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ABSTRACT

This thesis discusses the development of A.'T.I.C.U.S.S., or Autonomous Turtlebot for
Indoor Cartography, Utilizing the SCOUT System. The SCOUT System is a novel basis
for indoor localization, consisting of RFID tags at the junction of carpet tiles, creating
an invisible grid on the floor. Autonomous Mapping methods are developed for the Robot
Operating System (ROS) in order to test the effectiveness of an RFID-based navigation
system. While it is shown that RFID tags do act as landmarks, the boon to localization is
slight, if at all.
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CHAPTER 1

INTRODUCTION

This thesis focuses on the development of the Autonomous Turtlebot for Indoor Cartography,
Utilizing the SCOUT System, or A.T.I.C.U.S.S. This mobile platform requires Genetic Pro-
gramming to learn how to use the information given by its environment as accurately as
possible in order to localize using RFID tags. The following section introduces the topics

which together allow A.T.I.C.U.S.S. to map an indoor environment autonomously.

1.1 MOTIVATION

The Global Positioning System (GPS) has become the standard in outdoor navigation and
localization. However, GPS does not work in many buildings due to either the number of
floors or the materials the building is constructed from interfering with the radio signals from
orbit. Many buildings would benefit from a navigation system as easy to use and accurate as
GPS. An indoor navigation system could provide security by tracking employees and guests,
by assisting visitors by providing information on where key locations or people are within
the building, or by providing assistance during the time of an emergency, helping people to
get out of the building quickly and emergency teams to find those still trapped inside. These
applications require the integration between a map and localizer device, most likely a smart
phone. Due to the proliferation of these devices, the multitude of sensors they contain, and
the ease of writing custom software, they are an obvious choice. Once the environment is
mapped, the map can be loaded onto the smart phone, which can act as a guide and as a

tracking beacon for the person carrying it.



However, localization of personnel requires a dedicated approach to indoor mapping and
navigation. Most of these direct approaches, however, run on expensive platforms running
software whose sole purpose is to accurately map the inside of buildings [3, 8, 20, 23, 24,
52, 54, 56, 58, 59, 71]. These systems are complicated, cost prohibitive, and not designed
for wide-spread use. One of the goals of this thesis is to map a building using open-source
hardware and software on a multi-purpose platform. By using open-source hardware and
software, cost is kept down and developers may easily add additional features to the robot
simply, allowing more versatile applications and greater proliferation.

Interface, a global leader in carpet manufacturing, already has an RFID based robot
that has been developed by SRI in order to accurately map indoor environments. However,
this robot is incredibly expensive and requires many man-hours in order to map a location.
The additional motivation for this thesis is to show that this can be done cheaply and
autonomously. The ultimate goal, then, is to build a system that can map as well as the SRI

robot, but at a fraction of the cost and require no human input or effort.

1.2 INTERFACE AND PROJECT GOALS

This thesis discusses the work done while working at Interface, an international manufacturer
of carpet tiles. Interface developed the SCOUT flooring system, which consists of Radio Fre-
quency Identifier (RFID) tags at the juncture of tiles. Originally intended for maintenance
monitoring by allowing an easy system to count the frequency of vacuumming, the SCOUT
tags can be useful for a variety of purposes, two of them being localization and mapping.
By acting as fixed landmarks and combined with Simultaneous Localization and Mapping
(SLAM), an RFID reader in conjunction with a laser range-finder can map each RFID to
a coordinate location based on the distance from walls and objects surrounding it. Once
mapped, these RFID tags then represent fixed points on a map, allowing them to act as
an alternative to GPS in indoor locations where GPS signals are weak. The existing map-

ping platform used by Interface consists of a remote control robot, custom developed by



SRI Robotics. It is costly and requires many man-hours to run the robot and subsequently
combine the generated maps into a readable format. Only after many mapping runs and
time removing inaccurate reads can an accurate map be made. Once done, however, a reader
pinging a mapped RFID tag causes an instant feedback of where the reader currently is
located according to the map.

Our primary goal for this thesis is to show that a new robot can be developed that
not only builds maps autonomously, but does so at a fraction of the cost of the SRI robot.
Both of these are requirements for a practical mapping robot. This means that it must be
a robotic mapping system that can be run by anyone, not just the developers. It must be
accessible, cheap, and robust; requiring little to no supervision. This will be a ”Mapper
in a Box.” Once the robot has completed mapping the environment, it can be used for
any variety of tasks, such as guiding visitors, delivering mail, or monitoring security, but
all of these will require the building to first be mapped and navigable. To achieve these
goals, several autonomous mapping methods are developed for the Robot Operating System
(ROS), including an evolved mapping behavior. These are run on a Turtlebot, an open-source
robotic platform developed by Willow Garage to be a cheap system to run ROS. Our robot
is dubbed A.T.I.C.U.S.S., or Autonomous Turtlebot for Indoor Cartography, Utilizing the
SCOUT System. It is also important that A.'T.I.C.U.S.S. must map accurately; as accurately
as the existing SRI Robot. Without accurate mapping, it does not serve its primary purpose.

Therefore our goals will be broken up in the following matter:

1. Add the capability to read RFID tags to the Turtlebot and dynamically associate them
with a fixed location. This means adding an RFID reader to the Turtlebot platform as

well as write software to integrate RFIDs into the current mapping software integrated

with ROS.

