23], GANs[24], and
Blender software and Domain
randomization[25],Blender
software [26]

Process
Optimization[17],Increasing
Productivity[18], Quality
Control[21, 22, 25, 26],
Production Monitoring[19],
Operator Guidance[20], Braille
Display[23], Industrial Internet
of Things[24]

Time-series By varying parameters[27, 28],
GANs[29], Promodel-PC
simulation[30], Simul8
simulation[31], SIMIO
simulation[32, 33], Hidden
Markov Models[5], Simpy
Library[34], Virtual Factory
Prototype[35], Taguchi
simulation[36], and Wiener
Process, Gaussian Noise and
by varying standard
deviation[37]

Quality Control(Fault
detection)[27],Production
Scheduling[28],Activity
Recognition[29], Component
Delivery[30], Preventive
Maintenance[31], Production
Planning[32, 33],
Pipe-Spooling[5], Quality
Control[34], Cycle-Time
estimation[35], Process
Optimization[36], Stream
Processing[37]

Video GANs[38] Defect detection[38]
3D image Ksim9[39], Unreal Engine4[40] Quality Control[39], Autonomous

industrial mobile manipulator[40]

Table 2.1: Literature on Synthetic data generation
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researchers can determine the most efficient and effective processes for manufacturing a

specific product, resulting in increased productivity and decreased waste.

There is a good amount of research on synthetic data generation using physical simu-

lations. Such as Ademujimi & Prabhu (2022) discussed the use of physical simulation to

train Bayesian networks for fault diagnostics in manufacturing systems[11]. The authors

propose a digital twin model that simulates the behavior of a manufacturing system, includ-

ing its sensors, actuators, and control systems. The digital twin is then used to generate

synthetic data that captures the behavior of the system under various operating conditions

and fault scenarios. The authors prove the efficacy of their method by utilizing synthetic

data generated by the digital twin to train a Bayesian network. The network can accurately

detect faults in the manufacturing system, even when working under conditions that were

not previously present in the training data. Additionally, the authors demonstrate that their

method is applicable to various types of manufacturing systems, such as robotic assembly

lines and CNC machining centers.

Bikes, Williams, and O’Connor (1994) used a simulation tool called ProModel-PC to

generate synthetic data for their study[30]. The authors use synthetic data to analyze the

sensitivity of assembly systems to variations in component delivery times. ProModel-PC is

a simulation software tool commonly used in manufacturing and logistics studies to simulate

complex systems, such as assembly lines or supply chains. By utilizing simulation-based

synthetic data generation, the authors were able to conduct their study in a cost-effective

and controlled manner without the requirement of expensive real-world experiments. They

were able to generate synthetic data that closely mimicked real-world data and use it to gain

insights into assembly system behavior under different delivery scenarios.

Jain, Narayanan, and Lee (2018) presented a comparison of different data analytics ap-

proaches using simulation[35]. The authors used a virtual factory prototype to generate

synthetic data for testing the various data analytics approaches. The virtual factory was
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designed to closely mimic a real-world manufacturing system, and different scenarios were

simulated to capture the variability in the system. The authors compared four different data

analytics approaches, including decision trees, random forests, support vector machines, and

neural networks, to determine their effectiveness in predicting the quality of manufactured

products. The synthetic data generated in the virtual factory was used to train and test each

of the four models. The results showed that neural networks had the highest accuracy in

predicting product quality, followed closely by support vector machines and random forests.

Decision trees, on the other hand, had lower accuracy compared to the other three models.

They demonstrate the usefulness of using a virtual factory prototype to generate synthetic

data for testing and comparing different data analytics approaches in a manufacturing set-

ting.

Biczó, Felde, and Szénási (2021) focused on predicting distortion in the additive man-

ufacturing process using machine learning methods[16]. Synthetic data is generated using

the Simufact Additive software, which simulates the printing process with varying parame-

ters such as laser power and scanning speed to capture the variability in the process. The

synthetic data is then used to train a convolutional neural network (CNN) to predict the

distortion of the printed parts. The trained model showed promising results in predicting

the distortion of new parts with high accuracy. The authors suggest that this approach can

reduce the cost and time required for physical experimentation in the additive manufacturing

process.

Maliks and Kadikis (2021) explored the use of synthetic data for the classification of

multispectral data in the context of plastic bottle sorting[26]. Specifically, they focus on

using deep convolutional neural networks (CNNs) to classify plastic bottles based on their

material composition using multispectral images. In order to train and evaluate the CNN

models, the authors generated a synthetic dataset using Blender, a popular 3D graphics

software. The synthetic dataset consists of images of plastic bottles rendered under a variety
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of lighting and camera conditions, as well as images of plastic bottle labels to aid in the

classification task. The authors found that training the CNN models on the synthetic dataset

improved their accuracy on real-world multispectral data, indicating that synthetic data can

be a useful tool for training machine learning models for plastic bottle sorting applications.

Outón et al. (2021) described a paradigmatic industrial application that combines accu-

rate autonomous navigation and 3D perception for pose estimation in an unstructured in-

dustrial environment[40]. They explain that it is still possible to automate or semi-automate

many low-value processes in modern industry by working together safely between robots and

humans. The authors conducted real-world tests on their proposed method, which achieved

an 83.33% success rate using a combination of several technologies fused into an AIMM (au-

tonomous industrial mobile manipulator). The authors generated a synthetic dataset using

Unreal Engine 4 (UE4), which is a popular game engine that has been increasingly used for

generating synthetic data in various domains, including robotics and industrial automation.

The synthetic data allowed the authors to train and validate their system in a controlled

and safe environment, without the risk of damaging actual equipment or causing harm to

humans.

Grappiolo, Pruim, Faeth, and de Heer (2021) proposed a novel approach for in vitro

assembly search based on an artificial intelligence framework[20]. The proposed framework,

named ViTroVo, generates synthetic data using a virtual environment to train machine

learning models for in vivo adaptive operator guidance. To generate synthetic data, ViT-

roVo uses a virtual environment that simulates the assembly table, assembly components,

and distractor objects in 3D. The synthetic data is generated by randomizing the position,

orientation, and appearance of the assembly components and distractor objects. The back-

ground plane simulates the assembly table and is kept constant in each synthetic scene. The

authors demonstrate the effectiveness of ViTroVo using two case studies: (1) assembly of

an electronic module and (2) assembly of a fuel pump. The results show that the proposed
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framework can effectively learn the assembly process and can be used to generate adaptive

operator guidance for in vivo assembly tasks. The use of synthetic data generated by ViT-

roVo reduces the need for physical testing, which can be costly and time-consuming, and

allows for highly customized manufacturing.

Zheng, Zhang, and Pan (2020) proposed a method for detecting modules in modular

integrated construction using virtual prototyping and transfer learning[17]. The authors

generate synthetic data by modeling the construction process in a virtual environment using

a 3D CAD software tool called Revit. The synthetic data was used to train a convolutional

neural network (CNN) for module detection. Transfer learning was used to improve the

performance of the CNN by leveraging pre-trained models on large datasets. The authors

conducted a comparative analysis of their method with conventional computer vision tech-

niques and established its superiority in terms of both accuracy and efficiency. Additionally,

they performed experiments on real-world datasets to confirm the effectiveness of their ap-

proach. The results showed that their method achieved high accuracy in module detection,

and could be applied to modular integrated construction to improve efficiency and quality.

Sisca, Fiasché, and Taisch (2015) proposed a novel hybrid model for aggregate production

planning in a reconfigurable assembly unit for optoelectronics[32]. The model integrates a

data-driven neural network model with a simulation-based optimization model. In order to

train the neural network model, the authors generated synthetic data using a simulation

model. Specifically, they developed a discrete-event simulation model of the production sys-

tem using the SIMIO simulation software. The simulation model took into account various

factors such as machine availability, production capacity, and product mix. The synthetic

data generated from the simulation model was then used to train the neural network model.

The combination of the simulation-based optimization model and the data-driven neural

network model allowed for more accurate and flexible aggregate production planning. The

results of the study demonstrate the effectiveness of using synthetic data generated from
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simulation models to train data-driven models for aggregate production planning in recon-

figurable assembly units.

Apornak, Raissi, and Pourhassan (2021) proposed a hybrid multi-criteria Taguchi-based

computer simulation model and DEA approach to solve the flexible flow-shop scheduling

problem[36]. To generate the required synthetic data, the authors utilized a simulation model

based on a continuous time-series dataset. The simulation model incorporated the hybrid

Taguchi-DEA approach and produced a set of data that could be used to optimize the flow-

shop scheduling problem. The synthetic data were then used to evaluate the performance of

the proposed approach in terms of makespan, flow-time, and tardiness criteria. Overall, the

use of synthetic data allowed the authors to test their approach under a variety of scenarios

and assess its effectiveness in solving the flexible flow-shop problem.

Fiasché, Ripamounti, Sisca, Taisch, and Tavola (2016) used synthetic data generated

from a simulation to evaluate their proposed approach[33]. They used SIMIO to construct

the white’R environment, which served as the basis for the synthetic dataset. The synthetic

dataset was then used to evaluate the effectiveness of the proposed hybrid fuzzy multi-

objective linear programming (FMOLP) method for aggregate production planning. By

utilizing synthetic data, the authors were able to test their model in a controlled setting with

various uncertain parameters, such as market demands, production capacities, workforce

levels, unit costs, and product prices. By assessing the model’s performance against the

synthetic data, the authors were able to pinpoint areas of improvement and fine-tune their

methodology.

Guner, Chinnam, and Murat (2016) used simulation-based synthetic data generation

to develop a decision support system for plant-level maintenance[31]. The authors use a

simulation software tool called Simul8 to generate synthetic data for their study. Simul8

is a commonly used simulation software tool in manufacturing and service industries for

simulating complex systems, such as production lines, supply chains, and service operations.
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The authors generate synthetic data by simulating a manufacturing system for a specific

case study. They simulate the system under different maintenance policies and record the

system performance metrics, such as machine downtimes, maintenance costs, and production

throughput. The authors then use the synthetic data to develop a decision support system

that helps plant managers select the best maintenance policy for their manufacturing system.

The authors leveraged simulation-based synthetic data generation to conduct their study

in a controlled and cost-effective manner, without the need for expensive real-world experi-

ments. They created synthetic data that accurately resembled real-world data and utilized it

to develop a customizable decision support system for diverse manufacturing systems. This

study emphasizes the advantages of simulation-based synthetic data generation for building

decision support systems in both manufacturing and service industries.

Sikora et al. (2021) focused on the quality control of HVAC devices based on envi-

ronmental noise using a convolutional neural network (CNN)[22]. To train the CNN, the

authors generated synthetic data that simulates different noise levels and patterns that can

be present in real-world HVAC systems. The synthetic data was generated using a combi-

nation of white noise and different frequency bands to mimic the environmental noise. The

authors used the synthetic data to train and test the CNN for quality control of HVAC

devices. The results showed that the trained CNN was able to accurately classify the quality

of the HVAC devices based on the environmental noise, demonstrating the effectiveness of

using synthetic data for training deep learning models in quality control applications.

Nguyen, Habiboglu, and Franke (2022) presented a case study on using synthetic data

to enable deep learning in the context of automotive wiring harness manufacturing[14]. The

authors use a combination of computer-aided design (CAD) software and a physics-based

simulation tool called IPS Cable Simulation to generate synthetic data, where they modeled

the manufacturing process and used the simulation to generate a large number of synthetic

images of wiring harnesses. The synthetic images were then labeled using a semi-automatic
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labeling approach, where an operator reviewed and corrected the labels generated by an

automatic labeling algorithm.

The authors used synthetic data to train a deep-learning model that can identify faulty

wiring harness images. They discovered that the model trained on synthetic data performed

better than the one trained on a limited amount of actual data. Therefore, they propose that

using physics-based simulations to generate synthetic data could be an advantageous method

for integrating deep learning into manufacturing, particularly when acquiring real-world data

is difficult or costly.

Rio-Torto et al. (2021) proposed a hierarchical approach for automatic quality inspection

in the automotive industry using simulated data[39]. The authors utilized a physical simula-

tion environment to generate synthetic data. A 3D computer-aided design (CAD) software

was employed to create a virtual environment that mimics the physical production line, and

this served as the foundation for the simulation model. The simulated data comprised of

diverse attributes, such as object surface area, color, texture, and intensity. The synthetic

data was then used to train and test the proposed hierarchical approach for quality inspec-

tion, which consisted of two levels: the first level for defect detection and the second level for

defect classification. The experimental results showed that the proposed approach achieved

high accuracy in detecting and classifying defects, which validates the effectiveness of the

synthetic data generated through physical simulation.

Lai, Tao, Leu, and Yin (2020) presented a smart augmented reality instructional system

for mechanical assembly that uses synthetic data to train deep learning models[18]. To

generate the synthetic data, the authors used CAD models and physics engines to simulate

different assembly scenarios in a virtual environment created using Unity3D. The virtual

environment was created to closely mirror the real assembly line, and several situations were

simulated to represent the diversity of the assembly process.
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The synthetic data generated was used to train a convolutional neural network (CNN)

for recognizing different assembly tasks and a long short-term memory (LSTM) network for

tracking the progress of the assembly task. The trained models were tested on real-world

data and showed promising results in accurately recognizing and tracking the assembly tasks.

The use of synthetic data in this study allowed for the development of a worker-centered

intelligent manufacturing system that can effectively train and track assembly tasks in real-

time. The results demonstrate the potential of using synthetic data for training deep learning

models in assembly line applications and highlight the benefits of using virtual environments

to simulate complex manufacturing processes.

Overall, physical simulations offer a powerful tool for generating synthetic data and

optimizing assembly line processes, but they require expertise in mathematics, physics, and

computer science, as well as significant computational resources. When used effectively,

physical simulations can lead to significant improvements in manufacturing and assembly

line industries.

2.2.2 Data-driven algorithms

The process of generating synthetic data for assembly lines through data-driven tech-

niques involves using machine learning algorithms and other similar methods to simulate

real-world scenarios in assembly lines. Before deploying machine learning models in real as-

sembly line settings, the resultant synthetic data may be used to train and evaluate machine

learning models.

Data-driven synthetic data generation provides a considerable benefit by supplying vast

volumes of diverse and complicated data that might be difficult or costly to acquire in real-

world settings. Hence, this enables more comprehensive training of machine learning models,

resulting in improved performance in real-world applications.
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Multiple data sources, including sensor data, CAD models, and production line layout

data, can be utilized to generate synthetic data for assembly lines. These data sources

can be used to create realistic simulations of assembly line processes and generate synthetic

data that captures the variability and complexity of real-world scenarios. For instance, Han,

Choi, Choi, and Oh (2019) focused on developing a data-driven approach for diagnosing

faults in planetary gear carrier packs[9]. The authors used vibration signals collected from

accelerometers attached to the planetary gear carrier packs to train a machine learning

classifier to diagnose faults.

As the dataset was imbalanced, the authors used synthetic data generation techniques

to balance the dataset. They used a combination of SMOTE and ADASYN algorithms to

generate synthetic samples of the minority classes. After balancing the dataset, they trained

a ResNet-50 deep learning model using the augmented dataset. The authors reported that

their approach achieved a high classification accuracy for diagnosing faults in planetary

gear carrier packs. They concluded that their data-driven approach using synthetic data

generation can be an effective tool for fault diagnosis in manufacturing systems.

Kim, Lee, Tama, and Lee (2020) proposed a method for classifying camera lens modules

using a semi-supervised regression method[10]. The authors utilized synthetic data genera-

tion techniques to increase the amount of available training data for the regression model.

The synthetic data was generated using 3D modeling software and then processed to sim-

ulate various types of lens modules with different shapes and configurations. The authors

then combined the synthetic data with real-world data to train the regression model. The

results showed that the proposed method outperformed other classification methods and

demonstrated the effectiveness of using synthetic data generation techniques in enhancing

the reliability of the classification model.

Fecker, Märgner, and Fingscheidt (2013) addressed the problem of imbalanced datasets

in machine learning, where the number of examples in one class significantly outweighs
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the number in another class[12]. The authors propose a novel oversampling method called

Density-Induced Oversampling (DIO), which uses Gaussian Mixture Models (GMMs) to gen-

erate synthetic data samples for the minority class. The DIO method involves first fitting

a GMM to the feature space of the minority class. The GMM is then used to generate new

samples for the minority class by sampling from the GMM’s probability density function.

The number of new samples generated is determined by the desired level of oversampling.

The authors compare the performance of DIO with several other oversampling methods,

including Random Oversampling, Synthetic Minority Over-sampling Technique (SMOTE),

and Adaptive Synthetic Sampling (ADASYN), using several imbalanced datasets. The re-

sults show that DIO outperforms the other methods in terms of classification performance

and robustness across different datasets.

Kohtala and Steinert (2021) discussed the use of synthetic data generated from CAD

models to train object detection models for virtual reality (VR) applications[19]. The au-

thors propose a method for generating synthetic data by creating CAD models of objects,

augmenting the models to produce multiple variations, and rendering the models with vary-

ing lighting conditions and camera angles to produce a diverse set of images. These images

are then used to train object detection models, specifically YOLOv3, for VR applications.

The authors assessed the effectiveness of their method by comparing the performance of

models trained on both synthetic and real data. They observed that the models trained on

synthetic data attained comparable performance to those trained on real data. Moreover,

they discovered that employing synthetic data enabled them to generate a more extensive

and diverse dataset than what could be achieved using only real data.

de la Rosa, Gómez-Sirvent, Sánchez-Reolid, Morales, and Fernández-Caballero (2022)

proposed the use of geometric transformation-based data augmentation techniques to im-

prove the classification of defects in segmented images of semiconductor materials using a

ResNet50 convolutional neural network[21]. Due to the high cost of obtaining labeled data,
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the study utilizes a synthetic dataset generated by combining different transformations, such

as rotation, translation, and scaling, applied to the original images. The authors demonstrate

that the use of synthetic data combined with data augmentation techniques improved the

accuracy of the model in detecting and classifying defects in semiconductor materials. The

proposed approach also allowed for a better understanding of the factors affecting the per-

formance of the classification model. The study suggests that synthetic data generation

combined with data augmentation techniques can be a useful tool for improving the perfor-

mance of machine learning models, particularly in cases where obtaining large amounts of

labeled data is not feasible.

Laxman, Sastry, and Unnikrishnan (2007) presented a method for discovering frequent

generalized episodes in event sequences, where events can persist for different durations[27].

The authors generate synthetic data to evaluate the performance of their proposed algorithm.