2. Add autonomous mapping capabilities to the current ROS methods. This includes

several methods, one which will be evolved.



3. Successfully autonomously map an environment using A.T.I.C.U.S.S.

4. Compare different autonomous mapping algorithms. For this project, we will write and
test Random, Greedy, and Evolved Behavior-Based Mapping methods. This is in order
to see if method has any impact on the accuracy of the mapping system. For this, we
hypothesize that the evolved method will perform the best over the other two. It will
be judged on speed of mapping, as battery life is an issue, but also on the quality and
size of the maps produced. All of these will be compared to the baseline of a manually

controlled mapping run.
5. Provide a map as accurate as given by the SRI robot, yet it is done autonomously.

6. Show that RFID tags can improve localization.

There are two main hypothesis for this work, focusing on Goal 1 and Goal 4. Here we
predict the learned RFID Localizer will perform better than not using RFIDs at all. For
Goal 4 we predict that an Evolved Approach will perform better than a Random or Greedy
Mapping Approach, however, possibly not better than a Manual Approach, which will mostly
serve as a baseline to compare the other two. This will also more accurately compare whether
or not the RFID Localizer improves the robot’s map-making abilities or not.

There are three key concepts necessary for A.T.I.C.U.S.S. to map an indoor environment:

e Simultaneous Localization and Mapping, which allows map building. This is not devel-

oped in this thesis, merely a requirement.

e Evolved programs to make decisions on when to use RFID tags for localization to aid

in developing more accurate maps.

e Evolved exploratory behaviors which analyze the current map using Hough Transforms

and allow the robot to autonomously map an environment.

These topics are elaborated in the following sections.



1.3 SIMULTANEOUS LOCALIZATION AND MAPPING OVERVIEW

Simultaneous Localization and Mapping (SLAM) is required by A.T.I.C.U.S.S. in order to
create a map of the environment. The previous Interface robot developed by SRI is exclusively
used for SLAM. Without using a SLAM method, the RFID tags in the SCOUT Flooring
system will not gain location information.

The best way to describe SLAM is maximizing information on location while at the
same time expanding the current map. The best algorithms focus both on minimizing the
uncertainty of the location as well as the amount of unknown information about the area [63].
Put practically, a map is created of the environment in one pass. This requires that while
the map is being made, the location of the mapping unit must be estimated and adjusted,
as well as the map it makes. This normally requires several different types of sensors which

fit into one of three categories [53]:

e Range-measuring sensors measure distances to objects. This is generally done by
sending a signal, be it a light, sonic, or radio-wave based, and measuring the time it
takes to get back to the source. Tactile and bump sensors also fit into this category,

albeit they only measure a very short range.

e Imaging sensors collect images from the environment in a more passive way than range

finders. These can include cameras or stereoscopic cameras.

e Proprioceptive sensors convey information to the robot about it’s current state. Odome-
ters, gyrometers, and motor shaft decoders are included in this category. These are

useful, but limited in scope and normally require another sensor to aid in mapping.

These types of sensors work best in collaboration, whether they actively measure the
environment or passively collect data. Sensors and software work together to allow the plat-
form to estimate it’s current location on the known map. This is done while simultaneously

building any unexplored area into the map and looking to where the robot can move next.



SLAM is a key area for robotics, as Localization is necessary for any complex, real-world
behavior [3, 8, 20, 23, 24, 52, 54, 56, 58, 59, 60, 61]. There are many different techniques
for this, but the basic idea is the same for all; the robot must map the environment while
navigating through it. Navigation also requires location and pose estimation, or localization.
Particle Filters, or specifically, Rao-Blackwellized Particle Filters have been more recently
applied to many robotic platforms [3, 8, 13, 22, 23, 40, 52, 58, 59, 62, 72]. These rely on pose
estimation and mathematical calculations based on probabilities to determine the robots
most likely position. For more information on how this is performed, see [23] or [62]. While
this thesis attempted nothing novel in terms of SLAM algorithms, adding RFIDs to current

methods improved results using current SLAM techniques.

1.4 RFIDs

Radio Frequency Identifier (RFID)tags are used by Interface in the SCOUT Flor. They allow
digital interaction between the carpet tiles and an RFID reader. This allows the carpet itself
to provide location information, once it has been mapped using a SLAM algorithm.

RFID tags consist of an antenna and data chip. They come in two general varieties;
passive, which have no internal power, and active, which do contain a power source. There
are also hybrid chips, which function as passive tags until pinged by a reader, then switch
into a high-power mode. For this thesis, we will focus on passive chips, as they are lower cost
and small enough to be applied to nearly any item or surface un-noticably.

While they have been around since the 1940s after being invented by Leon Theremin,
RFIDs are becoming more and more popular thanks to the proliferation of small computer
systems and are primarily used for inventory systems. Most RFID tags are High Frequency
(HF) and are used in Near Field Communications (NFC), such as swipe-less credit cards
and security door passes. However, there are also Ultra High Frequency (UHF) tags, which

provide a greater read range, but require more powerful readers in order to do so.



RFIDs act as an instantly scanable unique identifier, much like how a barcode is used.
However, RFIDs offer the advantage of storing more data than a simple barcode or QR Code,
as well as being more secure in the case of HF Tags. By having a limited read range and
unique IDs, each RFID tag can act as an invisible digital thumbprint, associating each tag
with a specific product, person, or device to a computer-based system. This is why it is the

obvious choice for security door keys and for Swipe-less credit card readers.

1.5 GENETIC PROGRAMMING

Genetic Programming is used for this thesis as it will provide a near-optimal strategy for
reading and mapping RFID tags. Also, by evolving the methods instead of writing them, a
better solution can be achieved than by traditional programming techniques.

Genetic Programming is a specialized subset of Genetic Algorithms (GA). GAs are
inspired by natural selection. These are used to evolve optimized solutions to problems.
The key difference between GAs and GP is that where GAs evolve solutions for problems,
GPs evolve programs that are capable of running and completing a task.

There are several main features that define any GA:

e Individual: A proposed solution to the problem.

e Fitness Function: Evaluates the individuals ability to solve the problem. Assigns a

numerical value so that individuals can be compared.
e Population: A collection of individuals.

e Selection Process: The method used to select which individuals are paired for mating.

This can be random or through a tournament-style process.

e Crossover: Combines two individuals to produce their offspring.



e Mutation: Alters an individual slightly, in order to prevent the algorithm from evolving
in only one direction. By continuously trying new approaches, there is a greater chance

for optimization.

e Generation: One sequence of taking a population, selecting mates, producing offspring,

and mutating them.

In GAs, the primary unit is an individual. This individual is represented by a genome of
binary code, integers, floats, strings, or any changeable sequence. This individual represents
a solution to the problem. A population is a group of individuals. In the most basic GA, a
Fitness Value is assigned to each individual based on a Fitness Function in order to determine
which individuals are a better solution to the problem. This function is dependent on the
application, but judges the performance of each individual and rates it numerically.

A single generation of a GA begins by evaluating each individual of the population
with the Fitness Function. After all the individuals have a fitness, there is mate selection,
crossover, and mutation, where both crossover and mutation either occur or do not occur
with a certain probability. Two mates are chosen out of the population. There are many
ways to select mates, but one of the simplest ways is tournament selection, where several
individuals are chosen at random from the population and the one with the best fitness is
chosen as a mate. This process is then repeated to choose a second mate, forming a mating
pair.

At this point, crossover occurs, where two children are created from the parents by
selecting a segment from one parent and one segment from the second parent. These are
combined into one child. The second child is constructed from the remaining portions of
the parents’ genomes. After this, mutation occurs, during which each childs’ genes have a
probability to be mutated. This mutation is dependent on the format of the genome, but
can consist of bit-flips, random numbers, or a unique mutation given the type. After this is
done for every individual of the population, a new generation starts. Evolution ends when

either a set number of generations is run or the average fitness of the population reaches



a determined limit or plateau. The fittest solution is then left as the chosen algorithm and
evolution ends.

Genetic Programs use a similar evolution strategy, the key difference being that the
individuals represent programs instead of optimized solutions. Another key difference is that
in a GP, the fitness is determined by running the evolved program and determining how well

it does the task it is intended to do.

1.6 HouGH TRANSFORM

Hough Transforms are used by A.T.I.C.U.S.S. in order to analyze the rooms it maps for their
basic geometric shape. By analyzing the current map and applying a Hough Transform to it’s
image, the basic geometric shape of the room can be determined. This allows A.T.I.C.U.S.S.
to perform different moves and maneuvers based on the shape of the room, causing it to
behave differently if given a hallway or a closet.

Hough Transforms refer to analyzing an image based on its pixels and determining what
geometric shapes it contains. This allows for simplifying an image full of data into a more
simplified collection of geometric shapes. Put simply, it finds lines based on color differences,
generally relying on black and white. The Simplified Hough Transform (SHT) focuses on
finding all possible lines a pixel could be contained within in the image. All possible lines
are stored in an accumulator array. Each subsequent pixel found on an existing line then
increases that line’s score. Once all the lines are accumulated, the most viable lines will have
the highest scores. A threshold is set to indicate which lines are not likely and therefore
discarded once the totaling is complete [30]. This also works with curves in a similar fashion.

Beyond the SHT, there are also the Probabilistic Hough Transform (PHT) and the Ran-
domized Hough Transform (RHT). The PHT is similar to the SHT, except has been shown
to use only 2% of the points used by SHT and still retain its accuracy [34, 42]. This allows

the computations to be performed much quicker, and analysis of the image to be done nearly
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instantly on a powerful enough processor, allowing these processes to be run on a robotic
platform in real-time.

RHT was developed by Xu, Oja, and Kultanen [67, 69]. It is the simplest of the three.
While the idea behind RHT is similar to SHT, it takes a different approach. The image is
broken down into a list of points that fit the color criteria for being considered a line. Two

of these points are chosen at random, and the line between them is calculated using:

Y1 =axr;+b

and

Yo = azry +b

and the line score starts at 1. This is done until the list of edge points is exhausted. If a
new line fits on a preexisting line, its score goes up, if not, a new line is stored. There is also
a cutoff for what will be considered a true line, and it is normally small, either 2 or 3 line
segments counted. At the end, the true lines are all that are left. The main advantage of
RHT over other Hough Transforms, apart from PHT is it is incredibly fast. It is also much

simpler than PHT.