The synthetic data is generated by randomly generating event sequences with varying episode

lengths and frequencies, and then adding noise to the sequences to simulate real-world scenar-

ios. The authors used the generated synthetic data to test the performance of their proposed

algorithm and compared it with existing algorithms for discovering frequent episodes. The

results showed that their proposed algorithm outperformed the existing algorithms in terms

of accuracy and efficiency. Overall, the paper demonstrates the usefulness of synthetic data

in evaluating the performance of algorithms for discovering frequent episodes in event se-

quences.

Andres, Guzman, and Poler (2021) proposed a mixed integer linear program (MILP)

model to minimize costs associated with the production of automotive plastic components[28].

To generate synthetic datasets for the model, the authors defined a set of parameters and their

values. The goodness of the model was evaluated based on computational time and deviation

from optimal results. The model demonstrated remarkable efficiency in addressing small

and medium datasets. Nonetheless, its efficacy was found to be restricted when handling
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large datasets. Overall, the use of synthetic datasets allowed for efficient evaluation of the

MILP model’s performance and optimization of the production process for automotive plastic

components.

Qian, Yu, Lu, Griffith, and Golmie (2022) proposed the use of Generative Adversarial

Networks (GANs) for generating synthetic data in the context of the Industrial Internet of

Things (IIoT)[24]. Specifically, the authors focus on the task of anomaly detection in IIoT

systems, which is an important aspect of ensuring the reliability and safety of industrial

processes. The authors propose the utilization of GANs as a potential solution to tackle

the issue of scarce data availability in the IIoT field by generating synthetic data that can

supplement the existing dataset. The suggested technique involves training a GAN on the

existing data to produce synthetic samples that closely resemble the real data, which can

then be utilized to train an anomaly detection model. The paper presents a proof-of-concept

implementation of the proposed approach and evaluates its performance on a dataset of sen-

sor readings from a wind turbine. The results show that the use of synthetic data generated

by the GAN improves the performance of the anomaly detection model compared to using

only real data.

Overall, the authors suggest that GANs have the potential to be a useful tool for gener-

ating synthetic data in the IIoT domain, where data availability is often limited but where

reliable anomaly detection is critical for ensuring the safety and efficiency of industrial pro-

cesses.

Ameperosa & Bhounsule(2020) presented a method for estimating the positions of bolts

using deep neural networks and domain randomization[25]. The authors propose a method

that uses synthetic data generated from a simulator as input to train the deep neural network.

They use domain randomization to simulate variations in lighting conditions, surface textures,

and other environmental factors to improve the robustness of the network. The trained

network is then used to estimate the positions of bolts in real-world images. The authors
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establish the efficacy of their approach by contrasting its performance with other cutting-edge

techniques on a collection of real-world images. Their approach surpasses the other methods,

attaining superior accuracy and improved generalization to novel data. The authors conclude

that their approach could be useful for a range of industrial applications where accurate

localization of objects is required.

da Silva et al. (2021) focused on the application of spatio-temporal deep learning-based

methods for defect detection in an industrial setting[38]. One challenge in this application is

the limited availability of labeled data, which is essential for training machine learning models.

To address this challenge, the authors proposed the use of synthetic data generated by a

GAN to augment the limited labeled dataset. Specifically, they used the GAN to generate

anomalous sequences similar to those produced by defective devices, which were then used

to train the model. The results of their study demonstrated that the use of synthetic data

generated by a GAN can improve the performance of machine learning models in detecting

defects, particularly when labeled data is limited. This approach can potentially reduce the

cost and time required to obtain sufficient labeled data, making it a promising approach for

defect detection in industrial settings.

Singh, Chakrabarti, and Jayagopi (2020) used a synthetic data generation technique to

train CNNs for detecting malfunctions in a refreshable Braille display[23]. They generated

synthetic data by rotating and modifying the colors of the images. The synthetic data

was used in combination with real data to train the model. The results showed that the

model achieved an accuracy of 97.3% in detecting malfunctions during the experiment. This

demonstrates the effectiveness of using synthetic data in combination with real data for

training machine learning models for automated testing of devices.

Sibona and Indri (2021) presented a new data-driven framework that uses both real-world

and synthetic data to optimize the performance of human-robot collaborative systems in

flexible manufacturing applications[15]. The authors utilize Generative Adversarial Networks

26



(GANs) to create synthetic data that can supplement the limited quantity of real-world data

available for training machine learning models. The GANs are trained on actual data to

generate new data that has a similar distribution but contains differences that can enhance

the variety and extent of the training data. This synthetic data is used to train machine

learning models for various purposes, including anticipating the probability of a collision

and optimizing the motion and placement of the robot arm. The authors showcase that

incorporating both genuine and synthetic data in their data-driven framework can boost

the performance of the human-robot collaborative system and enable more economical and

efficient training of machine learning models.

Cai, Bernstein, Wu, and Chandramouli (2021) investigated the optimization of threshold

functions over streams[37]. They propose a new method for threshold selection in a stream

join operation that reduces the memory required for the operation. The authors generated

synthetic data using different methods, including the Wiener process, Gaussian noise, and

varying the standard deviation. By generating synthetic data, they were able to experiment

with different scenarios and evaluate their proposed method’s effectiveness. The results

showed that the proposed method achieved a significant reduction in memory usage for

stream join operations.

Martin, Depaire, Caris, and Schepers (2020) presented a method for automatically re-

trieving resource availability calendars from event logs containing information about process

execution[34]. The retrieved calendars capture two dimensions of availability: the time of

day when resources are available and intermediate interruptions, such as breaks. The au-

thors evaluated their method using synthetic data generated based on the Business Process

Model and Notation (BPMN), which closely matched the key outputs of their method to

their realistic equivalents. The synthetic data was generated using the SimPy simulation li-

brary in Python, which allowed for the creation of realistic process models and the simulation

of process execution with varying levels of noise and randomness. The authors found that
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their method performed well on both real and synthetic data and could be used to support

process improvement and optimization efforts in various industries. The use of synthetic

data allowed for rigorous evaluation and testing of the method, even when real-world data

was scarce or difficult to obtain.

Malekzadeh, Clegg, and Haddadi (2017) presented a privacy-preserving algorithm for

analyzing sensory data using autoencoder neural networks[29]. The authors propose the

replacement autoencoder (RAE) which is trained on the original sensory data to learn a

compressed representation of it. The RAE is utilized to create artificial data examples that

replace the original data while retaining the statistical characteristics of the original data.

This enables analysis to be carried out on the synthetic data rather than the original data,

safeguarding the privacy of the individuals from whom the data was gathered. The paper

also presents experiments demonstrating the effectiveness of the RAE in preserving privacy

while still allowing for useful analysis of the data.

Syafrudin, Fitriyani, Alfian, and Rhee (2018) presented a study on an affordable fast

early warning system for edge computing in assembly line operations[13]. The study aims

to identify abnormal events during the assembly line operations using an affordable fast

early warning system based on edge computing. To achieve this, the authors generated

a balanced dataset using the Synthetic Minority Over-sampling Technique (SMOTE) to

overcome the class imbalance problem commonly encountered in industrial datasets. The

SMOTE algorithm generates synthetic samples by interpolating between the feature vectors

of the minority class, creating new synthetic samples that are similar to the original minority

samples. The generated synthetic samples are added to the original dataset, resulting in a

balanced dataset that can be used to train machine learning models.

The authors demonstrated that the use of the SMOTE algorithm to generate synthetic

data leads to improved performance in detecting abnormal events in assembly line opera-

tions. The results showed that the proposed early warning system achieved a high detection
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accuracy of 97.8% on the balanced dataset generated using the SMOTE algorithm. Overall,

the study shows that the use of synthetic data generation techniques, such as SMOTE, can

be a valuable tool in improving the performance of machine learning models in detecting

abnormal events in assembly line operations.

Mubarak, Mohamed, and Bouferguene (2020) proposed a data generator for industrial

pipelines, which can be used to create synthetic data for the optimization of the pipe spool-

ing process[5]. The authors explain the functionality of the generator and how it can pro-

duce pipelines of different types, characterized by features like length, diameter, curvature,

and roughness. Subsequently, the generated data is employed to evaluate a pipe spooling

optimization algorithm, which seeks to minimize the number of pipe fittings necessary to

construct a pipeline. the paper presents an extensive experimental setup and analysis of the

optimization algorithm’s outcomes, indicating the effectiveness of the proposed approach.

In general, the utilization of data-driven synthetic data generation presents a favorable

solution for enhancing the effectiveness and precision of assembly line operations, in addition

to lowering expenses and advancing safety measures in manufacturing settings.

Although physical simulations are very precise and give complete models of complicated

systems, they may be computationally intensive and need substantial system knowledge. In

contrast, data-driven algorithms can generate synthetic data quickly and efficiently. But,

they may not capture all the intricate details that exist in the actual system.

Both physical simulations and data-driven algorithms possess their own set of advantages

and disadvantages. However, both methods are essential tools for generating synthetic data

across various research domains, including engineering, physics, biology, and social sciences.

Complicated systems that would be difficult or impossible to grasp with just real-world data

may be understood utilizing artificial data. Furthermore, it can be utilized to train and assess

machine learning algorithms, ultimately resulting in the creation of novel computational

techniques for analyzing and predicting data.
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2.3 Application of synthetic data

This section provides a brief overview of how synthetic data has been utilized in exper-

imentation in the literature. While some papers generate synthetic data to create artificial

datasets, the papers in this section utilize pre-existing synthetic data to perform experiments

and analysis. Synthetic data has numerous benefits in experimentation, such as cost reduc-

tion, enhanced accessibility, and improved privacy protection. This section delves into the

various domains and research fields where synthetic data has been employed, emphasizing

its potential impact on different areas of research.

Marazopoulou, Ghosh, Lade, and Jensen (2016) proposed a framework to discover causal

relationships among variables in manufacturing processes using observational data[6]. The

authors used a Bayesian network technique to explain the causal links between variables in

the manufacturing process and then tested the efficacy of their proposed framework using

both the actual dataset and a collection of synthetically produced datasets. Nevertheless, the

authors did not describe a specific approach for producing synthetic data. Overall, the paper

highlights the potential of using causal discovery techniques and synthetic data generation

in manufacturing domains to improve process optimization and quality control.

Mihai et al. (2021) proposed a digital twin framework that uses synthetic data to train

machine learning models for predictive maintenance[7]. Although the research does not

disclose particular details on the techniques used to produce synthetic data, the authors

state that a data production engine is used to mimic a variety of situations. The authors

highlight the advantages of synthetic data, such as the capacity to create situations that

may be impossible or dangerous to recreate in the actual world and the ability to generate

big datasets more quickly and easily. By using synthetic data, the authors are able to

predict the remaining useful life of industrial assets more accurately, leading to cost savings

and increased efficiency. The digital twin framework integrates various components, such

30



as sensor data acquisition, data processing and analysis, and machine learning models, to

provide actionable insights to maintenance personnel.

Luckow et al. (2018) discussed the potential of using synthetic data in training machine

learning models for automotive manufacturing applications [41]. The authors describe the

challenge of obtaining and labeling large datasets of real-world data, and the potential ben-

efits of using synthetic data instead. They provide several examples of the use of synthetic

data in the automotive manufacturing industry, including the generation of synthetic images

of car body panels with defects to train a CNN for defect detection. They do not specifically

mention the synthetic data generation technique used for the car body panel defect detec-

tion CNN. The authors also emphasize that synthetic data may be utilized to build more

diversified and intricate datasets than may be achievable with actual data. Nonetheless, the

report notes that developing synthetic data may be challenging and that the quality of the

data might restrict its value. Overall, the article highlights the potential of synthetic data

for enhancing the precision and lowering the cost of training machine learning models for

automotive production applications.

Shetve et al. (2021) used synthetic data to generate data points for performance analysis

of their proposed anomaly detection method called CATS[42]. The authors reported that

CATS was able to detect outliers with an accuracy of 98.58%. However, the paper did not

provide any information regarding the specific method used for generating the synthetic data.

Nonetheless, the use of synthetic data in evaluating the performance of CATS highlights its

potential for efficient and effective anomaly detection in smart manufacturing systems.

Georgiadis, Nizamis, Vafeiadis, Ioannidis, and Tzovaras (2022) proposed a digital cog-

nitive platform for production scheduling optimization[43]. The platform employs cutting-

edge optimization algorithms and machine learning approaches to create scheduling models

capable of handling big and complicated industrial settings. The authors emphasise the sig-

nificance of data quality in the construction of these models and the use of both actual and
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synthetic data. They indicate that synthetic data was utilized to complement the actual data

and improve the training and testing of their machine learning models, however they do not

provide a particular strategy for producing synthetic data. Overall, the article demonstrates

that synthetic data might enhance the robustness and generalizability of machine learning

models in the context of production scheduling optimization.

Gao, Wang, Helu, and Teti (2020) discussed the potential of big data analytics for smart

factories of the future[4]. They highlight the importance of collecting and analyzing large

volumes of data generated by sensors, machines, and other sources in order to optimize

production processes and increase efficiency. Synthetic data generation is mentioned as

a technique for augmenting real data sets and creating training data for machine learning

algorithms. The authors suggest that synthetic data can help overcome limitations related to

data availability, privacy, and security. Additionally, they discuss the importance of ensuring

the quality and reliability of both real and synthetic data to maximize the value of big data

analytics in the context of smart factories.

Sun et al.(2021) proposed a machine learning pathway for improving the quality and effi-

ciency of material processing in the casting industry[44]. The authors remark that material

processing is a hard endeavor involving several factors such as temperature, pressure, and

chemical composition. To solve these difficulties, the authors suggest using machine learning

models that can learn from data and generate predictions about material processing proce-

dures. The authors also explore the obstacles posed by the restricted availability of data

in the material processing area and suggest the use of physics-based simulations to produce

synthetic data. The authors demonstrate the effectiveness of their machine learning path-

way in improving the quality and efficiency of the casting process through case studies and

experiments. Overall, the paper presents a novel approach to improving material processing

operations by leveraging machine learning and synthetic data generation techniques.
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Zhang et al. (2021) proposed a method for scene text recognition using synthetic data[45].

The proposed method consists of an auxiliary network and a text recognizer. The auxiliary

network is designed to mimic traditional computer vision functions, and it extracts rich

augmented features from the input image. Synthetic data is commonly used in scene text

recognition to label images since labeling scene text images can be time-consuming, labor-

intensive, and costly. The proposed method uses two synthetic datasets for training. The

experimental results have shown that the proposed method improves the performance of the

recognizers, especially for degraded text images in challenging settings. The use of synthetic

data has allowed for the creation of a larger and more diverse dataset, leading to better

performance in recognizing text from real-world images.

Bécue, Maia, Feeken, Borchers, and Praça (2020) proposed a new concept of digital twin

that supports the optimization and resilience of factories of the future[46]. The authors

employed a simulation-based approach that involves generating synthetic data to create

digital twins capable of predicting and enhancing the performance of industrial systems. This

method can overcome the limitations of traditional data-driven techniques, which rely on

historical data and may not account for changes in the industrial environment. By utilizing

synthetic data to construct digital twins, the authors successfully optimized the performance

of a robotic arm system, demonstrating the potential of this approach to improve factory

efficiency and resilience in the future.

Godil, Eastman, and Hong (2013) discussed the benefits of using synthetic data in ob-

ject recognition and tracking[47]. Synthetic data offers the advantage of producing accurate,

reliable, and reproducible ground truth data, which is particularly valuable in situations

where acquiring real-world data is challenging, expensive, or incomplete. In addition, syn-

thetic data can produce a diverse range of data, which is advantageous for training machine

learning algorithms that demand extensive data to achieve high accuracy. Moreover, utiliz-

ing synthetic data may help reduce bias in training data by creating data that represents
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a wide range of situations and contexts. Ultimately, synthetic data can be a useful tool

in object identification and tracking, allowing researchers to construct comprehensive and

precise datasets that can be employed to train and evaluate machine learning systems.

Cimino, Feretti, and Leva (2021) proposed a toolset and paradigm for harmonizing and

integrating digital twins across multiple domains[48]. One of the suggested solutions is the

use of synthetic data creation methods to generate digital twins that are representative of

actual situations. The authors stress that using actual data to construct digital twins may

be problematic owing to factors such as data privacy, data quality, and data availability.

Synthetic data production may address some of these limitations by generating data that

is comparable to actual data, but without privacy concerns or data quality problems. The

authors propose employing machine learning methods to produce synthetic data that may

be used to train digital twins, therefore increasing their accuracy and efficacy. In addition,

they remark that synthetic data may be used to recreate circumstances that are difficult

or impossible to duplicate in the actual world, allowing for improved decision-making and

analysis.

Ramanujan and Bernstein (2018) presented a novel tool for exploring large repositories

of computer-aided design (CAD) models based on similarity and performance metrics[49].

The authors emphasize the difficulty of dealing with huge datasets within the context of

design repositories and the necessity for efficient exploration and analysis techniques. They

present a method that integrates machine learning, visualization, and human-computer in-

teraction approaches to enable designers and engineers to get insight into the performance

and resemblance of CAD models. The tool uses synthetic data from the Drexel repository in

its case study, demonstrating its effectiveness in analyzing and exploring large CAD reposi-

tories. The authors highlight the potential for their approach to enable new discoveries and

innovation in the field of design, manufacturing, and engineering.
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Mihai et al. (2022) discussed the importance of synthetic data in the development and

training of digital twins[50]. Synthetic data may be used to enhance or replace real-world data

in the development and testing of digital twins. This technique may aid in overcoming issues

related to the price, accessibility, and quality of real-world data. The authors highlight that

although synthetic data may be very valuable, it must be rigorously vetted and calibrated

to appropriately represent the behavior of the actual system being modeled. Furthermore,

the authors emphasize the necessity for continuing study and development in the area of

synthetic data creation and validation, especially as digital twins gain importance across a

variety of sectors and applications.

Rardin and Uzsoy (2001) emphasized the importance of empirical evaluation in selecting

the most appropriate optimization algorithm for a given problem[51]. They discuss the basics

of heuristic optimization methods, including genetic algorithms, simulated annealing, and

tabu search. This study presents a comprehensive review of the experimental design, data

analysis, and interpretation of findings in investigations of heuristic optimization. Although

synthetic data was not employed in this study, the authors emphasized the issues associated

with randomly produced data and the necessity for rigorous data selection to assure the

reliability and use of the outcomes of empirical assessments. Overall, the paper provides a

comprehensive guide for researchers and practitioners to conduct empirical evaluations of

heuristic optimization methods.

Bertolini, Mezzogori, Neroni, and Zammori (2021) provided a comprehensive literature

review of machine learning applications in the industrial domain[52]. Synthetic data was used

in some studies to generate datasets that are representative of real-world industrial scenarios.

The authors discussed several ways for generating synthetic data, including physics-based

simulation, generative adversarial networks (GANs), and picture augmentation techniques.

In situations when obtaining real-world data is difficult or costly, the use of synthetic data

is vital, and it may increase the performance of machine learning algorithms. In addition,
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synthetic data may be utilized to expand the dataset’s variety and balance the distribution

of classes, resulting in more accurate models. The authors also explored the difficulties and

limits of synthetic data, including the difficulty of replicating the complexity of the actual

world and the danger of injecting biases into the data. Overall, the work emphasizes the

significance of synthetic data in industrial machine learning applications and the necessity

for more research in this field.

Achar, Laxman, Viswanathan, and Sastry (2012) focused on discovering injective episodes

with general partial orders [53]. To evaluate the proposed algorithm, used synthetic datasets

to test the algorithm’s ability to discover injective episodes with varying sizes and noise levels.

The authors highlighted that synthetic datasets were used to illustrate the efficacy of the

suggested method, but real-world data would be more complicated and varied. In addition,

they emphasized the constraints of utilizing synthetic data and the need of validating the

algorithm’s effectiveness using real-world data. The use of synthetic data in this paper helped

in testing and validating the proposed algorithm’s ability to discover injective episodes in

different scenarios.

Thelen et al. (2022) provided a comprehensive review of digital twin technology and its

enabling technologies[54]. Digital twins are virtual replicas of physical systems, and they

can be used for various purposes such as predicting system behavior, optimizing system

performance, and reducing maintenance costs. Synthetic data plays a crucial role in the cre-

ation of digital twins, as it enables the modeling and simulation of complex physical systems.

The authors discuss various synthetic data generation techniques such as finite element anal-

ysis, computational fluid dynamics, and agent-based modeling. They also emphasize the

importance of using real-world data to validate the accuracy of digital twin models.

Xu et al. (2022) discussed various challenges and solutions for implementing deep learning

techniques in smart manufacturing[55]. To overcome the problem of inadequate training data,

they recommend the use of data augmentation, generative adversarial networks (GANs), and
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simulation models. The authors recommend producing new data using data augmentation by

randomly transforming the current data. GANs may create synthetic data that resembles the

distribution of actual data, while simulation models can generate vast quantities of synthetic

data by mimicking industrial processes. The authors underline the usefulness of synthetic

data in deep learning model training and propose that it may be used to complement or

replace real-world data in certain circumstances.

Suhail et al. (2022) explored the use of blockchain-based digital twins and their research

trends, issues, and future challenges[56]. The authors highlight the revolutionary possibilities

of digital twins in many areas, including manufacturing, healthcare, and transportation.

The authors propose employing a mix of real-world data and synthetic data to produce

data for simulations of digital twins. They suggest using machine learning methods and

data generators to generate synthetic data that can be used to train and validate digital

twin models. By merging actual and synthetic data, cost-effective and scalable digital twin

models may be constructed and validated. The authors also note the problems and limits of

utilizing synthetic data, such as the requirement for correct data production algorithms and

the possibility of bias in the created data. The study underlines the significance of synthetic

data in the creation and implementation of blockchain-based digital twins.

Botero, Wilson, Lu, Rahman, Mallaiyan, Ganji, Asadizanjani, Tehranipoor, Woodard,

and Forte (2021) focused on the use of reverse engineering, image analysis, and machine

learning techniques to improve hardware trust and assurance[57]. The authors present an

overview of the current state of the art in these disciplines and describe many case studies

in which these approaches were used to enhance the security and dependability of hardware

systems. In the absence of actual data, synthetic data creation is briefly addressed as a

possible method for training machine learning models. Overall, the paper highlights the

importance of these techniques for ensuring the trustworthiness of hardware systems and

presents future research directions.
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Qian et al. (2022) proposed the use of generative adversarial networks (GANs) for the

Industrial Internet of Things (IIoT) to generate synthetic data for various industrial appli-

cations such as predictive maintenance, quality control, and anomaly detection[24]. They

suggest that GANs may overcome the constraints of conventional data creation techniques by

producing synthetic data that closely mimics real-world data, hence eliminating the need for

costly and time-consuming data collecting and labeling. The authors present a comprehen-

sive analysis of the advantages and disadvantages of current GAN models and recommend

future research topics for enhancing the performance and efficiency of GANs in IIoT appli-

cations.

Mahmoodian, Shahrivar, Setunge, and Mazaheri (2022) proposed the development of

a digital twin for intelligent maintenance of civil infrastructure[58]. Synthetic data was

used to create a virtual model of the physical infrastructure, which can be used to predict

potential failures and improve maintenance scheduling. The digital twin was created using

structural analysis software, finite element analysis, and data from sensors embedded in

the infrastructure. The authors used synthetic data to simulate different scenarios and

predict the behavior of the infrastructure under different conditions. The results of the

simulations showed that the digital twin could accurately predict the behavior of the physical

infrastructure and provide valuable insights for maintenance planning. The authors conclude

that the use of digital twins with synthetic data can lead to significant improvements in

infrastructure maintenance and management.

Flores, Fernández-Casal, Naya, and Tarrío-Saavedra (2021) presented a package called

”qcr” for the R statistical computing environment [59]. This package is designed to help

with statistical quality control and includes functions for generating synthetic data. Specifi-

cally, the package includes a function for generating normal and uniform random numbers,

which can be used as synthetic data for testing statistical quality control procedures. The

authors note that using synthetic data can be useful for testing quality control procedures in
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situations where collecting real data is difficult or expensive. By generating synthetic data,

users can test the effectiveness of their statistical quality control procedures in a controlled

environment before applying them to real-world data.

Doorn, Duivestein, Mamtani, and Pepping (2020) presented an overview of machine

creativity and its potential for generating synthetic data[60]. According to the authors,

employing machine learning algorithms can enable computers to generate new and creative

ideas that surpass what has been previously observed in the data. They emphasize the

potential of generative models, such as GANs, to produce synthetic data that closely mimics

actual data, enabling researchers to study and examine data while avoiding privacy breaches

or data loss. In addition, the authors propose that as machine creativity improves, machines

may be able to develop totally new notions and facts, resulting in new scientific discoveries

and applications.

Asturias and Rossbach (2023) examined how the misallocation of resources across firms

can lead to a decrease in aggregate productivity[61]. They develop a novel method to measure

factor misallocation by grouping firms based on their factor share patterns and assessing the

variation in those patterns across groups. They find that a significant portion of the variation

in aggregate factor shares can be explained by misallocation across firms, which ultimately

leads to a reduction in aggregate productivity. To test their technique and illustrate its

relevance for misallocation analysis, the authors employ both actual and synthetic data.

These results have significant ramifications for policymakers addressing productivity and

resource allocation concerns in the economy.
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Chapter 3

Comparative Study

We will examine how synthetic data creation is used in manufacturing in more detail

in this section. As mentioned earlier, collecting high-quality data for manufacturing appli-

cations can be a difficult task. Synthetic data generation provides a promising solution to

this challenge. Manufacturing may benefit from synthetic data production in a number of

ways, including decreased data collecting costs and time, increased model accuracy, and the

ability to simulate circumstances that may be challenging or impossible to recreate in the

real world.

Our examination will focus on several manufacturing applications, including quality con-

trol, predictive maintenance, and process optimization, and explore how synthetic data gen-

eration has been applied in these contexts. Specifically, we will examine the benefits that

synthetic data has brought to manufacturing, as well as the challenges and limitations that

must be addressed. By reviewing the current literature and identifying gaps, we aim to

contribute to the advancement of synthetic data generation in manufacturing.
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3.1 Manufacturing Challenges

3.1.1 Quality Control

In assembly line manufacturing, quality control is essential to ensure that products meet

predetermined standards and specifications. Artificial intelligence (AI) has become increas-

ingly popular in quality control, particularly in generating synthetic data for assembly line

applications.[62]. Quality control encompasses diverse tasks, including product inspection

and testing, fault diagnosis with root cause analysis, utilization of statistical process control

to regulate the manufacturing process, experimentation for optimizing process parameters,

assurance of correct implementation of quality control procedures through quality assur-

ance and auditing, and perpetual enhancement of product or service quality. The ultimate

objective of quality control is to produce products or services that go beyond customer

expectations while meeting their demands.

The use of synthetic data has been explored in several research papers as a potential

solution to address challenges in quality control for assembly line applications. For instance,

Han et al. (2019) investigated the application of synthetic data for improving quality control

in planetary gear carrier packs[9]. The authors identified a class imbalance and multiclass

classification problem in fault diagnosis, which can lead to inaccurate results. To overcome

this issue, they proposed a method for generating synthetic data to balance the dataset and

improve the accuracy of the fault diagnosis system. The proposed approach showed promising

results and highlights the potential for using synthetic data to address class imbalance and

multiclass classification problems in quality control applications. The study by Han et al.

(2019) demonstrates the potential of synthetic data to enhance quality control in assembly

line applications and suggests that further research in this area could yield valuable insights

and solutions[9].
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Kim et al. (2020) presented a novel approach to improve the reliability of camera lens

module classification through the use of synthetic data in quality control[10]. The authors

recognized the challenges of limited data availability and potential overfitting in machine

learning models for quality control and proposed a semi-supervised regression method that

incorporates both labeled and unlabeled data to improve model accuracy. To further enhance

the reliability of the model, the authors generated synthetic data to augment the dataset. The

results of their study showed significant improvements in classification accuracy, highlighting

the potential of synthetic data generation as a valuable tool in quality control for assembly

line applications.

Fecker et al. (2013) presented a method for generating synthetic data to improve the

performance of machine learning algorithms for quality control in manufacturing[12]. The

authors focus on highly imbalanced datasets, where the number of instances in the minority

class is much smaller than that in the majority class. They propose a density-induced

oversampling method that uses a Gaussian mixture model (GMM) to generate synthetic

data for the minority class. The GMM is first trained on the majority class data and

then adapted using Bayesian adaptation with the sparse data of the minority class. The

adapted GMM is used to generate new synthetic data for the minority class, and a threshold

is used to determine whether the synthetic data should be accepted or discarded. The

proposed method is evaluated on a real-world dataset from a quality control application,

and the results show that it outperforms other oversampling techniques and improves the

classification performance of the machine learning algorithm.

Ademujimi et al. (2022) proposed a method for training Bayesian networks for fault

diagnosis of manufacturing systems using a digital twin and synthetic data generation[11].

The authors highlight the importance of accurate fault diagnosis in manufacturing systems to

minimize downtime and improve productivity. However, the lack of available data can hinder

the development of effective fault diagnosis systems. To circumvent this difficulty, the authors
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suggest generating synthetic data using a digital twin, a virtual clone of the manufacturing

system. This strategy permits the production of a big and diversified dataset, which may

enhance the correctness of the Bayesian network model. The authors also introduce a method

of evaluating the model’s performance using a confusion matrix and ROC curve analysis. The

results demonstrate the effectiveness of the proposed approach and highlight the potential

for using synthetic data and digital twins in quality control for manufacturing systems.

Bavelos, Kousi, Gkournelos, Lotsaris, Aivaliotis, Michalos, and Makris (2021) have pro-

posed a system that employs synthetic data to train mobile robots for a flexible manufac-

turing environment [63]. This system merges shopfloor and process perception, enabling

mobile robots to adjust to changes in the manufacturing environment and work in tandem

with human workers. By utilizing a blend of physics-based simulation and machine learning

techniques, the authors generated synthetic data that facilitates the swift development and

testing of new robot behaviors, and the training of robots in difficult or perilous scenarios

that would be challenging to replicate in reality. Although the specific approach or algo-

rithm utilized to generate synthetic data is not explicitly mentioned, the authors underline

the potential of synthetic data to transform the manufacturing industry by improving the

adaptability and responsiveness of production processes.

Syafrudin et al. (2018) proposed an early warning system for edge computing in assembly

lines to improve quality control[13]. They address the issue of slow response time and limited

connectivity in traditional monitoring systems by introducing an affordable and fast system

that can monitor machines and processes in real-time. The authors utilize synthetic data to

train a machine learning algorithm that detects anomalies in the assembly line system and

triggers an alarm to notify operators. The use of synthetic data allows for a more extensive

and diverse dataset to train the machine learning model, leading to more accurate and

efficient anomaly detection. The proposed system demonstrates the potential of synthetic
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data generation in quality control applications and highlights the importance of early warning

systems in assembly line production.

Maliks et al. (2021) proposed a deep Convolutional Neural Network (CNN) for clas-

sifying plastic bottles based on multispectral data obtained from a hyperspectral imaging

system[26]. The authors highlight the importance of quality control in the plastic recycling

industry, where automated bottle sorting is essential for achieving high-quality recycled prod-

ucts. However, acquiring real-world data for training and testing the proposed CNN model

is challenging due to the cost and effort involved in collecting labeled samples from a wide

variety of plastic bottles. To overcome this challenge, the authors have used synthetic data

generated by a physics-based simulation tool that models the behavior of a hyperspectral

imaging system. The synthetic data allows the CNN model to be trained and tested effec-

tively, improving its accuracy and reducing the cost and effort involved in data collection.

The proposed method achieves an average classification accuracy of 99.28%, demonstrat-

ing the effectiveness of the proposed approach for quality control in the plastic recycling

industry.

Martin et al. (2020) discussed the use of synthetic data in the context of quality

control[34]. The authors use synthetic data to evaluate the accuracy and effectiveness of

their method for retrieving resource availability calendars from event logs. Comparing the

findings acquired with actual data to those produced with synthetic data, they show that

their technique works well in both instances. This highlights the potential benefits of adopt-

ing synthetic data in quality control since it permits complete testing and validation of pro-

cedures without the need for costly and time-consuming investigations on real-world data.

The authors indicate that their method might be used in a variety of industrial and service

sectors where resource availability calendars play a significant role in process optimization

and quality control.
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de la Rosa et al. (2022) proposed the use of geometric transformation-based data augmen-

tation techniques to improve the classification of defects in segmented images of semiconduc-

tor materials using a ResNet50 convolutional neural network for quality control purposes[21].

Due to the high cost of obtaining labeled data, the study utilizes a synthetic dataset gen-

erated by combining different transformations applied to the original images. The authors

demonstrate that the use of synthetic data combined with data augmentation techniques

improved the accuracy of the model in detecting and classifying defects in semiconductor

materials. The suggested method also provided for a greater comprehension of the aspects

influencing the classification model’s performance. The work implies that synthetic data

creation paired with data augmentation approaches may be a helpful tool for boosting the

performance of machine learning models, especially in situations when getting huge quanti-

ties of labeled data is impractical.

Nguyen et al. (2022) presented a case study that explores the use of synthetic data

to enable deep learning for quality control in automotive wiring harness manufacturing[14].

The authors address the issue of limited data availability and the challenges of collecting

sufficient labeled data for training deep learning models. To overcome these challenges, they

propose a method of generating synthetic data that is similar to real-world data but provides

the necessary diversity to train deep learning models effectively. By training a deep learning

model on both actual and synthetic data and comparing the outcomes, the authors show the

usefulness of their technique. The findings demonstrate that the introduction of synthetic

data enhances the accuracy of the deep learning model in identifying manufacturing process

flaws. This study highlights the potential of using synthetic data to improve quality control

in manufacturing and demonstrates the importance of data diversity in training deep learning

models.

Sikora et al. (2021) investigated the influence of environmental noise on the quality

control of HVAC (heating, ventilation, and air conditioning) devices using a convolutional
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neural network (CNN)[22]. The authors address the issue of reduced accuracy in quality

control due to environmental noise in the manufacturing facility. To mitigate this issue,

they propose using synthetic data to augment the dataset and improve the accuracy of the

CNN-based quality control system. The authors generate synthetic data by adding noise to

the existing data and using it to train the CNN model. The results show that the proposed

approach improves the accuracy of the quality control system and demonstrates the potential

of using synthetic data in quality control applications for manufacturing systems affected by

environmental noise.

Rio-Torto et al. (2021) presented a hierarchical approach for automatic quality inspection

in the automotive industry[39]. The suggested approach employs machine learning models

for detecting and categorizing defects, trained on synthetic data generated through physi-

cal simulation. The synthetic data was created by taking into account the physics of the

inspection process and the defects, allowing for a wide range of scenarios and defect types

to be incorporated. The authors reveal that utilizing synthetic data led to a considerable

enhancement in the defect detection and classification models’ performance, indicating the

efficacy of synthetic data in quality control applications.

The study conducted by da Silva et al. (2021) emphasized the importance of quality

control and proposes the use of synthetic data to improve defect detection[38]. The authors

note the limitations of traditional methods and highlight the potential of deep learning-based

approaches that capture spatial and temporal features. To augment the limited amount of

real-world data for training, the authors suggest using synthetic data generated through

computer simulations. The proposed approach can lead to more accurate and efficient defect

detection, ultimately improving product quality and reducing the risk of defects reaching

customers.

Jain et al. (2018) presented a comparison of data analytics approaches using simulation

for quality control in a virtual factory prototype[35]. The authors used a simulation model to
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generate synthetic data for testing different data analytics methods such as logistic regression,

decision trees, and neural networks. The synthetic data closely resembled the real-world data,

and the results showed that the neural network approach outperformed the other methods in

predicting defective products. This study highlights the potential of using synthetic data in

quality control applications and the importance of choosing the appropriate data analytics

method for achieving the desired accuracy.

Biczó et al. (2021) discussed the use of machine learning methods to predict distortion in

additive manufacturing processes[16]. To train their model, the authors generated synthetic

data using Simufact Additive software, which simulates the additive manufacturing process

and predicts the resulting distortions. Subsequently, the synthetic data was employed to

train a machine learning model that forecasts distortions in the actual manufacturing process.

Predicting distortions in the additive manufacturing process is vital for ensuring the quality

of the end product in terms of quality control. Through the use of synthetic data for training

their machine learning model, the authors could simulate numerous distortion scenarios and

generate a considerable amount of training data that might be challenging to obtain through

physical experimentation. This allowed them to build a more robust model for predicting

distortions and ultimately improve the quality of the additive manufacturing process.