1.7 BEHAVIOR-BASED ROBOTICS

Behavior-Based (BB) robotics is used by this thesis in order to develop unique techniques for
mapping based on the shape of the current room. Each room shape can then have it’s own
behavior for mapping. By having separate behaviors for each, a more optimized approach is
possible. BB robotics also adds an additional layer of robustness: by having more versatile yet
simple behaviors and combining them based on the stimulus of the environment according to
a few simple rules, the robot is less likely to find a situation it cannot deal with. In this thesis,
mapping behaviors are evolved by a Genetic Program that allow the robot to autonomously

navigate an unknown space robustly.
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Behavior-Based robotics is a concept that was originally attributed to Rodney Brooks.
In his papers he formulates the idea of a Subsumption Architecture [5]. This describes a
completely reactive system, where complex behaviors arise from a few simple programmed
reactions to stimuli. This also means the system is more robust, as simplifying the stimulus
and behaviors allows them to apply to a greater range of situations.

For a simple example of Subsumption Architecture, we will describe a light following
robot consisting of two separate control layers. The first layer will consist of an obstacle
avoidance system, where sensors can detect obstacles and commands can be sent to the
actuators to enact a move, allowing the robot to avoid obstacles and not caught behind or
on them. The second layer will consist of light detection and separate commands to move
the robot towards the source of light. With only these two relatively simple layers, a robot
can follow a light through a maze or around objects. When more layers are added, the robot
can move in ways that would normally be attributed to simple intelligences- robots run from
light, or herd around sources of “food”- showing that seemingly complex behaviors can be
ascribed to the overlapping of many simple rules and command structures. These types of
robots are the best illustrations of Artificial Life, where simple structures allow for seemingly
complex, emergent behaviors. This is known as Behavior-Based Robotics.

BB robotics can achieve greater results when combined with Machine Learning tech-
niques, such as Genetic Algorithms [11, 14, 16, 33, 45, 64], Artificial Neural Networks [1, 16],
and Fuzzy Logic [28, 39, 49]. More complex, non-behavior-based methods can also be added,
allowing for upper level processes like mapping [41, 55]. Most Behavior-based systems use

custom software due to the very specific architecture and actions that must exist [16, 27, 48].

1.8 CONTRIBUTIONS OF THIS WORK

In working on A.T.I.C.U.S.S., we find that RFIDs do add another localization source for
SLAM, improving current algorithms, specifically Gmapping, which is used by ROS [23]. We

also show that by using Genetic Programming, map quality can be increased by allowing a



12

decision on whether or not to use a particular RFID tag for localization. This creates a more
robust system that can deal with errors, not exclusively relying on one source for location
information, but a myriad of sensors. Through this work, Interface also gained a major piece
of demonstration hardware that will help aid in the adoption of their new SCOUT Flor
System, which is still an abstract concept. With a working robot, early adopters can see
the RFID tags in action and perhaps think of their own ideas and programs to run on an
RFID embedded floor. A minor contribution of this work was writing autonomous mapping
software for ROS, which it was lacking, and needs in order to truly be an open-source system
for autonomous robotics. This code, as well as all code written for this thesis, can be found

at: <https://code.google.com/p/aticuss/..

1.9 RELATED WORK

This section summarizes important sources that directly influenced the course of this thesis.
Some sources are less relevant to the specific problem, yet provided important information.
Here the author discusses autonomous mapping, mapping with RFID tags, and Behavior

Based / Hybrid architecture mapping robots.

1.9.1 AuTONOMOUS MAPPING

Mapping environments, indoors as well as out, is a growing field for robotics [3, 8, 15, 20, 23,
24, 52, 54, 56, 58, 59, 61, 60]. Since the rise of GPS and Smart Devices, people, and machines,
like to know where they are in the world. Digitizing an office space has many practical
applications, whether they be for security purposes, aiding visitors, or for emergencies, such
as fires or Search and Rescue operations [8, 20, 23, 40, 55, 58, 61].

Robotic evolution for mapping behaviors, both real-time and in simulation, is becoming
more widely used[12, 28, 41, 45, 55, 70]. The approach in this thesis is very similar to Nordin’s

early work in evolving simple robotic behaviors [45]. In Nordin’s paper, a small population
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of robot behaviors is evolved in real-time using GPs in order to autonomously map a small,
controlled environment.

A good example of evolved behaviors applied to a mapping problem is Schmidt’s work on
mapping an office [55]. In this paper, the robot autonomously maps an office environment.

The behaviors are broken into three levels:
e Obstacle Avoidance

e Local Exploration which uses evolved behaviors to navigate the room the robot is

currently in

e Global Exploration, which handles the overall planning of the robot. A list is kept of

all currently unexplored locations in order for each to be visited.

Schmidt’s work is also a very good example of a hybrid Behavior-Based System. While
BB robots can be simultaneously simple and robust, they also lack directive, and wander
based on simple rules. This means they do not have any planning, so act less efficiently than
a more structured robotic system. A hybrid BB robot uses a combination of a structured
planning algorithm and a low level BB system for obstacle avoidance and robustness. Local
Exploration consists of behaviors like wall following, random cruising, and movement to
the door, which illustrate many common behaviors found in Behavior Based robots. Global
Exploration consists of tracking points of interest, similar to Frontier Exploration, where all
edges of the currently known map are marked as the Frontier, and kept in a list that is to be
explored [70]. This hybrid structure allows for the simplicity of BB robotics, yet the ability
to plan and carry out larger tasks that are not found in most purely Behavior-Based robots
[12, 28, 41, 55].