In the context of quality control, the accurate estimation of bolt positions is critical in

ensuring that assembled products meet specific tolerances and safety requirements. Ameper-

osa et al.(2020) proposed the use of domain randomization techniques combined with deep

neural networks to generate synthetic data to train a model for estimating the positions of

bolts in an assembly[25]. Synthetic data allows for the generation of a large and diverse

dataset, which can improve the performance and generalization of the model. The utiliza-

tion of synthetic data in this study facilitated the model to predict bolt positions with 99.7%

accuracy for unseen samples. This method can greatly decrease the dependence on expensive
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and time-consuming manual data collection and annotation while simultaneously enhancing

the precision and efficiency of quality control in manufacturing processes.

Despite notable advancements in utilizing synthetic data for quality control in assembly

line applications, certain gaps remain. For example, there is a necessity for more research to

create more efficient techniques to handle imbalanced datasets. Moreover, robust synthetic

data generation methods that can create high-quality data for machine learning models are

needed. These gaps offer potential prospects for future research in this field.

In addition to the gaps mentioned earlier, there are several other areas where further

research is needed to improve the use of synthetic data in quality control for assembly line

applications.

One area of concern is the reliability and interpretability of machine learning models

used for quality control. Even though machine learning models can attain high accuracy

in identifying defects or deviations from quality standards, comprehending how the model

arrived at its conclusion can be challenging. The absence of interpretability can hinder

adoption in industries that require transparency in decision-making processes. Additional

research is needed to create machine learning models that are not just precise but also

transparent and interpretable.

The possibility of bias in machine learning models used for quality control is an additional

concern. The accuracy of machine learning models relies on the data they are trained

on, and if the data is biased, so will the model. This can result in incorrect decisions or

perpetuate existing biases. As a result, further research is necessary to create bias detection

and mitigation techniques to guarantee that machine learning models used for quality control

are unbiased and impartial.

Integrating synthetic data into current quality control methods might be challenging.

This is particularly true in sectors where conventional quality control systems have been in

place for an extended period of time and where the introduction of new technologies might
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be received with opposition. Hence, additional study is required to identify the barriers

to the adoption of synthetic data-based quality control and to design successful integration

techniques.

Finally, the use of synthetic data in quality control presents ethical considerations, espe-

cially in regard to employment. The automation of quality control jobs might result in the

loss of employment for those now doing these duties. Consequently, it is essential to evaluate

the ethical implications of synthetic data-based quality control and to devise measures to

limit possible negative employment effects.

In conclusion, although the use of synthetic data in quality control for assembly line

applications has shown significant potential, more study is still required in a number of

areas. To unleash the full potential of synthetic data in quality control and to ensure that it

is utilized in a responsible, ethical, and effective manner, it will be essential to address these

gaps.

3.1.2 Predictive Maintenance

Predictive maintenance is a technique used to identify potential failures in machinery

before they occur. This method involves collecting and analyzing data from sensors and

other sources to predict when equipment might fail. Predictive maintenance can help reduce

downtime, maintenance costs, and improve the overall efficiency of an assembly line.

One challenge in implementing predictive maintenance is the availability of data. Gath-

ering data on the performance of equipment involves substantial work and money, and it

may not always be feasible to collect sufficient data to create reliable prediction models.

Synthetic data can play an important part in resolving this issue.

In predictive maintenance, the purpose of synthetic data is to generate bigger, more

diversified datasets that may be used to train and evaluate prediction models. Next, these

models may be used to discover patterns and trends in the data that may suggest equipment
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breakdowns. Moreover, synthetic data may be utilized to recreate various situations in order

to verify the robustness of prediction models and uncover any flaws.

Using synthetic data in predictive maintenance can help companies reduce the time and

cost of collecting and labeling real-world data. Synthetic data can be generated quickly

and efficiently, allowing companies to create large datasets that capture a broad range of

scenarios and conditions. By using synthetic data, companies can also minimize the risk of

damaging expensive machinery during testing.

There is a growing body of literature on the usage of synthetic data for predictive main-

tenance. Many researchers have recognized the potential benefits of using synthetic data to

supplement real-world data in predictive maintenance applications. For example, a study

conducted by Guner et al. (2016) presented a simulation platform for anticipative plant-

level maintenance decision support systems[31]. The platform incorporates physics-based

modeling, statistical modeling, and machine learning approaches. The authors investigated

the use of synthetic data production for predictive maintenance machine learning models,

including the usage of GANs for data synthesis.

The authors demonstrate the effectiveness of the proposed approach using a case study

involving a manufacturing system. According to the findings, incorporating synthetic data

in the training of the predictive maintenance model resulted in better accuracy compared to

models that only utilized real-world data. Furthermore, the authors described the benefits

of utilizing synthetic data in predictive maintenance. These advantages include lowering

expenses and time spent on data gathering and enhancing the effectiveness of predictive

maintenance models in circumstances when acquiring real data may be problematic or re-

stricted.

Although significant progress has been achieved in the use of synthetic data methodologies

for predictive maintenance and data creation in the industrial industry, there are still a

number of gaps to fill.
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The absence of standards in data gathering and processing is a significant obstacle. Ef-

fectively training predictive maintenance models requires huge volumes of data, but if the

data are not gathered regularly or evaluated in a uniform manner, it becomes difficult to

compare outcomes across studies. This lack of standardization makes it difficult to identify

best practices for predictive maintenance and retards the field’s development.

For the development of reliable predictive maintenance models, huge quantities of high-

quality data are also required. In reality, it might be challenging to get sufficient data that is

both relevant to the situation at hand and of sufficient quality to train a model successfully.

This difficulty may be especially severe in industrial contexts, where data may be created

by a variety of equipment and systems, and where distinct data sources may use different

formats or protocols.

There is also a need for more research on the integration of predictive maintenance and

other manufacturing processes. Guner et al. (2016) proposed a simulation platform for antic-

ipative plant-level maintenance decision support systems, but more work is needed to develop

methods for integrating these systems into larger manufacturing processes[31]. Integrating

predictive maintenance into overall production planning and control systems could lead to

significant improvements in efficiency and uptime, but it requires a deep understanding of

the underlying processes and systems.

In addition, there is a need for more studies on the ethical and social ramifications of using

synthetic data methodologies in manufacturing. Concerns like data privacy, algorithmic bias,

and the effects on employees and society must be addressed as synthetic data become more

prevalent in this field. Thus, it is crucial that the collection and use of this data comply

with ethical and equitable norms since predictive maintenance models depend on data from

a number of sources.

Overall, the application of synthetic data techniques in predictive maintenance and data

generation presents numerous opportunities in the manufacturing industry. To reach their
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full potential, however, it is required to overcome the gaps and difficulties in this sector. This

involves standardizing data collecting and processing, discovering methods for obtaining high-

quality data, incorporating predictive maintenance into broader production processes, and

evaluating the ethical and societal consequences of these technologies. By addressing these

challenges, the field of predictive maintenance can continue to grow and thrive, bringing

significant benefits to manufacturers and society as a whole.

3.1.3 Human-machine Collaboration

Human-machine cooperation refers to the collaboration between people and machines

towards a shared objective, with each contributing their unique abilities and expertise. In

flexible manufacturing, this collaboration is crucial for improving productivity, flexibility,

and safety. Establishing effective human-machine cooperation poses a significant challenge

due to the requirement of a massive amount of data needed to train AI models to anticipate

and respond to human behavior.

Recent studies have investigated the utilization of machine learning algorithms to gen-

erate synthetic data as a solution to this challenge. Synthetic data can replicate human

behavior on assembly lines and provide data to train AI models, reducing the need for

expensive and time-consuming data collection from actual scenarios. One study that has

investigated the use of synthetic data for improving collaborative human-robot flexible man-

ufacturing applications is the paper by Sibona et al (2021). They proposed a data-driven

framework that utilizes synthetic data to train AI models for predicting human behavior and

improving collaboration between humans and robots[15].

While the paper by Sibona et al. (2021) provides valuable insights into the use of AI and

machine learning for improving human-machine collaboration in flexible manufacturing[15],

there may be gaps in the proposed framework that need to be addressed. For instance,

the efficacy of the framework may rely on the quality and amount of the synthetic data
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created, which in turn may be affected by a number of variables, such as the complexity

of assembly line activities and the variety of human behavior. The ideal techniques for

producing synthetic data and the framework’s applicability to a variety of contexts need

more investigation.

Synthetic data is a potential strategy for human-robot cooperation in assembly lines, but

there are research gaps that need to be filled. One possible constraint is the quality and repre-

sentativeness of the synthetic data, which may be affected by variables like the precision and

dependability of machine learning techniques. More study is required to build trustworthy

machine learning algorithms capable of creating synthetic data for human-robot interaction

on assembly lines, taking into account issues such as feature selection, hyperparameters, and

quality of training data. In addition, replicating complicated human behaviors and inter-

actions in real-world circumstances may be difficult and lead to inadequate or biased data

that may not reflect the whole spectrum of probable human behavior. To guarantee that

the created synthetic data are accurate and representative, more study is required.

3.1.4 Supply Chain Management

Supply chain management entails managing and organizing activities associated with the

manufacturing and delivery of products and services to clients. To ensure timely and cost-

effective delivery of products, various tasks such as managing suppliers, overseeing production

processes, logistics, and customer relations are carried out. With supply networks becoming

increasingly intricate, there is a rising trend of utilizing artificial intelligence (AI) in supply

chain management to enhance efficacy and reduce expenses.

One area where AI can be used in supply chain management is in generating synthetic

data on assembly lines. For example, a recent paper by Kohtala et al. (2021) explored the

use of synthetic data from CAD models for training object detection models in a virtual
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reality (VR) industry application case[19]. The authors demonstrate that synthetic data can

be used to train object detection models more efficiently than traditional methods.

Andres et al. (2021) proposed a mathematical model to optimize the production pro-

cess for automotive plastic components[28]. The model considers machine capacity, setup

time, lot size, and scheduling, among others, to minimize the total production cost while

meeting the demand requirements. The paper’s contribution lies in the use of synthetic

data to improve the accuracy of the model while maintaining privacy and confidentiality.

The proposed model is applied to a case study in the automotive industry, and the results

show significant cost savings. The paper demonstrates the potential of using parallel flexible

injection machines with setup common operators in supply chain management and provides

insights for further research.

Simulation is another commonly used tool in supply chain management to evaluate differ-

ent production scenarios and optimize system performance. For instance, Bikes et al. (1994)

used simulation to study the sensitivity of assembly systems to component delivery in a

logistics study[30]. The authors show that delays in component delivery can have significant

impacts on production efficiency and lead to increased costs.

Sisca et al. (2015) proposed a hybrid model for aggregate production planning that uses

both real and synthetic data[32]. The study highlights the challenges of production planning

in a reconfigurable assembly unit for optoelectronics and proposes a model that combines

an analytical model, a simulation model, and a genetic algorithm. The hybrid model uses

synthetic data to model customer demand and component availability while maintaining

privacy and confidentiality. The study demonstrates the potential of the hybrid model for

improving the accuracy and efficiency of production planning in a flexible manufacturing

environment.

The paper emphasizes the significance of precise data in supply chain management and

the potential of synthetic data in enhancing production planning processes. The hybrid
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model suggested in the paper presents a novel way of integrating production planning that

can be implemented in different sectors, such as optoelectronics, electronics, and automotive.

The findings of the research have implications for supply chain management and empha-

size the importance of utilizing both real and synthetic data to enhance the precision and

efficiency of production planning procedures.

Fiasché et al. (2016) proposed a hybrid method for aggregate production planning that

uses both real and synthetic data[33]. The study focuses on the challenges of dealing with

uncertainty and imprecision in a dynamic environment and proposes a method that incor-

porates fuzzy logic and multi-objective optimization. The authors highlight the importance

of accurate data in production planning and the challenges of dealing with uncertainty and

imprecision. The proposed method uses both real and synthetic data to model customer

demand, production costs, and other input parameters and incorporates fuzzy logic to rep-

resent imprecision and uncertainty. It allows for multiple objectives and constraints to be

optimized simultaneously and demonstrates the potential of synthetic data and fuzzy logic

for addressing uncertainty and imprecision in production planning. This research presents a

novel strategy for consolidating production planning, which can be employed across different

sectors such as electronics, automotive, and manufacturing. It highlights the significance of

advanced optimization methods in managing supply chains.

The utilization of synthetic data for training assembly line models has gained popularity

because it can replicate various scenarios without costly and time-consuming physical testing.

Nonetheless, the literature has not thoroughly investigated its potential usage in supply chain

management. The current studies primarily focus on optimizing production, lot sizing, and

scheduling using mathematical models and simulations. While these studies are beneficial

in boosting production efficiency and decreasing expenses, they may not directly tackle the

issues of inventory management and quality control.
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Using synthetic data generated from CAD models could help enhance accuracy and

efficiency in quality control and inventory management in assembly lines. By utilizing syn-

thetic data, models can be trained to detect defects and determine the underlying causes

of quality problems, leading to increased precision in quality control procedures. Further-

more, synthetic data can aid in streamlining inventory management by forecasting demand,

pinpointing supply chain constraints, and emulating diverse scenarios.

The creation of synthetic data necessitates the use of precise AI and machine learning

algorithms capable of replicating real-life situations in assembly lines. Further research

into the utilization of AI and machine learning algorithms for generating synthetic data

could unleash synthetic data’s full potential in enhancing supply chain management. By

leveraging synthetic data, supply chain managers can make better-informed decisions and

optimize their operations, leading to enhanced performance, lowered costs, and increased

customer satisfaction.

3.1.5 Process Control

Manufacturing relies on process control, which involves monitoring, analyzing, and opti-

mizing manufacturing processes using various techniques and technologies. One promising

area where process control can be utilized is the application of synthetic data generation in

assembly lines. Synthetic data generation entails using machine learning algorithms to cre-

ate artificial datasets that simulate real-world data. Specifically, in assembly lines, synthetic

data generation can be used to generate datasets that reflect diverse scenarios, which can be

used to train machine learning models for process control purposes. By utilizing synthetic

data generation for process control, manufacturers can improve their production processes,

reduce errors, and minimize waste.

Recent research has explored the use of synthetic data generation to improve operator

guidance in manufacturing. This method entails employing machine learning algorithms to
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produce synthetic datasets that replicate the assembly process of intricate products. By

utilizing these datasets, machine learning models can be trained to anticipate the ideal order

of assembly tasks for a specific product and offer live instructions to human operators based

on those predictions.

In a recent study, researchers proposed a novel approach for using synthetic data gener-

ation to improve operator guidance in manufacturing. The study presented a system called

ViTroVo[20], which is an artificial intelligence framework designed to provide adaptive op-

erator guidance in complex manufacturing environments. The system generates synthetic

datasets that simulate the assembly process for complex products, allowing for the optimiza-

tion of assembly tasks and process control. The synthetic datasets are generated through a

process of domain randomization, where 3D scenes are generated with randomized assembly

components and distractor objects. Machine learning models for assembly prediction are

trained and assessed using these scenarios, which can subsequently guide human operators

during the assembly procedure. This system can be utilized in various industries, including

aerospace, automotive, and electronics.

Experimental results showed that ViTroVo was effective in improving the efficiency and

quality of assembly tasks. This method effectively decreased the frequency of errors made by

human operators during the assembly process while simultaneously enhancing overall produc-

tivity. The study offers a hopeful path for employing machine learning and synthetic data

generation in controlling manufacturing processes, which could have notable implications for

augmenting the quality and efficiency of manufacturing procedures.

Although utilizing synthetic data generation for process control in manufacturing appears

encouraging, there are still various obstacles and inadequacies that require attention. One of

the primary challenges is generating synthetic datasets that precisely mirror the intricacies of

actual manufacturing settings. For instance, capturing all the pertinent factors that influence
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assembly tasks, such as environmental circumstances, equipment inconsistencies, and human

elements, may pose difficulties.

Another hurdle is the requirement for efficient machine learning algorithms that can

acquire knowledge from synthetic data and offer valuable instructions to human operators.

To develop such algorithms, extensive amounts of training data and precise tuning of model

parameters may be necessary, which can be both expensive and time-consuming.

Lastly, it is crucial to contemplate the conceivable ethical and societal consequences of

utilizing artificial intelligence and machine learning in controlling manufacturing processes.

There could be apprehensions regarding the influence of automation on employment and job

stability, in addition to the possibility of partiality in machine learning models that could

adversely affect employees or consumers.

Addressing these gaps and challenges will be crucial for advancing the use of synthetic

data generation and machine learning in manufacturing process control, and ensuring that

these technologies are used in ways that are both effective and socially responsible.

3.1.6 Process Optimization

Process optimization involves improving a manufacturing process to achieve greater effi-

ciency, higher quality, and lower costs. Attaining process optimization may entail recognizing

and resolving bottlenecks, minimizing waste, refining resource usage, and enhancing produc-

tion throughput. One method of achieving process optimization is by utilizing synthetic

data, which can simulate various scenarios and reveal areas for enhancement.

One example of the use of synthetic data for process optimization is in assembly line

manufacturing. Zheng et al. (2020) used a virtual prototyping approach to generate synthetic

data for the detection of modules in modular integrated construction[17]. They used the 3D

CAD software tool Revit to model the construction process in a virtual environment and

generated synthetic data to train a transfer learning model for module detection. The authors
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found that their approach improved the accuracy of module detection and could be applied

to improve process optimization in other manufacturing contexts.

Apornak et al. (2021) presented a hybrid approach for solving the flexible flow-shop

problem (FFSP) by combining Taguchi-based computer simulation and data envelopment

analysis (DEA) techniques[36]. The authors utilized synthetic data generated by the com-

puter simulation model to optimize the FFSP with multiple objectives, including minimizing

makespan, total completion time, and work-in-process. The use of synthetic data allowed for

efficient and effective exploration of the design space, enabling the identification of optimal

FFSP solutions that would have been difficult or impossible to achieve using only real-world

data. The results showed that the proposed hybrid approach could effectively solve the

FFSP, providing significant improvements over traditional methods.

Mubarak et al. (2020) described a new approach for generating synthetic data to optimize

the pipe spooling process[5]. To generate synthetic data, the authors developed an industrial

pipelines data generator (IPDG) that uses Hidden Markov Models (HMMs) to simulate the

pipe spooling process. The generated data was then used to optimize the spooling process by

testing different scenarios and identifying the optimal parameters. The results showed that

the IPDG was able to generate realistic data that accurately represented the pipe spooling

process. The use of synthetic data allowed for more efficient and cost-effective testing of

different scenarios, leading to improved process optimization. The authors suggest that this

approach could be extended to other manufacturing processes to support optimization and

decision-making.