In terms of SLAM, ROS utilizes a Gmapping node, which is based on Rao-Blackwellized
Particle Filters [23]. Rao-Blackwellized particle filtering uses a cloud of particles, where each
particle represents a possible trajectory of the robot. After taking all available sensor read-

ings, such as odometers, laser range-finders, gyroscopes, stereoscopic cameras, the data is
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filtered. The key steps to the filtering process are Sampling, Importance Weighting, Resam-

pling, and Map Estimation.

Sampling generates a set of particles based on the previous generation of particles and

the current sensor readings.

Importance Weighting assigns a value to each particle based on the strength of its

claim.

Resampling redraws particles based on their importance weight.

Map Estimation estimates a map for each particle. This is based on the current tra-

jectory of the particle and previous observations.

This allows for a map to be constantly re-evaluated as it is being built, providing for a

more robust localization scheme.

1.9.2 RFIDS IN EXPLORATION AND MAPPING

Using RFIDs in mapping has become a relatively simple way to digitize information. RFID
tags are very good at acting as a static landmark associating a digital value to a real world
object. They can also contain information relevant to a human operator, by either storing a
small amount of data or providing an link to an external source, if a network connection is
available. This has been most notably used in navigating for the blind [37, 66]. This allows a
computer to aid someone who is visually impaired and serve as a guide. RFIDs are usually
placed on the walls to allow them to be detected from a greater distance [25, 31, 37]. However,
RFIDs can also be placed on the ground, as in Kleiner, Prediger,and Nebel’s paper as well
as the work done by Willis and Helal [35, 66]. In Kleiner, Prediger,and Nebel, a team of
robots uses RFIDs as drop-able landmarks [35]. While the tags themselves are not used as
landmarks, they do serve as information buoys so that a team of robots, otherwise out of
communication from each other, can still build a map together and not re-explore previously

explored territory, allowing them to act more efficiently.
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In several of these papers, stereo RFID readers have also been used [10, 25, 31]. This
allows for triangulation of the tags by measuring single strength variance from a single tag
to two RFID readers. This allows a robot to approach a targeted tag using RFID readers
alone. In Deyle, Nguyen, Reynolds, and Kemp’s work, the tags are not used on the walls,
but rather prolifically, on objects and on people [10]. This allows the robot to instantly
distinguish tagged objects and tagged people from one another, since each tag is unique. By
using two RFID readers on the robot, RFIDs can be located in three dimensions. In most
cases, only one antenna simply allows the detection of an RFID tag. By using two antennas,
the RFID can be located in space and navigated to through triangulation. In this liberal
application of RFID tags, the authors are able to capitalize on the fact that many items
already are labeled with RFID tags. Their robot was able to use this information to pick up

certain objects and deliver them to certain people [10].

1.9.3 ROS anND KINECT IN MAPPING

Since both the ROS and Kinect have only been around a few years, there is very little
literature on this topic. However, Zaman, Slany, and Steinbauer’s paper covers major testing
using ROS for mapping, using the same software as this thesis [72] . This work shows that
ROS can be successfully used for mapping and navigating a real environment. This will be
gone into in more detail later, in the review of ROS.

In Ganganath and Leung, a Kinect sensor is used in place of more expensive laser range
finders [22]. The Kinect and odometers on board the robot are combined with the extended
Kalman filter (EKF) and particle filter(PF) to provide accurate localization. Here, the Kinect
is accurately used in conjunction with Hough Transforms to detect landmarks, which are
a key tool for localization. Through experimentation, Ganganath and Leung show that the
Kinect can be used to accurately aid in odemeter-based localization through landmark detec-
tion [22]. Fallon, Johannsson, and Leonard also show that the Kinect can be used for accurate

localization [13]. In a similar technique to Ganganath and Leung, the Kinect is combined
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with PF, also known as a Sequential Monte-Carlo. The Kinect was used without any other
form of localization sensor, such as odometers or gyrometers, and tested on a variety of
platforms, such as a robotic wheelchair, a PR2 from Willow Garage, a quadrotor helicopter,
and a wearable mount. For more information on the Kinect sensor, EKF, and PF, please
refer to Fallon, Johannsson, and Leonard or Ganganath and Leung [13, 22].

However, none of these papers use the Turtlebot, which is a much cheaper platform than
either of the robotic systems used in either Zaman, Slany, and Steinbauer or Ganganath and

Leung [72, 22].

1.10 SCOUT anp A.T.I.C.U.S.S.

In this chapter we introduce the SCOUT Flooring system developed by Interface as well as
go into detail on the two robots, the SRI robot and ATICUSS, used to read and utilize the
RFID tags in the SCOUT Floor. The first robot was developed by SRI for Interface, and the
second robot, A.T.I.C.U.S.S., is the work of the author.

1.10.1 SCOUT FLOOR AND INTERFACE

Interface is one of the world leaders in carpet tile manufacturing. The company is attempting
to reach a waste-free manufacturing system by 2020. Currently, scrap from the production
process and old tiles are being used to create recycled carpet. Further reduction in waste for
the entire manufacturing process is also being researched and developed, as well as moving
towards more natural bases to create their carpeting.