While the generation of synthetic data holds promise for enhancing process optimiza-

tion, significant gaps and obstacles remain to be addressed. One of the main gaps is the

difficulty in accurately modeling the variability and complexity of real-world assembly line

processes using synthetic data. This requires a deep understanding of the underlying process

dynamics, which may be difficult to capture using traditional statistical techniques. Another
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gap is the requirement to verify that the synthetic data appropriately represents the variety

of inputs and circumstances that the process may experience in real-world settings. This

requires careful consideration of the data input types, their distributions, and the models

and algorithms used to generate synthetic data. Ultimately, the quality and quantity of

available training data, as well as the complexity of the underlying process dynamics, may

constrain the utility of synthetic data production for process optimization. A mix of process

optimization, data analytics, and sophisticated machine learning and artificial intelligence

approaches is required to address these gaps. Future research should concentrate on estab-

lishing more effective and economical ways for synthetic data creation that can correctly

reflect the diversity and complexity of real-world processes, and that can be used for a broad

range of industrial applications.

3.2 Data Challenges

Data challenges are ubiquitous in synthetic data generation on assembly lines, regardless

of whether it is for quality control or process control applications. The shortage of accessible

data that precisely depicts different scenarios and the steep expenses involved in gathering

and labeling real-world data are significant challenges. The precision of the data utilized

for training synthetic models is also crucial because low-quality data can produce partial or

inaccurate machine learning models. Variability of the data and data privacy and security

concerns further compound the challenges in creating synthetic datasets that adequately

represent the wide range of possible scenarios encountered on assembly lines. In this section,

we delve into these data issues in detail.
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3.2.1 Data Scarcity

Data scarcity is another significant challenge that must be addressed when generating

synthetic data on assembly lines. This challenge arises when the available data is not suffi-

cient to generate accurate models and predictions, which can result in ineffective synthetic

data that does not reflect the reality of the assembly line process.

Data scarcity can occur in several ways. One common cause is the lack of data from

certain production scenarios or worker actions. For example, if certain types of assembly

line products or components are not frequently produced, there may be a scarcity of data on

how workers handle those products or components, which can lead to inaccurate synthetic

data. Similarly, if certain workers or teams have unique skills or work processes that are not

well-represented in the available data, this can also lead to data scarcity.

Another cause of data scarcity is the need for high-quality, labeled data for supervised

learning models. This can be particularly challenging in the assembly line context, where

labeled data may be scarce or difficult to obtain. For example, labeling data on worker

actions or errors can be time-consuming and labor-intensive, and may require additional

sensors or cameras on the assembly line.

To address the data scarcity challenge, it is important to identify and prioritize the most

critical data needs for generating accurate synthetic data. This may involve collecting ad-

ditional data through new sensors or cameras or collaborating with other organizations or

industries to obtain relevant data. Another approach is to use unsupervised learning tech-

niques that do not require labeled data or to use transfer learning techniques that leverage

existing labeled data from other industries or applications.

In summary, data scarcity is a significant challenge when generating synthetic data on

assembly lines. To tackle this challenge, it is crucial to recognize and give importance to vital

data requirements and explore alternative approaches like unsupervised learning or transfer

learning. By addressing the scarcity of data, it is plausible to create more precise synthetic
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data that mirrors the actuality of the assembly line process and results in more efficient

manufacturing processes.

3.2.2 Data Proprietary

Utilizing synthetic data to enhance manufacturing processes might be difficult if the

needed data originates from many departments or firms. Each source may own data that they

are hesitant to disclose or that is subject to use limitations. A manufacturing corporation, for

instance, may have proprietary information about their production methods that they do not

like to share with rivals or academics developing synthetic data models. Additionally, legal

or ethical considerations regarding worker or customer data may limit its use for synthetic

data generation.

To overcome this challenge, it’s crucial to establish clear guidelines and agreements re-

garding data ownership, access, and usage. This could involve negotiating data-sharing

agreements with different organizations or departments or developing ethical guidelines for

worker or customer data usage.

In addition, it may be required to use methods such as data anonymization or differential

privacy in order to secure the privacy and confidentiality of the data while still enabling

the development of accurate synthetic data. Overall, the data proprietary challenge is an

important consideration when generating synthetic data on assembly lines. By establishing

clear guidelines and agreements, and using appropriate privacy and confidentiality techniques,

it is possible to address this challenge and generate high-quality synthetic data that reflects

the reality of the assembly line process.
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3.2.3 Data Quality

Data quality is one of the most significant challenges in generating synthetic data for

assembly lines. The accuracy and reliability of synthetic data generated for assembly lines

depend largely on the quality of the source data used to train machine learning models. Poor-

quality source data can result in synthetic data that is inaccurate or unreliable, potentially

leading to errors in process control and reduced manufacturing efficiency.

There are several factors that can affect the quality of source data for generating synthetic

data on assembly lines. These include:

1. Incomplete or missing data: If the source data used to train machine learning models

is incomplete or contains missing values, the resulting synthetic data may also be incomplete

or inaccurate. This may be especially troublesome if the missing data reflect crucial process

parameters or other variables that might affect the correctness of the synthetic data.

2. Data errors: Mistakes in the original data may also contribute to inaccuracies in the

synthetic data that is generated. For instance, if sensor data from assembly line equipment is

noisy or includes measurement errors, the synthetic data derived from this data may likewise

be imprecise.

3. Data biases: Biases in the source data can lead to biases in the synthetic data generated

from this data. For instance, if the source data has a disproportionate number of instances

of specific kinds of items or assembly processes, the synthesized data may be skewed toward

these aspects.

4. Data normalization: The act of normalizing data for use in machine learning models

might alter the quality of synthetic data created from these sources. The normalization

procedure might add mistakes or distortions to the final synthetic data if it is not properly

developed and applied.

To overcome these obstacles, it is essential to carefully choose and preprocess source data

to ensure that it is precise, exhaustive, and representative of the whole spectrum of conceiv-
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able assembly line events. This may need data cleansing, standardization, and augmentation

approaches, as well as careful assessment of any biases in the source data. In addition, it may

be required to construct machine learning models that are resistant to mistakes and biases

in the original data, so that the resultant synthetic data is as accurate and trustworthy as

feasible.

3.2.4 Data Volume

Data volume is another important challenge in generating high-quality synthetic data

on assembly lines. Often, vast amounts of data must be collected and processed in order

to develop synthetic data that correctly depicts the complete range of conceivable assembly

line situations. Collecting and analyzing voluminous amounts of data could be resource- and

time-intensive, leading to storage and processing difficulties.

To generate high-quality synthetic data, it is necessary to acquire and analyze an adequate

quantity of data, which might be challenging. If insufficient data is obtained and analyzed,

the synthetic data produced may be erroneous or biased. On the other side, excessive data

collection and processing may result in noise or complexity that is unneeded. Many aspects,

such as the assembly process’s complexity, the variety of product standards, and the machine

learning methods used, influence the determination of the right quantity of data.

One of the challenges in data generation is coping with massive volumes of data storage

and processing. This method may be highly costly, requiring significant computational

resources and posing scalability and performance issues. To tackle these obstacles, it’s crucial

to choose and deploy data storage and processing solutions that match the requirements of

the data being generated.

In addition, data amount may influence the speed and effectiveness of machine learning

training. The longer it may take to train a machine learning model, the bigger the dataset.

This may provide difficulties in terms of computing resources, training time, and model
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performance. To solve these obstacles, it may be important to choose and deploy machine

learning methods suited for large-scale datasets.

The generation of high-quality synthetic data on assembly lines is hampered by the sheer

quantity of data. By carefully managing the amount of data collected and processed and

implementing the appropriate data storage and processing solutions, it is possible to generate

synthetic data that accurately reflects the full range of possible assembly line scenarios, and

that can be utilized for effective process control and quality assurance.

3.2.5 Data Diversity

The generation of high-quality synthetic data on assembly lines is hampered by the

variety of data. Diversity of data refers to the variety and complexity of the data that

requires synthesis. To generate a synthetic dataset that is reflective of the whole range of

possible situations on an assembly line, the synthetic data must be varied enough to capture

the diversity and complexity of the real-world data.

Due to the multitude of variables that might influence assembly-line events, such as

changes in product configurations, manufacturing process modifications, and environmental

variances, it can be challenging to collect all conceivable forms of assembly-line events. To

overcome this difficulty, it may be essential to develop assembly line-specific data collecting

and processing techniques. By doing so, it may be able to verify that all pertinent data is

collected and used to produce correct synthetic data.

Ensuring that synthetic data is indicative of real-world data is a further difficulty associ-

ated with data variety. Artificial data that is skewed or insufficient might result in machine

learning models that are ineffective at regulating the assembly process or spotting quality

concerns. To solve this difficulty, it may be important to rigorously verify the synthetic data

by comparing it to real-world data and ensuring that it covers the whole range of variability

and complexity found in real-world data.
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In addition, the variety of data may influence the precision and efficacy of machine

learning models. Models of machine learning trained on inadequately diverse datasets may be

prone to overfitting or lack the capacity to properly transfer to fresh or uncharted situations.

To address this difficulty, it may be important to develop and implement machine learning

algorithms that are optimized for several datasets and can successfully capture the data’s

diversity and complexity.

Overall, data variety is a significant obstacle to producing high-quality synthetic data on

assembly lines. By carefully designing and executing data collection and processing proce-

dures, validating the synthetic data, and selecting appropriate machine learning algorithms,

it is possible to generate synthetic data that accurately reflects the full range of possible

assembly line scenarios and can be used for effective process control and quality assurance.

3.2.6 Ethical Considerations

Data Privacy

Protecting the privacy of employees and other stakeholders while producing synthetic

data on assembly lines is a serious concern that must be addressed. Assembly line data is

sensitive and may include personally identifiable information, such as names and addresses,

that must be safeguarded from exposure to unauthorized parties.

Data anonymization is crucial for mitigating the danger of personal information being

revealed. This entails deleting any personally identifying information from the data to guar-

antee that it cannot be traced back to specific persons. It is essential to guarantee that the

anonymization procedure is comprehensive, and that no personally identifiable information

is revealed mistakenly.

The potential for data breaches is another privacy worry. Assembly line information is

important and might be targeted by cyberattacks. Encryption, firewalls, and more security
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measures must be used to prevent unwanted access. In addition, it is essential to keep the

data in secure areas and limit access to only authorized individuals.

Also, it is crucial to evaluate the repercussions of data sharing on privacy. Sharing

information with third-party contractors or service providers raises the likelihood of privacy

breaches. To avoid data abuse, it is crucial to verify that the parties receiving the data have

proper data security techniques and that data-sharing agreements are in place.

Overall, generating synthetic data on assembly lines requires careful consideration of

data privacy. Anonymizing data, securing it, and establishing data-sharing agreements are

necessary measures to protect the privacy of workers and other stakeholders.

Data Bias

Data bias is a significant challenge that must be addressed when generating synthetic data

on assembly lines. When the data utilized to produce synthetic data is unrepresentative or

slanted toward specific conclusions, bias may develop. This may result in inaccurate models

and projections, which may have a negative impact on assembly line operations.

Data bias may occur if the data used to generate synthetic data is restricted in its range.

This may occur when data is biased toward certain demographic groups or production cir-

cumstances, resulting in skewed synthesized data, faulty models, and erroneous forecasts. To

tackle this challenge, it is critical to collect various data from various sources and ensure that

it appropriately represents a wide range of production scenarios and worker demographics.

The use of old data that may not represent current circumstances on the assembly line

is another form of data bias. For example, if a manufacturing process has recently been

modified, previous data may no longer be reflective of the current process, resulting in skewed

synthetic data. To overcome this issue, it is critical to use current data that reflects the actual

status of production. It is also important to consider the potential impact of biased synthetic

data on workers. If the synthetic data is used to make decisions about worker performance
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or productivity, biased data can unfairly penalize certain groups or individuals, leading to

further inequality and injustice.

To address the difficulty of data bias, it is crucial to adopt procedures to detect and

rectify biased data. This may be accomplished by using algorithms that discover and rectify

biases in the data, or by employing human supervision and evaluation of the data used to

produce synthetic data.

In conclusion, when producing synthetic data on assembly lines, data bias is a serious

obstacle that must be overcome. To alleviate this issue, it is crucial to acquire varied,

current data and apply techniques to detect and rectify data biases. This will ensure that

the resulting synthetic data is representative and accurate, leading to more effective assembly

line processes and fair treatment of workers.
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Chapter 4

Research Design

This chapter of my thesis will cover the research design framework for synthetic data

generation, along with an exploration of the various types of data that can be collected from

assembly stations. The chapter aims to equip readers with the necessary knowledge and tools

to conduct data-driven research projects related to assembly stations, by comprehensively

explaining the principles of generating synthetic data for this type of data and discussing

various techniques involved. As a result, readers should have a thorough understanding of

synthetic data generation by the end of the chapter.

4.1 Framework for Synthetic data generation

This section provides a comprehensive step-by-step guide to generate synthetic data for

assembly lines. The generated data can be utilized for making predictions or conducting

analysis. The process begins with collecting data from assembly lines, followed by a thorough

cleaning process to eliminate errors and inconsistencies as shown in the Figure 4.1. The

subsequent step entails selecting the most suitable synthetic data generation technique based

on the nature of the data. Finally, the generated synthetic data is evaluated to ensure that
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Figure 4.1: Data generation framework
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it maintains realism and similarity to the original data. Further, the framework is described

in detail, including a thorough explanation of each step and the various methods that can be

used. This guide offers researchers the requisite knowledge to create high-quality synthetic

data for assembly lines to use in their research or analysis.

4.1.1 Data Collection

To develop synthetic data that precisely resembles actual data for assembly lines, the first

step is to collect data from diverse sources, such as sensors and cameras. For this synthetic

data to be high quality, the obtained data must be accurate and dependable. Thus, it is

vital to adhere to a rigorous and extensive data collection strategy. This method assures that

we collect reliable and accurate data, which is important for synthesizing data that closely

matches the original.

It is essential to examine the frequency and length of data collection, as well as the

location of sensors and equipment throughout the data-gathering process. These factors

may significantly affect the precision and dependability of the obtained data. Thus, we

must assess them thoroughly to guarantee that we can provide high-quality synthetic data

for assembly lines that precisely represents the original data. Failure to account for these

variables may result in errors that have negative effects on the produced synthetic data.

Finally, gathering high-quality data is required if we want to develop accurate and trust-

worthy synthetic data for assembly lines[41].

4.1.2 Data Preprocessing

Once the data has been collected, the subsequent step in the framework for synthetic

data generation on assembly lines is pre-processing. This entails refining and formatting the

gathered data to make it suitable for utilization in the synthetic data generation procedure.
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This stage is crucial for guaranteeing the precision and authenticity of the synthesized data.

The pre-processing method to be employed is determined by the nature of the data.

Data Cleaning

The elimination of missing or flawed data points from the data set is a critical aspect of

pre-processing, commonly known as data cleaning.

Data cleaning is usually essential because of various factors, such as inaccuracies in

measurement, errors in data entry, or problems with equipment[64]. Such discrepancies

may cause missing or erroneous data points that could distort the outcomes of subsequent

data analysis or modeling. Therefore, identifying and eliminating such errors is crucial to

guarantee the precision and credibility of the data. There are multiple methods available for

cleaning data, including:

1. Imputation: Imputing missing data is a prevalent technique for handling missing

values in a dataset, which can occur due to various reasons[65]. Imputation algorithms can

estimate missing values by exploiting the information offered in the dataset.

Several imputation approaches exist, including mean imputation, median imputation,

regression imputation, k-nearest neighbors imputation, and multiple imputation[65]. Mean

imputation replaces missing values with the feature’s mean, while median imputation uses

the feature’s median. Using a regression model based on other characteristics of the dataset,

regression imputation guesses missing values. K-nearest neighbors imputation imputes the

missing value using the values of the k-nearest observations to the missing observation.

Evaluating the constraints and assumptions of each imputation approach is essential

since they can introduce bias and impact the variability of the dataset. Before utilizing the

imputed data, it is important to assess the effects of imputation on analytical findings.

2. Deletion: Data deletion is a pre-processing method used to delete missing, irrelevant, or

redundant data points from a dataset is data deletion[65]. It is useful for cleaning datasets,
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but it should be used with caution to prevent unforeseen effects such as the loss of vital

information, bias in outcomes, and a reduced accuracy in machine learning models. To

eradicate bias, the removed data should be scattered randomly across the dataset.

3. Interpolation: Data interpolation is a pre-processing method used to fill in missing

values in a dataset. It entails predicting missing data points based on current data using

techniques such as linear, spline, or k-nearest neighbor interpolation[65].

Interpolation is most useful when missing data is scattered randomly throughout a big

dataset and the predicted values are sufficiently credible. Nevertheless, it should be utilized

with care since if not used correctly, it can produce mistakes or biases in the data. Interpo-

lation should not be used to fill big gaps in missing data since it can provide erroneous or

unreliable results.

It is critical to distinguish data interpolation from data imputation, which includes replac-

ing missing values with predicted values based on statistical analysis or machine learning

methods. Interpolation is a simpler approach that guesses missing values based on the

dataset’s known data points, while data imputation needs more advanced estimating algo-

rithms.

4. Data augmentation: Data augmentation techniques involve creating new data points

based on the existing data. This can be done by adding noise to the existing data or by

generating synthetic data using statistical models[65].

5. Use of expert knowledge: Expert knowledge can be employed in certain instances

to estimate missing values. When the missing value pertains to a measurement that is

improbable to have undergone significant changes over time, an expert can make an estimate

based on their knowledge of the system[65].

Regardless of the method used, it is crucial to evaluate the effect of missing or corrupted

data on analysis outcomes and document any pre-processing measures taken to tackle these

problems. By addressing missing values or corrupted data points, researchers can ensure that
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their analysis is based on accurate and complete data, resulting in more reliable findings and

conclusions.

Data Transformation

Transformation of data is a crucial stage in the preprocessing of real-world data, since

it converts the data into a more useable and comprehensible format[65]. Transformation

of data entails replacing the original data representation with one that is more suited for

analysis.

Data transformation is used for several purposes. Secondly, it may lessen the impact of

outliers or extreme values in the data, which can distort the conclusions of an investigation.

Two, data transformation may assist in linearizing the connections between variables, making

them more suitable to linear regression analysis.

Employing diverse data transformation methods, contingent on the data type and re-

search objectives can help enhance the normality of the data distribution, which is com-

monly a precondition for conducting statistical tests. Some common data transformation

techniques include:

1. Scaling: Scaling is used to alter data so that it fits inside a certain range. This may

be accomplished via the use of min-max scaling or standardization.

2. Log transformation: Log transformation is used to transform data that is highly

skewed or has a non-normal distribution. This method can be used to make the data distri-

bution more normal.

3. Box-Cox transformation: Box-Cox transformation is a sort of power transformation

used to alter skewed data distributions.

4. Fourier transformation: Time-series data are transformed into the frequency domain

using the Fourier transform. This technique can assist in identifying any existing patterns

or trends within the data.
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5. Principal Component Analysis (PCA): PCA is a technique utilized to reduce the

dimensionality of data, which can aid in identifying patterns and correlations present within

the data.

6. Wavelet transformation: The wavelet transformation approach may help the spotting

of patterns or trends by evaluating the time-frequency connections within the data.

Data Normalization

Data normalization is an essential pre-processing method used to put data into a uni-

form format, facilitating comparisons between various samples and minimizing the impact

of outliers or discrepancies in units and scales. This is a vital stage in several data analysis

and machine learning jobs. The objective of normalization is to rescale the data to a similar

range or unit, often between 0 and 1 or -1 and 1, depending on the approach used[65].

Normalization methods are applicable to a variety of data types, including continuous

and categorical data. When working with characteristics that have multiple sizes or units,

data normalization is sometimes necessary. In such situations, normalizing the data to a

similar range or unit might enhance the precision of the analysis or forecast. Normalization

is also beneficial when dealing with data that has outliers or extreme values. Normalization

methods may assist in reducing the impact of these outliers and making the data more typical

of the underlying distribution.

Min-Max Scaling, Z-score normalization, and Decimal scaling are prominent data normal-

izing approaches. The choice of normalizing approach relies on the data kind and distribution,

as well as the analysis’s unique application and objectives. It is also crucial to evaluate the

influence of normalization on the interpretability of the data, since some normalization ap-

proaches may alter the connections between variables or distort the data in a manner that

makes them difficult to interpret.
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Feature Selection

Feature selection is an important pre-processing technique that involves selecting a subset

of relevant features from the original set of features in a dataset. The purpose of feature

selection is to enhance the performance of a machine learning model by lowering the dataset’s

dimensionality and deleting unnecessary or redundant features that may generate noise or

bias[65].

Many applications use feature selection, including image recognition, natural language

processing, and signal processing. In these applications, the dataset may include several

attributes, some of which may not be helpful or relevant to the current situation. By picking

a subset of important characteristics, we may lower the model’s computational complexity

and increase its precision and generalization performance. There are several approaches

available for selecting features, including:

1. Filter methods: These methods select features based on some statistical measure,

such as correlation, mutual information, or chi-square. They are typically fast and computa-

tionally efficient, but they may not always select the most relevant features. This methods

involve ranking features based on their relevance to the target variable, and selecting the

top-ranked features.

2. Wrapper methods: These methods evaluate the performance of a machine learning

model using different subsets of features. They are computationally more expensive than

filter methods, but they may lead to better performance by selecting more relevant features.

3. Embedded methods: These methods incorporate feature selection as part of the model

building process. For example, decision tree algorithms such as Random Forest can select

important features during the training process.

4. Principal Component Analysis (PCA): This approach can be used for both feature

selection and data compression. It entails translating the data into a lower-dimensional space

while preserving as much data variation as feasible.
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The implementation of a feature selection approach is contingent on the nature of the

data and the addressed issue. In general, it is vital to choose characteristics that are pertinent

to the situation at hand, while eliminating redundant or unneeded characteristics. This can

assist increase the accuracy and generalizability of machine learning models.

Data Integration

The process of merging data from many sources into a cohesive format for analysis

is known as data integration. Data integration is often used in pre-processing when data

obtained from diverse sources or in different forms must be merged and turned into a common

format for analysis[65].

Data merging, which includes joining datasets with a shared variable or key, is a typical

strategy for integrating data.

Data stacking is another strategy that combines datasets with comparable variables but

distinct observations. This is often used when data is obtained over various time periods or

in different places, but the variables are the same or comparable.

Data fusion is a process that combines various sorts of data from several sources. This

may include merging sensor data, picture data, and other data sources to generate a more

complete dataset.

The ultimate objective of data integration is to establish a uniform and consistent dataset

that can be readily evaluated and utilized to draw conclusions and make choices. In situa-

tions where data is acquired from various sources or in different formats, data integration

may assist in decreasing redundancy, increasing data accuracy, and promoting more efficient

analysis.
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4.1.3 Synthetic Data Generation

The generation of synthetic data comes after the assembly line data is processed in the

synthetic data production framework. To achieve the objective of generating synthetic data,

various techniques are employed, such as the use of generative adversarial networks (GANs),

variational autoencoders (VAEs), and other deep learning approaches. The primary aim of

producing synthetic data is to create new data that can replicate the patterns and attributes

of the source data while also introducing some degree of variation to avoid producing an

identical copy of the original.

An advantage of synthetic data generation is that it can expand existing datasets, en-

hancing the quantity and diversity of the data available for training machine learning models.

Furthermore, synthetic data can simulate challenging or hazardous situations that may be

impractical or dangerous to replicate in the real world, leading to more comprehensive testing

and validation of assembly line processes.

Some techniques that can be used for synthetic data generation include:

1. Random Sampling

2. Synthetic Minority Over-sampling

3. Adaptive Synthetic Sampling

4. Random Over-sampling

5. Safe-level Synthetic Minority Over-sampling

6. Borderline Synthetic Minority Over-sampling

7. Gaussian Mixture Model

8. Autoencoders

9. Variational Autoencoders

10. Generative Adversarial Networks

11. PointNetGAN

12. Deep Convolutional GAN
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13. VAE-GAN

14. Conditional GAN

15. Recurrent Neural Network

16. StyleGAN

17. Deep Belief Network

18. Transformer-Based Time-Series GANs

19. Convolutional Autoendcoder

20. PixelCNN

21. Generative Flow Networks

22. Hidden Markov Model

23. Autoregressive Integrated Moving Average

24. Long Short-Term Memory

25. Convolutional Neural Networks

26. Recurrent Variational Autoencoder

27. Conditional Variational Autoencoder

Random Sampling

Random sampling is a fundamental method used in synthetic data creation for assembly

line manufacturing applications to generate a sample of data points that are representative of

the original dataset. It is particularly useful when working with large datasets when training

with the entire dataset may not be feasible. The method involves selecting data points at

random, with no particular criterion or sequence, from the original assembly line dataset[66].

In assembly line manufacturing, stratified random sampling is also commonly used,

whereby data points are divided into categories and then selected at random within each

category to create a more representative synthetic dataset.
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Random sampling is critical for the development of synthetic data for assembly line appli-

cations because it helps to provide a varied dataset that mimics the underlying distribution

of the original dataset. By randomly selecting a diverse range of data points, the synthetic

dataset can capture the variances and patterns contained in the original dataset, thereby

enhancing the accuracy and reliability of the trained machine learning models.

Synthetic Minority Over-sampling

SMOTE(Synthetic Minority Over-sampling) is a technique that can be employed in man-

ufacturing or assembly lines to generate synthetic data for machine learning models. When

dealing with imbalanced datasets, where one class has significantly more or fewer instances

than the other, SMOTE can be used to address the issue[66]. By generating synthetic data

for the minority class, SMOTE can create a more balanced dataset that accurately represents

the distribution of the original dataset. This can be beneficial for improving the accuracy and

dependability of machine learning models used in quality control, predictive maintenance,

and other applications in manufacturing or assembly lines.

Adaptive Synthetic Sampling

ADASYN, or Adaptive Synthetic Sampling, is a data augmentation technique that can

be applied to manufacturing or assembly lines to balance class distribution in imbalanced

datasets. For example, in quality control tasks, there may be an imbalanced dataset with

significantly fewer defective products than non-defective products. ADASYN generates syn-

thetic data points for the minority class samples that are more difficult to learn than others.

It uses the density distribution of minority class data points to determine the number of syn-

thetic samples to be generated for each point. More synthetic samples are generated in areas

where the minority class density is low, and fewer samples where it is high. The ADASYN

algorithm has been found to be effective in addressing imbalanced datasets, particularly
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when there is a significant class distribution disparity. It can improve the performance of

machine learning models by increasing the volume of data for the minority class, resulting

in better generalization of the model[66].

Random Over-sampling

ROS(Random Over-sampling) can be used in manufacturing and assembly lines to ad-

dress imbalanced datasets, where certain components or parts might be less frequent than

others. For example, in a production line for an automotive company, some components may

be produced in smaller quantities than others, resulting in an imbalanced dataset. Using

ROS, synthetic data can be generated for these minority components, helping to balance the

dataset and improve the performance of classification models.

By randomly selecting examples from the minority class and generating synthetic exam-

ples similar to them, ROS can help create a more diverse dataset that accurately represents

the manufacturing or assembly line. This can lead to better decision-making regarding

maintenance schedules, equipment replacement, and other critical operations. The simplic-

ity and computational efficiency of the ROS algorithm make it a practical and useful tool

for manufacturing and assembly lines with imbalanced datasets[66].

Safe-level Synthetic Minority Over-sampling

SLSMOTE, or Synthetic minority Over-sampling Technique using SMOTE, can be ap-

plied to assembly line data where there are imbalanced classes, such as identifying faulty

products in a production line. In this scenario, there may be fewer instances of faulty prod-

ucts than non-faulty ones, making it challenging to train a classifier that can accurately

detect the faulty products[66]. SLSMOTE can help to address this issue by generating syn-

thetic instances that are similar to the minority class (i.e., faulty products) and improving

the overall balance of the dataset.
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To apply SLSMOTE to an assembly line dataset, one would first identify the minority

class, which in this case would be the faulty products. The next step would be to train

a classifier on the original dataset, which would identify the challenging minority instances

based on their distance to the decision boundary. Once the challenging minority instances

have been identified, SLSMOTE can be applied to generate synthetic instances around those

instances using SMOTE. The resulting balanced dataset can then be used to train a classifier

that can accurately detect faulty products in the assembly line. Overall, SLSMOTE can help

improve the performance of classification models in assembly line scenarios with imbalanced

datasets.

Borderline-SMOTE

In manufacturing, BLSMOTE(Boderline-SMOTE) can be used to address imbalanced

datasets in various contexts. For instance, in quality control, where the majority of the prod-

ucts produced are considered of high quality, while only a few are of low quality, BLSMOTE

can be used to generate synthetic data points to balance the class distribution. By generat-

ing synthetic samples for minority class data points located near the borderline between high

and low-quality products, BLSMOTE can help to identify areas where production processes

need improvement to ensure consistent quality.

In addition, BLSMOTE can be used in predictive maintenance applications, where data

on machine failures is often imbalanced, with a small number of machines failing compared

to the number of machines that function correctly. By generating synthetic data points near

the borderline between healthy and faulty machines, BLSMOTE can improve the accuracy of

machine failure prediction models, allowing maintenance teams to take preventive measures

before costly equipment breakdowns occur.

Overall, BLSMOTE can be a valuable tool in manufacturing to balance class distribu-

tion in imbalanced datasets and improve the performance of predictive models in various
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applications; ultimately helping to enhance efficiency, reduce costs, and improve product

quality.

Gaussian Mixture Model

In manufacturing, Gaussian Mixture Models (GMMs) can be used to generate artificial

data that resembles the original data to simulate and test different scenarios. For example,

a GMM can be trained on data from a manufacturing process to identify distinct subgroups

within the data, such as products with specific features or defects. The GMM can then

generate synthetic data points by sampling from the learned mixture model, creating artificial

scenarios for testing the manufacturing process[67].

In addition, GMMs may be used to discover abnormalities or outliers in the data, such

as uncommon product attributes or unanticipated production modifications. By spotting

these irregularities, industrial processes may be modified to decrease waste and increase

productivity.

It is important to note that the number of clusters selected for the GMM should be chosen

carefully to avoid overfitting and generate data that accurately represents the underlying data

distribution.

Autoencoders

Autoencoders are a type of neural network that learn the underlying patterns and struc-

tures in a dataset to generate synthetic data. They consist of two main parts: an encoder

network that reduces the dimensionality of the input data, and a decoder network that

reconstructs the original input from its encoded form[68].

During training, the autoencoder learns to extract the most significant data character-

istics and builds a compressed representation that can be used to generate new synthetic

data points. The network can then be used to produce fresh samples by randomly selecting
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points in the lower-dimensional space and sending them through the decoder to reconstruct

the relevant data points.

Autoencoders can be particularly useful in generating synthetic data for assembly lines

where there is a need to model the intricate relationships between different components

and optimize the manufacturing process. By creating new synthetic samples that resemble

the original data, autoencoders can aid in designing more efficient assembly lines, reducing

downtime and costs.

Variational autoencoders

Variational autoencoders (VAEs) are a type of generative model used for generating

synthetic data during pre-processing. They work by learning an encoder and a decoder

network to map input data to a latent space representation and then back to the input data.

By sampling from the learned distribution in the latent space, VAEs can generate new data

points similar to the training data[69].

VAEs can be used to generate synthetic data that mimics real-world sensor readings from

the production line. By training the VAE on a dataset of sensor readings, it can learn the

underlying patterns and structures in the data and create new synthetic sensor readings.

These synthetic data points can then be utilized to augment the original dataset, allowing

for a more robust modeling and analysis of the assembly line’s performance.

Additionally, VAEs can also be used to detect anomalies in sensor data by comparing the

reconstructed sensor readings to the original readings. Any significant discrepancies could

indicate a malfunction or abnormality in the assembly line, allowing for prompt maintenance

and repair. Overall, VAEs have the potential to improve the performance and reliability of

assembly lines by generating more comprehensive datasets and detecting anomalies in real-

time.
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Generative Adversarial Networks

Generative Adversarial Networks (GANs) are a type of deep learning model that gener-

ates synthetic data. GANs consist of two neural networks, a generator and a discriminator[70].

The generator takes in random noise and produces synthetic data samples that resemble real

data. The discriminator is trained to distinguish between synthetic and real data samples.

During training, the generator aims to create realistic synthetic samples that can trick

the discriminator into thinking they are real. The discriminator tries to correctly classify

synthetic and real samples. As the networks improve, the generator generates more realistic

synthetic samples that become harder for the discriminator to differentiate from real samples.

GANs have diverse applications such as generating images and videos of assembly lines.

However, their usage comes with a downside as they require significant computational re-

sources and large amounts of data. Furthermore, the quality of synthetic data created by

GANs might vary dependent on the design and hyperparameters of the network.

PointNetGAN

PointNetGAN can be applied to the manufacturing industry in various ways, particularly

in assembly line production processes that require the generation of 3D point cloud data. For

example, it can be used to improve the accuracy of quality control inspections by generating

realistic point cloud data that mimics real-world manufacturing defects. This can help

identify and correct defects earlier in the production process, leading to a reduction in waste

and improved overall efficiency.

Additionally, PointNetGAN can be applied to automated assembly processes by gener-

ating 3D point cloud data that can be used to improve the accuracy of robot or machine

movements. By training the generator network on point cloud data of the desired final prod-

uct, it can generate point clouds that represent the correct orientation and position of each
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component in the assembly process. This can help reduce errors and increase the speed of

assembly line production.

Overall, PointNetGAN’s ability to generate realistic 3D point cloud data can improve

the efficiency and accuracy of various manufacturing processes, particularly in the context

of assembly line production.

Deep Convolutional GAN

DCGAN can be applied to manufacturing or assembly lines in various ways, particularly

in situations where generating synthetic data is necessary for testing or training purposes.

For instance, DCGAN may be used to produce synthetic pictures of items or components

for quality assurance testing or machine learning training. This may decrease the cost and

effort required with gathering and categorizing vast quantities of actual data.

In addition, DCGAN may be used to produce synthetic sensor data that can be utilized to

train predictive maintenance algorithms. By generating synthetic data that closely resembles

real-world sensor data, it is possible to train algorithms to detect anomalies and predict

equipment failures before they occur. This can help reduce downtime and maintenance costs

in manufacturing and assembly line environments.

However, as mentioned earlier, DCGAN can suffer from mode collapse, which can limit

the variety of synthetic data generated. This can be addressed by using techniques such as

regularizing the training process or modifying the architecture of the generator and discrimi-

nator networks. Nevertheless, DCGAN has significant potential for improving the efficiency

and accuracy of various manufacturing processes, particularly in the context of data gener-

ation and predictive maintenance.
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VAE-GAN

The combination of Variational Autoencoders (VAEs) and Generative Adversarial Net-

works (GANs), known as VAE-GAN, is a powerful hybrid deep learning model that can

be leveraged in assembly lines or discrete manufacturing to generate synthetic data. This

synthetic data can be used for training machine learning models or testing different scenar-

ios, such as quality control testing or predictive maintenance. For instance, VAE-GAN can

generate synthetic images of products or components, effectively reducing the need for large

amounts of real-world data.

Moreover, VAE-GAN can also augment existing datasets to enhance the accuracy of

machine learning models by producing synthetic data that closely mimics real-world data.

This process increases the diversity of the training data and minimizes the risk of overfitting,

leading to more efficient manufacturing processes and improved predictions.

VAE-GAN is computationally expensive and needs a large quantity of data to provide

excellent results. It may also demand extra preprocessing processes to guarantee that the

produced data is consistent with actual data.

Conditional GAN

Conditional Generative Adversarial Networks (CGANs) can be a useful tool in discrete

manufacturing, allowing for the generation of synthetic data that is conditioned on specific

information. CGANs consist of two neural networks - a generator and a discriminator - with

the generator taking in both a noise vector and a conditional vector[70]. This conditional

vector can represent any input information, such as an image label or a sequence of text,

allowing the generator to produce synthetic data that is specific to that information.

The discriminator in a CGAN is also modified to take in the same conditional vector as

the generator. This enables the discriminator to become better at distinguishing between

real and synthetic data in a way that is specific to the conditioning information.
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CGANs have several benefits in discrete manufacturing, such as generating high-quality

synthetic data that can be used for training machine learning models or testing different

scenarios. It is feasible to decrease the quantity of real-world data required for testing and

training by producing synthetic data conditioned on specified facts. In addition, CGANs

may be used to enrich current datasets, resulting in more accurate machine learning models

and more efficient industrial processes.

Recurrent Neural Network

In assembly lines or discrete manufacturing, RNNs can be utilized to generate synthetic

data by modeling the underlying probability distribution of sequential data. By training an

RNN on a large dataset of real-world data, the model can learn to generate new synthetic

data samples that resemble the original data[71]. This approach can be used in various

applications, such as predicting machine failures or optimizing production schedules.