Interface uses Tactiles, a square adhesive to attach four carpet tiles together at their
corners. This allows for quicker installation and nearly instant removal. It also allows for
less waste than carpet rolls or carpet tiles that use glue. Recently, Interface began attaching
RFID tags to Tactiles, dubbed SCOUT Flooring. See Figure 1.1 for an illustration of where
the RFID tags lie in the SCOUT system. Originally, SCOUT was developed for maintenance

monitoring, so each tag could act as a counter for how many times a carpet tile was vacuumed.
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This is for quality assurance as Interface warranties its carpet for a certain number of years
as long as it is properly maintained. However, ideas quickly spread since as soon as carpet
became able to be identified digitally, many options were possible. The carpet could be
used as a security system, as an interactive tool or display, could provide links to maps or
information about the current room. One of these was mapping, and using each tag as a
location in space, in order to track any device equipped with an RFID reader. Once a device
reads a tag, that tag corresponds to a location in space. If used with a network, a centralized
system would know the location of every person or device equipped with an RFID reader.
This provides an alternative to GPS, which does not work in some buildings due to materials
or the number of floors above. It also serves as an alternative to odometry or gyro based
sensors, both of which have a percentage of error that accrues over time. However, this first
requires the tags to be mapped to their environment [71]. Once each tag is placed, it must be
read by a mapping robot equipped with a range-finder. After multiple reads and ranges, the
distance from each visible wall will be associated to the tag. Once this process is complete,

the tag has a location with respect to a map of the room.

1.10.2 THE OLD RoBoOT

In order to utilize the SCOUT Flooring system, Interface hired SRI to develop a remote-
control mapping robot. Based on the Segway, SRI developed the mapping software as well
as integrated an RFID reader. See Figure 1.2.

This robot can make accurate maps, as can be seen in Figure 1.3. This is Interface’s
Aware House, which serves as an office and showroom for their sales representatives and
potential clients. It has tags attached to the carpet, both HF and UHF. However, adding
the RFID’s identifier string to the map requires them to be sequentially numbered in a
Cartesian coordinate plane as well as manually combining multiple map runs. This means

each tag must be manually numbered according to it’s location in the room. For example,



Figure 1.1: The SCOUT Floor

Figure 1.2: SRI Mapping Robot
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if starting in the Northwest corner, the tag will be numbered 0000. The tag to it’s East will
be numbered 0001 and the tag to its South will be numbered 0100.

For example:

0000 | 0001 | 0002

0100 | 0101 | 0102

0200 | 0201 | 0202

This must be done for every tag in order to aid the localization software. Inaccurate
reads are discarded manually and all other reads for the same tag are summed and averaged
for a more accurate location. This location is then lined up to a grid that corresponds to
the RFIDs number string. Our goal for this thesis was to show that this could be done
autonomously and in one run, as well as much cheaper. While this was not achieved, shorter
runs were able to map a segment of the building. The search for a cheap robotic platform

lead us to the Turtlebot.

1.10.3 TURTLEBOT

Turtlebot is an Open Source platform developed by Willow Garage [40]. It runs the Robot
Operating System (ROS), which is also Open Source and developed by Willow Garage. The
robot’s hardware consists of the Create developed by iRobot, (started by Rodney Brooks), a
control laptop, and the Kinect Sensor, developed by Microsoft originally as a game controller.
The Create serves as the base of the robot and the locomotion, the laptop serves as the
controller; and the Kinect handles vision. All of these components are open source. In order

to read RFID tags, an RFID reader was added to the Turtlebot.

1.10.4 ROS

The Robot Operating System (ROS) was developed by Willow Garage for robotics applica-
tions and is based on Ubuntu Linux. It can run on almost any platform, ranging from the

Turtlebot to the human-sized PR2 humanoid [40, 50]. ROS consists of packages, some of



Figure 1.3: Map of the Aware House, mapped by the SRI Robot
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Figure 1.4: A.T.I.C.U.S.S.
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which are developed by Willow Garage, but most are developed by the ROS Community.
For the Turtlebot itself, many packages come with the ROS install, including autonomous
navigation of a known map, a SLAM algorithm based on gmapping [23], the ability to follow
a person, and remote control functionality. Other packages for ROS consist of voice-control,
text to speech, and integration for multiple robots.

Thanks to a large community and the backing of Willow Garage, there are many Wikis,
forums, and tutorials available. More importantly, ROS comes with RVIZ, a visualization
tool that is immensely helpful in debugging. Not only does it visualize the robot and its
environment, it can also directly display readings from sensors, such as what the robot is
currently seeing or where the location of the robot is according to the odometers. It is
also easily customizable. See Figure 1.5 for a display. Here we were able to add graphics
representing the RFID tags as they were read during mapping.

The ROS architecture is built around nodes. Each node is an individual program. Nodes
can subscribe or publish to any other node as topics, which is the primary form of commu-
nication across nodes. Nodes publish topics and messages, which are simple message packets
that can be passed between any node on a computer to any other node, as a one-to-many
relationship. These messages can also be passed over the network, so nodes on separate
machines can subscribe to topics being published on a remote machine, such as the one con-
trolling the robot. This allows for simple nodes to be written that are easy to understand, yet
interact with the robot in an variety of different ways by customizing messages sent between
nodes, and having nodes that interact with various sensors or actuators. It also allows for
easy integration of any new node into the existing architecture. This allowed a relatively

simple process in order to create the autonomous mapping robot, A.T.I.C.U.S.S.
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Figure 1.5: RVIZ During one of A.T.I.C.U.S.S.’s runs. The Green Dots are RFID tags. On
the right is a feed from the Kinect Camera onboard.