Generative RNNs are a particular sort of RNN that may also be used to produce synthetic

data (GRNN). “Teacher forcing” is used by GRNNs to educate the network to anticipate the

next value in a sequence based on the previous values. After the GRNN has been trained,

it may be used to produce new data sequences by predicting the next value and utilizing it

as input for the subsequent prediction.

Furthermore, RNNs can be combined with other approaches such as variational autoen-

coders (VAEs) to generate synthetic data that displays complex temporal relationships and

patterns. This involves encoding the input data into a latent space using an RNN and then

decoding this space using a decoder network to generate new synthetic data. This method

can be used to generate synthetic data for training machine learning models or testing

different scenarios, leading to more accurate predictions and more efficient manufacturing

processes.
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StyleGAN

StyleGAN can be applied to assembly lines to generate synthetic images of products or

components, which can be used for quality control testing or machine learning training. By

generating synthetic data, it is possible to reduce the amount of real-world data needed for

testing and training purposes. StyleGAN’s ability to control the appearance of generated

images by separating the image synthesis process into two stages and introducing progressive

growing, can enable the generation of high-quality, diverse, and lifelike images of products

or components, which can aid in visual inspection and analysis.

In addition, StyleGAN can be used to augment existing datasets by generating synthetic

data that closely resembles real-world data. This can increase the diversity of the training

data and improve the accuracy of machine learning models for quality control and predictive

maintenance on assembly lines. Overall, StyleGAN’s capabilities in synthesizing high-quality,

diverse, and lifelike images can be a valuable tool in assembly lines for quality control and

machine learning training.

Deep Belief Network

DBNs, or Deep Belief Networks, can also be applied to discrete manufacturing by using

them to generate synthetic data for various applications such as predicting machine failures

and optimizing production lines. By learning the underlying distribution of sensor data

collected from machines in a production line, DBNs can create synthetic data that can

be used to test different scenarios and optimize production processes. This can save time

and reduce costs by allowing manufacturers to identify potential issues before they occur

and improve the efficiency of their operations. Additionally, DBNs can be used to generate

synthetic data for training machine learning models used in predictive maintenance, anomaly

detection, and quality control in discrete manufacturing.
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Transormer-Based Time-Series GANs

TTSGAN, or Transformer-Based Time-series Generative Adversarial Network, is a deep

learning model used for generating synthetic time-series data. It is a combination of Trans-

former and GAN models, which are both powerful in generating time-series data and cap-

turing temporal dependencies[72].

The Transformer model is used as the generator, which takes in a random noise vector

and outputs a synthetic time-series. The GAN model is used as the discriminator, which

distinguishes between the synthetic and real time-series data.

TTSGAN can be applied to manufacturing or assembly lines to generate synthetic time-

series data, which can be useful for predicting future trends and identifying potential issues.

One potential use of TTSGAN in manufacturing is to train it on historical data from an

assembly line so that it can create synthetic time-series data that forecasts the assembly

line’s future performance. By doing so, manufacturers can anticipate potential bottlenecks

or problems in the assembly line and take preventative measures to mitigate them, thereby

avoiding expensive delays or defects in the manufactured products. Additionally, TTSGAN

can be used to generate synthetic data for testing and validating control systems or algo-

rithms used in the assembly line, helping to ensure their effectiveness and reliability.

Convolutional Auto encoders

The Convolutional Autoencoder (CAE) is an unsupervised neural network that can en-

code data effectively and is well-suitable for picture data. Its design is comprised of an

encoder and a decoder, each containing convolutional and deconvolutional layers to extract

spatial characteristics from pictures and reconstruct them[73].

In manufacturing or assembly lines, CAE can be used to generate synthetic images of

products or components for quality control and inspection purposes. By training the neural

network on a set of images of high-quality products or components, the CAE can learn the
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spatial features that distinguish them from defective ones. Then, it can generate new images

with similar spatial characteristics, which can be used to augment the original dataset and

improve the performance of machine learning models used for product inspection. This can

help manufacturers reduce the number of defective products and improve overall quality

control processes.

PixelCNN

PixelCNN is a generative model that may be used to generate artificial data. This neural

network design is a per-pixel-operating convolutional neural network (CNN)[74]. PixelCNN

creates a new picture of the same size as the output by taking an image as input and

conditioning each pixel on previously created pixels. PixelCNN has potential applications

in manufacturing and assembly lines, where it can be used to generate synthetic images of

products, components, or equipment. This can be useful for testing and training machine

vision systems or for simulating different scenarios in the production process.

For example, a manufacturer can train a PixelCNN model on images of their products and

use it to generate synthetic images of the same products with varying defects or anomalies.

These synthetic images can be used to train machine vision systems to identify and classify

defects in real-time during production.

Furthermore, PixelCNN can also be used for predictive maintenance by generating syn-

thetic images of machinery or equipment under different conditions. This can help manu-

facturers anticipate potential equipment failures and perform maintenance before any major

issues occur, reducing downtime and improving overall efficiency.

Generative Flow Networks

Generative Flow Networks (GFNs) are a type of deep learning architecture used for

synthetic data generation. GFNs are based on the idea of normalizing flow models, which
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aim to transform a simple probability distribution into a more complex one[75]. The goal of

a GFN is to learn the true data distribution by transforming a known, simple distribution

into the target distribution. This is done by composing a series of invertible transformations,

where each transformation maps one probability distribution to another.

GFNs can be applied to assembly lines for generating synthetic data that can be used

for various purposes such as simulating the behavior of machines, optimizing production

processes, and predicting equipment failures. For instance, GFNs may be trained using

historical data from an assembly line in order to discover the underlying distribution of the

data and produce synthetic data that mimics the original data. This synthetic data may then

be utilized to simulate alternative scenarios and assess the influence of production process

modifications on the performance of the assembly line. In addition, GFNs may be used

to anticipate equipment failures by creating synthetic data that depicts multiple equipment

states, such as normal functioning, partial failure, and total failure. This synthetic data can

then be used to train machine learning models for predicting equipment failures and taking

preventive maintenance actions. Overall, GFNs provide a powerful framework for generating

synthetic data that can be used to improve the efficiency and reliability of assembly lines.

Hidden Markov Model

HMMs, or Hidden Markov Models, are a probabilistic model commonly used to model

time series data in discrete manufacturing. They can infer the unobservable state of a

system from observed data, making them useful for identifying patterns and predicting future

behavior of the system.

One key application of HMMs in manufacturing is the generation of synthetic data with

similar statistical properties to the original data. This involves training the HMM on the

original data and then using the model to produce new data sequences with similar statistical

features.
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HMMs are particularly useful for generating sequential data in discrete manufacturing,

as they are capable of capturing complex connections between the various parts of a data

sequence. However, training the model can be computationally demanding and the output

sequences may not necessarily be reflective of the original data. Despite the emergence of

more advanced deep learning-based algorithms, HMMs remain a valuable tool for applica-

tions that require the production of sequential data.

Autoregressive Integrated Moving Average

ARIMA, which stands for Autoregressive Integrated Moving Average, is a widely used

statistical model for time series analysis and prediction in assembly lines[76]. ARIMA mod-

els are composed of three components, including autoregression, integration, and moving

average, and are used to describe stationary time series data in the manufacturing domain.

Autoregression is the relationship between an observation and past observations, while mov-

ing average is the relationship between an observation and a residual error from a moving

average model. Integration refers to the level of differencing used to transform the time

series into a stationary form.

ARIMA is a powerful tool for generating synthetic data that follows the same statistical

properties as the original data in assembly lines. In order to produce artificial data using

ARIMA, the initial step involves fitting the model to the original time series data to obtain

the model parameters. These parameters can then be employed to generate fresh data points

that match the original data, such as the number of products manufactured per hour or the

time required for a particular process. The newly generated data can be appended to the

initial dataset or used to develop extra datasets for the purpose of testing and validation.

ARIMA has applications in many domains, including predicting machine breakdowns,

optimizing assembly line processes, and forecasting manufacturing output. Importantly,

ARIMA models are only applicable to stationary time series data, meaning that the statistical
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features of the data do not vary over time. Before fitting an ARIMA model to non-stationary

data, it may be required to perform extra preprocessing procedures.

Long Short-Term Memory

Long Short-Term Memory (LSTM) is an RNN architecture that is well-suited for creating

synthetic data of manufacturing lines. LSTM networks excel in modeling time series data,

making them a popular option for simulating the behavior of real-world production systems

with synthetic data[77].

LSTM networks may create synthetic data that captures the temporal connections be-

tween different manufacturing process components in the context of assembly lines. For

example, an LSTM network may be trained on historical data from an assembly line in or-

der to comprehend the links between the many equipment, tools, and components involved in

production. The trained network may then create synthetic data that simulates the behavior

of the assembly line, including the timing of the various production processes.

The capacity of LSTM networks to capture long-term dependencies in the data is a key

benefit for synthetic data creation[77]. This allows them to simulate complicated assembly

line behavior patterns. In addition, LSTM networks can be trained on big datasets, enabling

them to discover a wide variety of patterns and behaviors from previous data.

In general, LSTM networks are a useful tool for synthesizing data that may be used to

test and assess assembly line performance and enhance production processes.

Convolutional Neural Networks

Synthetic data generation of assembly lines can be achieved using Convolutional Neural

Networks (CNNs)[78]. These deep neural networks are primarily used for image recognition

and processing tasks. In this context, CNNs learn the patterns and features of existing

images of assembly lines to generate new ones.
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The first step to using CNNs for synthetic data generation of assembly lines is to collect

a dataset of labeled images. These images should be labeled based on their characteristics,

such as the presence of components or defects.

Supervised learning techniques are then used to train the CNN model on the dataset.

The objective is to teach the model to accurately classify the images based on their labels.

During the training process, the CNN model identifies important patterns and features for

classifying the images.

After the model is trained, it can generate new synthetic images of assembly lines. Ran-

dom noise or other images are inputted into the model, and the learned patterns and features

are used to generate new images.

Using CNNs for synthetic data generation offers the advantage of producing highly re-

alistic images that closely resemble those in the dataset. However, controlling the specific

characteristics of the generated images can be challenging, as they are determined by the

learned patterns and features in the dataset.

Overall, CNNs are a powerful tool for synthetic data generation of assembly lines, but this

approach requires a large dataset of labeled images and significant computational resources

for training and generation.

Recurrent Variational Autoencoder

The Recurrent Variational Autoencoder (RVAE) is a neural network that can generate

synthetic data, including assembly line data. The RVAE is an extension of the standard

Variational Autoencoder (VAE), which adds recurrent layers to the encoder and decoder

networks[79].

The RVAE is particularly useful for generating sequential data where each observation

is dependent on previous time steps. For instance, in the case of assembly line data, ob-

servations at a particular time step depend on observations from previous time steps. The
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RVAE can model this dependency and generate new sequences of data that are similar to

the original data.

To generate new sequences, the RVAE’s encoder network takes the input sequence and

produces a latent representation for each time step. The decoder network then takes the

latent representation and generates a new sequence of data that is similar to the original

sequence. The latent representation serves as a compressed version of the input sequence

and can generate new sequences.

Training an RVAE involves maximizing the lower bound on the log-likelihood of the data.

This includes minimizing the reconstruction loss, which measures the difference between the

original and generated sequences, and the KL-divergence loss, which measures the difference

between the distribution of the latent representation and a prior distribution.

The RVAE is a potent technique for generating synthetic assembly line data that captures

the sequential dependencies between time steps. Nonetheless, generating synthetic data using

RVAE demands a considerable volume of training data and can incur high computational

costs.

Conditional Variational Autoencoder

The Conditional Variational Autoencoder (CVAE) is a generative neural network that

facilitates the synthesis of assembly line data. By learning the distribution of input data,

CVAE can generate new samples that adhere to the same patterns and features as the

original data[80]. To accomplish this, CVAE utilizes an encoder network that transforms

input data into a compressed latent representation, and a decoder network that decodes

the latent representation back into the original data space. Additionally, CVAE uses an

extra input variable to condition the latent representation, enabling the generation of output

data that is specific to the given condition. This approach allows CVAE to model complex

dependencies and correlations between different features of the data, resulting in high-quality
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synthetic data. However, effective utilization of CVAE requires a significant amount of

training data and careful tuning of hyperparameters such as the number of layers and latent

space dimensionality.

The generation of synthetic data is an essential aspect of machine learning, and the

appropriate method for generating synthetic data depends on the type of data and its unique

features and properties.

For example, Random Sampling is suitable for tabular data, while SMOTE and ADASYN

are better for imbalanced tabular data. GANs, VAEs, and Autoencoders are better suited for

image and text data. RNNs and LSTMs are better suited for time-series data, while HMMs

and ARIMA are suitable for sequential data. StyleGAN and GMMs are more appropriate

for generating realistic images, whereas GANs and CGANs are good for generating images

with specific attributes.

Similarly, PointNetGAN and PointFlowGAN are specifically designed to generate syn-

thetic point clouds. Furthermore, RVAE and CVAE are better suited for generating assembly

line data.

Therefore, the choice of a specific method depends on the nature of the data and the

specific problem to be solved.

4.1.4 Evaluation

After the generation of synthetic data for assembly lines, it is imperative to evaluate its

quality and usefulness before utilizing it for analysis or model development. The assessment

of synthetic data is critical to ensure that it can effectively replace the original data. The

evaluation process primarily involves examining two aspects: fidelity and utility.

1. Fidelity: Fidelity is the degree to which synthetic data reflects the actual data properly.

Synthetic data is often used to enhance training data or to produce extra data that is
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comparable to the original data in machine learning. A model built on synthetic data that

does not precisely replicate the actual data may perform poorly on the original data.

To assess the quality of synthetic data, various techniques can be utilized. By employing

data visualization methods like histograms and scatter plots, it is possible to compare the

synthetic data with the genuine data visually. If the synthetic data’s visual traits closely

resemble those of the original data, there is a high likelihood that the synthetic data’s

distribution corresponds to that of the genuine data[70].

Another method is to compare the statistical properties of the synthetic data with those

of the actual data using statistical tests. The Kolmogorov-Smirnov and Anderson-Darling

tests are examples of such tests used to compare the distributions of synthetic and actual

data[81]. The correspondence between the distribution of synthetic data and genuine data

reflects the synthetic data’s dependability.

A third technique involves training a model using the synthetic data before evaluating it

on the original data. This approach is frequently employed to assess the efficacy of synthetic

data for specific applications such as speech recognition or image classification. Domain-

specific metrics are used to determine the synthetic data’s fidelity in such cases.

In addition to these methodologies, the F1 score and ROC-AUC score may also be used

to assess the accuracy of synthetic data. The F1 score is a statistic for evaluating the

effectiveness of a binary classification model that combines accuracy and recall. It ranges

between 0 and 1, with higher numbers signifying superior performance. The ROC-AUC

score ranges from 0.5 to 1, with larger values indicating greater performance. It quantifies

the capacity of a binary classification model to discriminate between positive and negative

classes. If the F1 score and ROC-AUC score of a model trained on synthetic data are

equivalent to those of a model trained on the original data, then indicates that the synthetic

data is trustworthy.
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Ensuring the reliability of synthetic data is a critical stage in ensuring the effectiveness

of a model trained on it. Multiple techniques, including visual examination, statistical tests,

and domain-specific metrics, can be employed to assess the authenticity of synthetic data

and verify its accurate replication of the actual data.

2. Utility: The usefulness of synthetic data in a specific application is known as utility.

Assessing the utility of synthetic data is essential to guarantee its suitability for the intended

application. For example, if synthetic data is used to train a machine learning model, its

utility must be evaluated based on the model’s performance on real-world data[82]. Several

methods can be employed to assess the utility of synthetic data, such as:

Similarity metrics: Various similarity metrics can be employed to compare the synthetic

and original data distributions. Mean squared error or correlation coefficient can be used to

compare these distributions.

Classification accuracy: A classifier can be trained on the original data and tested on

the synthetic data. If the classification accuracy is similar to that of the original data, it

indicates good utility of the synthetic data.

Regression error: Similarly, a regression model can be trained on the original data and

tested on the synthetic data. If the regression error is similar to that of the original data, it

indicates good utility of the synthetic data.

Clustering: One can use clustering techniques to ascertain whether the synthetic data

can be grouped in similar ways to the original data.

Visual inspection: Finally, visual inspection of the synthetic data can be conducted to

determine whether it retains the crucial features and characteristics of the original data.
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4.1.5 Access and address potential biases

If any aspect of evaluation, such as fidelity, or utility fails then it is important to assess

and address potential biases. Biases can arise from various sources, such as the synthetic

data generation process or the evaluation metrics used. Here are some ways to avoid biases.

1. Adjust the synthetic data generation algorithm and regenerate data: This approach

requires adjusting the algorithm responsible for generating synthetic data to improve align-

ment with the intended outcome and then generating the data again. For instance, if the

synthetic data’s faithfulness is inadequate, the generation algorithm can be fine-tuned to cre-

ate data that more closely mirrors the original data. Similarly, if the synthetic data’s utility

is subpar, the generation algorithm can be enhanced to incorporate more crucial features or

variables that are essential for the model’s precision.

2. Modify training data and regenerate data: In this approach, one modifies the training

data utilized to develop the algorithm for generating synthetic data and generates the data

again. This strategy can assist in mitigating any biases that were present in the original

training data and were consequently inherited by the synthetic data. For instance, if the

synthetic data exhibits bias towards a specific group or population, one can adjust the

training data by incorporating a more comprehensive range of examples to mitigate the

bias.

3. Apply post-processing to synthetic data: This approach necessitates adjusting the

synthetic data after its generation to correct any detected shortcomings. Post-processing

methods can be utilized to enhance the quality, usefulness, and confidentiality of the syn-

thetic data. For instance, if the synthetic data’s fidelity is inadequate, data smoothing or

imputation techniques can be applied via post-processing to improve its quality. Correspond-

ingly, if safeguarding the synthetic data’s privacy is a priority, post-processing techniques

such as data masking or anonymization can be employed to safeguard sensitive information.
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4.1.6 Machine Learning

After accessing and addressing biases in synthetic data generation, the regenerated data

needs to be reevaluated to ensure that the biases have been successfully eliminated. This

process may involve repeating the synthetic data generation and evaluation steps until the

data passes all necessary tests.

Once the synthetic data has successfully passed evaluation, it can be combined with real

data to train machine learning models. The integration of synthetic and authentic data can

furnish a more extensive and varied training dataset, resulting in more precise and resilient

models. Employing synthetic data can also diminish the dependency on costly and time-

consuming manual data collection methods.