CHAPTER 2

METHODS

This work was done while working at an Internship at Interface in the Summer of 2012. This
means that time with access to the correct resources was limited, primarily the Aware House,
which has already been outfitted with the necessary RFID tag distribution. This limitation
effected how long the robot could train exploratory behaviors. It also affected the sample
size of produced maps under each mapping algorithm. The best of each is compared in the

Experiments section.

2.1 HARDWARE AND SOFTWARE SETUP

The hardware can be broken into three categories:

e The Robot: Turtlebot, as described above. Consists of a Create, laptop for processing,

a Kinect Sensor, and an RFID reader.

e The Environment: This is the Aware House, the demonstration building for Interface’s
innovative and high end products. Since it has already been configured for mapping,
RFID tags are placed at the junction of every carpet tile. This is necessary to test how

much a distributed RFID tag system aids in localization.

e Control Computer: This is used to interface to the robot. It runs Ubuntu Linux with the
ROS SDK, necessary for connecting to and controlling the Turtlebot. From here, com-
mands can be sent to the Turtlebot over Wi-Fi, as well as the feed from the Turtlebot
be displayed. RVIZ runs on this machine, as well. It also serves as the controller when

A.T.I.C.U.S.S. is controlled manually.
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This paper uses ROS version Electric for running the Turtlebot. All code was run on this

operating system.

2.2 NECESSARY STEPS FOR THE DEVELOPMENT OF A.T.I.C.U.S.S.

Most of the time while working at Interface was spent getting various kinks out of the robot-
control computer system as well as learning Python and the intricacies of ROS. Once the
turtlebot could reliably be accessed, it was run many times, both autonomously and via
remote in order to ensure that it could be run unsupervised for any period of time. This
included refining the collision bubble around the turtlebot: a virtual threshold that prevents
the robot from getting too close to an object and getting stuck.

Once the robot could be reliably run and avoid colliding with obstacles it couldn’t see
due to the placement of the Kinect, the RFID Reader had to be trained and the various
algorithms for mapping had to be developed. These algorithms are as followed: Random,
Greedy, and an Evolved Behavior Based Method, with a remote run as a control. Once
this was done, they could be tested head-to-head by comparing their mapping results. Each
method was started at the same location and time was recorded, limited to how long the
robot could map until the map began degrading. This symptom was discovered during the
collision testing phase. As the battery gets lower, the sensors become more inaccurate and

eventually begin over-writing any good mapping results with poorer ones.



CHAPTER 3

DeEVELOPMENT OF A.T.I.C.U.S.S.

In this chapter we describe the necessary programs added by the author to ROS in order to
allow A.T.I.C.U.S.S. to autonomously navigate and map an environment fitted with RFID
tags. This approach focuses on combining techniques covered in the Related Work Section.
While some methods were specifically written for the topic of this thesis, like RFID Mapper,
many programs in ROS were simply adapted, such as the controller MoveBase. The first
section covers the evolution of the Genetic Program RFID Mapper, which is the decision
engine for whether or not to use an RFID tag for localization. In the Autonomous Exploration
section, each exploration behavior developed is described. These are Random, Greedy, and

the second GP, Behavior Based Exploration.

3.1 NobpEs Pre-BuUILT INTO ROS USED BY A.T.I.C.U.S.S.

ROS has all the complexity and power of a desktop operating system. This means that much
of the architecture and structure of the robot is completely taken care of by the distribution
of ROS for the Turtlebot. There are also many additional nodes that can be used that have
been written by Willow-Garage or the ROS Community that add greater functionality to
the robot. However, dependent on how specific the task is, more than likely some nodes will
have to be written by the user to accomplish their individual goals. These nodes are explored
in full detail in [72].

There were several nodes built into ROS that were left unmodified for this thesis yet

allowed integration into autonomous RFID mapping. These nodes covered the sensors and
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movement of the robot. The decision processes had to be written and integrated with these

nodes:

e Gmapping is the SLAM node that comes with the standard Turtlebot distribution
of ROS. It is based on Grisetti, Stanchniss, and Burgard. [23]. In ROS, it allows the
Turtlebot to map an environment while under remote control through a wireless net-

work.

e MoveBase was also used. This serves as the core of the command structure to move
the robot autonomously, given it’s current location and a destination goal. It also
handles obstacle avoidance and path planing. These are both separate aspects of the
same control node. The first is a Global Planner, which uses an A* search, used in
Marder-Eppstein, Berger, Foote, Gerkey, and Konolige’s work developing ROS [40].
The second is local avoidance, which avoids obstacles. This uses a dynamic window

approach proposed by Fox, Burgard, and Thrun [21].

e AMCL uses Adaptive Monte Carlo Localization in order to localize the robot. It uses
the results of the laser scan, odometers, and gyrometer to estimate the robot’s pose.
This is a similar algorithm to Robust Monte Carlo Localization, by Thrun, Fox, Bur-

gard, and Dellaert [62].

e In addition to these, the standard sensor nodes were used, unmodified. This allows the
use of the Kinect Sensor, Odometers, and Gyros. These as well as Move Base above

are part of the Turtlebot Bringup Package.

e There is also an additional RFID reader node which was simply adapted. This was

written by Travis Deyle, who wrote the drivers for the RFID reader [10].