Overall, the process of generating and evaluating synthetic data for machine learning

applications requires careful consideration and attention to detail. By following a robust

framework and addressing potential biases, synthetic data can be a valuable resource for

training machine learning models and gaining useful insights from data.

4.2 Synthetic Data Generation for Different Types of

Data on Assembly Lines and Opportunities

The framework mentioned above for synthetic data generation can be used for any kind of

data on the assembly line. This section will delve into various data types that can be gathered

on assembly stations, along with the corresponding techniques for generating synthetic data

for each type as seen in the Table 4.1. Furthermore, we will assess the potential advantages

that can be attained by analyzing and modeling each data type.
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Type of
data

Example in the
assembly station

Synthetic data gen-
eration method

Opportunities

Discrete

Binary Presence of the
operator, Station is
active or not

Random Sampling,
SMOTE, ADASYN,
ROS, SLSMOTE,
BLSMOTE, GMMs

Determine the uptimes
and downtimes of the
assembly line, Quantify
process reliability

Point
cloud

Human positions,
Robotic arm
equipped with
machine vision
camera

PointNetGAN,
DCGANs, VAE-GAN,
VAEs, Autoencoders

Object detection,
human-robot
collaboration- obstacle
detection, To classify the
phase of assembly

Continuous

Biomedical EEG data,
Wristband
data(EMPATICA-
E4 data)

CGAN, DCGAN,
VAE, GMM, RNNs

Assessment of
correlation with other
data types

Image Inventory images,
Operator’s image,
Final product image

GANs, VAEs,
StyleGAN, DBNs,
CAE, PixelCNN,
Generative Flow
Networks

Identify the components
within the inventory,
Verify the identity of
operator, Quality
Control

Time-
series

Assembly time,
Production count

TTSGANs, Hidden
Markov Model,
ARIMA, LSTM,
RNN, VAE

Acquisition of the cycle
time, Track production
efficiency

3D Image Final product
images

GANs, VAEs, CNNs Quantify the number of
assembled parts by the
operator, Evaluate the
quality deficiencies

Video Operators
interactions

GANs, RVAE, CVAE Verify the operator’s
identity, Determine the
operator’s count in the
assembly process,
Emotional state analysis
of the operator,
Determine the current
assembled part

Table 4.1: Synthetic data generation techniques, examples, and opportunities for various
data types on assembly line
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4.2.1 Binary Data

One of the frequently occurring data types on assembly lines is binary data. It is charac-

terized by being discrete in nature, with only two possible values, usually symbolized as 0 or

1. Examples of binary data collected on assembly lines include whether a certain machine is

operating or not, and detecting the presence of the operator.

To generate synthetic binary data, various techniques can be used such as SMOTE,

Random Sampling, ADASYN, GMM, ROSE, SLSMOTE, BLSMOTE. These techniques can

help to generate synthetic binary data that accurately reflects the patterns and distributions

of the real binary data.

Selecting an appropriate data generation method for binary data relies on the distinct

attributes of the data and the analysis objectives. Here are some general recommendations:

1. SMOTE, ADASYN, and random sampling are suitable for imbalanced datasets where

the minority class is underrepresented. These methods can create synthetic examples of the

minority class to balance the dataset and prevent the model from being biased towards the

majority class.

2. GMM (Gaussian Mixture Model) can be used to generate synthetic data that follows a

specific distribution. This can be useful if the binary data is generated by a complex process

and the distribution is not known prior.

3. ROSE (Random Over Sampling Examples) and SLSMOTE (Synthetic Least-Squares-

based SMOTE) can be used to generate synthetic data that is similar to the existing data.

These methods can be useful if the goal is to augment the dataset and increase the diversity

of the examples without changing the overall characteristics of the data.

4. BLSMOTE (Borderline-SMOTE) can be used if the data has a clear separation be-

tween the two classes. This method generates synthetic examples along the boundary be-

tween the two classes, which can improve the model’s performance.
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Typically, it is advisable to experiment with various data generation methods and assess

their effectiveness on a validation set before settling on the optimal approach for a particular

problem.

The analysis of binary data can offer valuable insights into machine performance on

assembly lines. By identifying patterns in machine behavior, system faults can be detected

promptly, and maintenance schedules can be optimized to ensure the efficient operation of

the assembly line. Additionally, analyzing binary data can also help to identify areas for

improvement in the assembly line process, such as reducing machine downtime or improving

the efficiency of quality control checks.

4.2.2 Point-Cloud Data

Point-cloud data is a type of data that can be collected on assembly lines, representing

the position of objects or humans using a series of distinct points. Although point-cloud data

is often considered as discrete data, each point may have associated continuous attributes,

such as position coordinates or color values. Techniques such as PointNetGAN, DCGANs,

VAE-GAN, PointFlowGAN, VAEs, and autoencoders can be used to generate synthetic

point-cloud data.

The analysis of point-cloud data permits us to identify the real-time positions of humans

and robots, recognize obstacles in the environment, and promote secure and efficient col-

laboration between them. Furthermore, point-cloud data can facilitate the classification of

assembly phases and the identification of probable process bottlenecks.

For instance, in a manufacturing environment, point-cloud data can be utilized to track

the movements of workers and machinery. The data can be analyzed to recognize the most

commonly used pathways and streamline the utilization of resources and materials. Addi-

tionally, point-cloud data can be utilized to identify safety hazards and prevent accidents

from occurring.
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In terms of synthetic data generation techniques, PointNetGAN can be used to generate

point-cloud data for object detection tasks. DCGANs and VAE-GAN can be used to generate

realistic point-cloud data for training machine learning models. PointFlowGAN can be used

to generate dynamic point-cloud data for simulating human-robot collaboration scenarios.

Overall, point-cloud data provides a valuable source of information for optimizing assembly

line processes and enabling safe and efficient collaboration between humans and robots.

4.2.3 Biomedical Data

Biomedical data, such as EEG data and wristband data (e.g., EMPATICA-E4 data),

can be collected on assembly lines to monitor the health and well-being of workers. This is

considered continuous data. To generate synthetic biomedical data, various techniques can

be used, including CGAN, DCGAN, VAE, GMM, and RNNs.

CGAN (conditional generative adversarial network) can be used to generate realistic and

diverse biomedical data by conditioning the generator on certain features or labels, such as

age or gender[83]. DCGAN (deep convolutional generative adversarial network) is a variant

of GANs that uses convolutional layers to generate more complex biomedical data, such as

EEG signals.

VAE (variational autoencoder) is a popular technique for generating synthetic biomedical

data that captures the underlying structure of the data. GMM (Gaussian mixture model)

can be used to model complex distributions in biomedical data, such as the distribution of

heart rate variability in wristband data.

RNNs (recurrent neural networks) can be used to generate time-series biomedical data,

such as EEG signals, by learning the temporal dependencies between the data points[83].

The opportunities of synthetic biomedical data include the assessment of correlation

with other data types, such as environmental sensors and assembly line productivity data,
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to identify potential relationships between the health of workers and the efficiency of the

assembly line.

4.2.4 Image Data

Image data is a valuable type of data that can be collected on assembly lines, including

images of inventory, operators, and final products. This data is continuous, with each image

consisting of pixels with continuous values representing color and intensity. Synthetic image

data can be generated using various techniques such as GANs, VAEs, StyleGAN, DBNs,

CAE, PixelCNN, and Generative Flow Networks.

Analyzing image data provides numerous opportunities to improve the manufacturing

process. For example, image recognition techniques can be used to identify defects and

anomalies in the final product images, allowing for prompt correction and optimization of the

process. Additionally, image data can be used to track inventory and operators’ movement,

improving logistics and efficiency. Machine learning models can be trained using GANs,

VAEs, and StyleGAN to generate realistic images of inventory and products.

DBNs and CAE can be used to learn feature representations of images that can be used

for tasks such as object detection and classification. Moreover, PixelCNN and Generative

Flow Networks are suitable for generating high-resolution images with fine details.

It is essential to consider the specific task requirements and the available data’s charac-

teristics when choosing a data generation technique. The appropriate technique can improve

the accuracy and reliability of machine learning models and ultimately enhance the manu-

facturing process’s quality and efficiency.
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4.2.5 Time-series Data

In assembly lines, time-series data, such as production count and assembly time, can

also be captured. This data type comprises of consecutive data points captured at regular

intervals, such as seconds, minutes, or hours. Several algorithms can be used to produce

synthetic time-series data, including TTGANs, Hidden Markov Model, ARIMA, LSTM,

GRU, and RNN.

We can calculate the length of the assembly cycle time, monitor production efficiency,

and improve the manufacturing process by analyzing time-series data. Through time-series

analysis, we may discover problem areas in production, and by resolving these issues, we can

decrease downtime and boost productivity and efficiency. Time-series data can also assist

in estimating what future production patterns may look like, resulting in more educated

decisions.

TTGANs and VAEs can be used to generate synthetic time-series data for training ma-

chine learning models. Hidden Markov Model and ARIMA are statistical models that can

be used for time-series forecasting. LSTM, GRU, and RNN are deep learning models that

can be used for time-series prediction and classification.

It is vital to keep in mind that the choice of data production strategy may rely on the

unique needs of the current activity and the features of the available data. For instance, if

the time-series data shows extended dependencies, LSTM and GRU models may be more

appropriate than ARIMA.

4.2.6 3D Image Data

3D image data is a type of data that can be used to evaluate the final product images on

the assembly line. This data can be used to quantify the number of assembled parts by the

107



operator and evaluate any quality deficiencies. Synthetic 3D image data can be generated

using techniques such as GANs, VAEs, and CNNs.

By analyzing 3D image data, we can discover and quantify the number of assembled

pieces, identify errors or anomalies in the final product, and improve quality control op-

erations. Using 3D image recognition algorithms, we can properly count and identify the

number of components in a final product in order to assure appropriate assembly.

GANs, VAEs, and CNNs can generate synthetic 3D picture data for training machine

learning models. With these approaches, we may also enhance the quality and resolution

of 3D photographs, resulting in a more precise and comprehensive examinations of the final

product.

It is worth noting that 3D image data and point-cloud data are distinct. 3D image data

represents the complete surface geometry of an object, while point-cloud data is a group

of distinct points in space. 3D image data can provide more comprehensive and detailed

information about the final product, but it may require more processing power and storage

capacity than point-cloud data.

4.2.7 Video Data

Video data is a valuable resource for assembly lines as it provides a sequence of images

captured over time, allowing us to evaluate the efficiency and quality of the manufacturing

process. Synthetic video data can be generated using techniques such as GANs, RVAE,

and CVAE. Analyzing video data can help us verify the operator’s identity, count their

participation in the assembly process, and assess their performance.

For example, facial recognition technology can verify the correct operator performing a

task, while emotion recognition techniques can detect fatigue or distraction affecting their

performance. Video data can also help identify any defects or quality issues in the product

by tracking the components’ movement throughout the assembly line.
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It is important to consider the specific requirements of the task and the available data

when selecting a data generation technique. For instance, synthetic video data generated

through GANs, RVAE, and CVAE can train machine learning models for object detection

and action recognition tasks.
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Chapter 5

Case study

Quality control is a crucial aspect of the parts manufacturing industry, but imbalanced

datasets can pose challenges for collecting and analyzing data. Synthetic data generation has

emerged as a powerful tool for balancing imbalanced datasets and training machine learning

models for quality control. In this case study, we demonstrate a synthetic data generation

framework for balancing an imbalanced dataset in the parts manufacturing industry.

5.1 Data Collection

We obtained the Parts Manufacturing Industry Dataset from Kaggle for this case study.

The dataset contains information on 500 parts produced by each of the 20 operators in one

period of time. The features include length, width, height, and operator ID as shown in

Figure 5.1. We used this dataset to demonstrate the effectiveness of our synthetic data

generation framework for balancing imbalanced datasets
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Figure 5.1: Data and its Features

5.2 Pre-processing

To prepare the data for synthetic data generation, we first removed the Item_No feature

as it was not relevant to the classification task. We then classified the parts as perfect or

defective based on the presence of outliers in their dimensions as shown in Figure 5.2. In

this study, we employed outlier detection to pinpoint faulty parts. To be more specific, we

computed the standard deviation of the length, width, and height of each operator’s parts

and labeled any part with dimensions that deviated more than two standard deviations from

the mean as defective. This approach allowed us to capture the presence of potential defects

or anomalies in the part’s dimensions.

We labeled the majority class as perfect and the minority class as defective. That means

data is imbalanced as shown in Figure 5.3. So, We used synthetic data to balance the

imbalanced dataset. This approach ensured that the synthetic data generation framework
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Figure 5.2: Outlier detection

focused on generating new samples of the minority class, i.e., defective parts, while preserving

the distribution of the original data.

Figure 5.3: Data distribution

5.3 Synthetic data generation

As the Parts Manufacturing Industry Dataset is a binary dataset, we focused on gener-

ating synthetic data for the minority class (i.e., defective parts) to balance the dataset. We

applied SMOTE, ADASYN, ROS, BLSMOTE, SLSMOTE, and GMM to generate synthetic

data and balance the class distribution.
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SMOTE and ADASYN both oversampled the minority class by creating synthetic samples

through interpolation, with ADASYN generating more synthetic samples for harder-to-learn

examples. ROSE applied various resampling techniques to the minority class to generate

synthetic samples.

BLSMOTE and SLSMOTE focused on generating synthetic samples for the borderline

instances between the minority and majority classes. BLSMOTE only considered borderline

instances closer to the majority class, while SLSMOTE generated synthetic samples for

borderline instances closer to the minority class.

Finally, GMM generated synthetic data by fitting a mixture of Gaussian distributions to

the original data and sampling from these distributions.

By applying these techniques, we were able to generate synthetic data that balanced the

dataset.

5.4 Evaluation

5.4.1 Fidelity

Real Data Synthetic data
Accuracy F-1 Score ROC-AUC score Accuracy F-1 score ROC-AUC score

SMOTE 0.97 0.98 0.75 0.91 0.95 0.72
ADASYN 0.97 0.98 0.75 0.91 0.95 0.72
ROS 0.97 0.98 0.75 0.91 0.95 0.72
BLSMOTE 0.97 0.98 0.75 0.93 0.97 0.81
SLSMOTE 0.97 0.98 0.75 0.91 0.95 0.72
GMM 0.97 0.98 0.75 0.95 0.95 0.96

Table 5.1: Fidelity comparison

To evaluate the fidelity of the various synthetic data generation techniques, we used

accuracy, F-1 score, and ROC-AUC score as performance metrics as shown in the Figure 5.1.

To be precise, we trained a logistic regression model on real data and evaluated it using real

113



data. Additionally, we trained the model using hybrid data and evaluated it using hybrid

data, which is a mix of actual and synthetic data.

We found that GMM passed the fidelity test and outperformed the other synthetic data

generation techniques in terms of accuracy, F-1 score, and ROC-AUC score. This indicates

that the synthetic data generated by GMM was of high quality and closely resembled the

real data.

5.4.2 Utility

Once the fidelity test was passed, we proceeded to assess the usefulness of the GMM-

generated synthetic data in enhancing the precision of our models. We achieved this by

training a random forest model with stratified 10-fold cross-validation on the real dataset

and testing it on real data. We also trained the model using hybrid data and tested it on

hybrid data as well as real data as shown in the Figure 5.2.

Train and test on
real data

Train on hybrid
and test on real
data

Train and test on
hybrid data

Accuracy 0.98 0.98 0.94
Precision 0.97 0.98 0.92
Recall 0.50 0.97 0.96
F1-score 0.67 0.97 0.94
ROC-AUC score 0.75 0.95 0.94

Table 5.2: Utility Comparison

Our results showed that the random forest model trained and tested on the real dataset

achieved high accuracy and precision but recall is still lower than the other models, including

that the model is missing some of the actual positive cases.
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The second model trained on hybrid data and tested on real data shows high accuracy,

precision, recall, F1-score, and ROC AUC score. This indicates that the model was able to

generalize well to real data and correctly identified instances of the minority class.

The third model trained on hybrid data and tested on hybrid data also shows a good

performance with high accuracy, precision, recall, F1-score, and ROC AUC score. This

indicates that the model was able to generalize well to the balanced dataset and correctly

identify instances of the minority class.

Overall, the second and third models seem to perform well on real and hybrid data,

respectively. This suggests that the synthetic data generated using GMM was effective in

improving the accuracy of our models for detecting defective parts in the Parts Manufacturing

Industry Dataset. The high accuracy achieved by the model trained on synthetic data

and tested on hybrid data further demonstrates the usefulness of synthetic data generation

techniques in addressing imbalanced datasets in the manufacturing industry.
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Chapter 6

Future Scope and Conclusion

6.1 Future Scope

The synthetic data generation framework proposed in this research has the potential

to bring some exciting changes to the field of machine learning in manufacturing. Moving

forward, it would be beneficial to evaluate the framework’s effectiveness in more complex

manufacturing scenarios and explore the development of new synthetic data techniques for

other types of manufacturing data beyond discrete manufacturing. It is important to val-

idate the framework by collecting real data from manufacturing assembly lines to ensure

its accuracy and provide a benchmark for comparison with synthetic data generated by the

framework. Sharing synthetic datasets generated using this framework publicly can help

researchers, manufacturers, and academic professionals develop and test machine learning

models more efficiently. Lastly, we should investigate the potential of combining synthetic

and real data to improve the machine learning model’s performance in assembly line appli-

cations. Overall, these efforts could result in improved productivity and product quality in

the manufacturing industry.
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6.2 Conclusion

In our study, we investigated how synthetic data generation techniques can address chal-

lenges related to limited data availability, expensive data collection, and proprietary data in

AI applications for discrete manufacturing. To achieve this, we delved into existing research

and created a practical approach for generating synthetic data. Our framework involves an

evaluation process to guarantee that the synthetic data generated resembles the real data

and also its usefulness for machine learning models. We used a case study to demonstrate this

framework, and our results showed that the model trained on the hybrid data outperformed

the model trained on real data itself.

In addition, our study adds to the current understanding of synthetic data generation

in the manufacturing industry by offering a practical methodology for generating synthetic

data and identifying diverse data types that can be produced on assembly lines. We have

also outlined various techniques that can be utilized to generate synthetic data for each data

type and discussed the potential insights that can be gleaned from analyzing the data.

Overall, our research highlights the potential of synthetic data generation techniques

to improve data availability and generate accurate and reliable results in AI applications

for discrete manufacturing. The proposed framework can be used to generate high-quality

synthetic data for various data types on assembly lines, enabling researchers to develop more

precise machine learning models without incurring significant costs.
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