For a more detailed description of these nodes used, please see the paper written by

Zaman, Slany, and Steinbauer describing in detail the developments and issues in mapping

in ROS [72].
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3.2 RFID MAPPER

Since the robot could already move and sense its environment, adding an RFID sensor and
software to integrate this information into the additional localization structure had to be
written first. Once this was done, autonomous mapping software could be written.

This section covers the first experimentation with the RFID Mapper software that was
written by the author. This allows the RFID tags to be read by the robot as it drives over
them on the carpet.

In order to map tags to a location, the robot must read the tag and assign it to a Cartesian
grid with respect to its origin. The origin is 0,0 and is simply assigned as the robot’s starting
location. Each point represents a tile juncture, with the tiles being 50cm by 50cm. There

were two important factors that we considered necessary for a RFID Mapping Robot:

e The tags would have random IDs, and their values would not be altered. Having to lay
out specific tags to specific locations, such as sequentially numbering them in a grid,

as is required for the SRI robot, takes away the autonomy and ease of the system.

e The ability to remap tags. If a tag is assigned an inaccurate location, the robot will be

able to reassign its location.

In order to remap a tag, the robot must have qualifications on when to remap and when

to use the location given by the tag. For this, two values were chosen.

e Confidence. This is a value used by the Turtlebot. It assigns a numerical value between
0 and 200 to how well the current laser scan of the environment matches the the
most recent map. High values indicate a high confidence in the robot’s location. This

information is based on the covariance of the current map and the current pose.

e Disparity. This is the difference between where the robot believes it is and where the

current RFID tag being read says it is. This is a distance in meters.
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If the confidence and the disparity are higher than a certain value, then the tag is
remapped, meaning a different XY coordinate is assigned to the ID of the current RFID
tag. However, both the coordinates and the tag IDs are unknown at start up and must first
be discovered before any mapping can be done.

In order to determine how to map RFID tags, we chose to use a simple Genetic Program.
The only concern of this program is whether to reassign a current RFID tag to the location
of the robot or to trust the tag and use its position as the robot’s. It consisted of a small
population of 50 and ran until convergence. In the initial population, each individual con-
sists of a random confidence between 0 and 200 and a random disparity between 0 and 5,
representing meters. Evolution of the GP was done in real time on the robot, and every tag
read caused an evaluation of the individual selected for testing in the current generation’s
population. Therefore, once a tag is detected for the first time, that tag’s ID is assigned
the current X,Y position of the robot. Every subsequent read causes a decision to be made;
whether to publish the location of the tag to the SLAM Gmapping Node, or decide that the
location is inaccurate and remap the tag.

The RFID tags in the Aware House are sequentially numbered in order to be read as
rows and columns. This was done in order for the tag locations to be adjusted manually
after mapping with the SRI robot. This requires, however, that each tag be manually and
deliberately written to once placed on the floor. This also means that if an RFID tag stops
working or is defective, it must be replaced and manually numbered appropriately. We made
a decision not to use the fact that adjacent RFID tags would be similarly numbered in our
own mapping experiments because it requires even more effort from the user as it requires
each tag to be manually numbered. It also adds complexity and detracts from the robustness
of the robot: if a tag were mis-numbered or missing, the robot would loose a localization
source. The proposed system uses a purely random RFID grid, where the only preparation
needed is to install the carpet tiles using the SCOUT tags as opposed to the normal Tactiles.

In this way, it requires no additional effort to install before mapping is done. However, a



30

sequentially numbered system is a good resource for training the confidence and disparity
values, so this was used during the evolution of the RFID Mapper GP. However, for all
subsequent evolution and experiments, this function was turned off.

Being able to recognize RFID neighbors by ID alone allowed the RFID GP to gauge
whether or not an individual consisted of a good confidence and distance values. Since this
is a GP and evaluation is done after performance, fitness values were not used; individuals
were either mutated if they performed poorly or procreated if they did well. This was based
on the sequentially numbered tags. This being the case, this is technically not a GP, but
merely a simplified algorithm, a Survival of the Fittest Algorithm.

With a sequential tag system in place, RFID neighbors are easily identifiable. If the
current RFID tags location is farther than one meter from its nearest neighbor, it was
mapped poorly and needs to be remapped. However, if it is close to its neighbors, then it
was mapped well.

If the individual gave a poor indication on whether to remap if above the confidence and
distance thresholds, it was mutated to greater numbers, causing remapping to occur less
often. If an individual indicated to use the tag location when it was mapped poorly, the
thresholds were lowered to cause remapping to occur more frequently. If it did well, it was
duplicated and replaced a random individual in the population. As soon as the decision is
made and the individual is treated accordingly, the next individual in the population was
chosen and used to decide the outcome of the next RFID read. After a few thousand reads
there was convergence when all the individuals in the population had the same values for
disparity and confidence. These values were then used as the confidence and disparity for
all experiments performed below that utilized the RFID tags. Also, once the RFID Mapper
had been trained, all exploration techniques were trained without the ability to recognize if
RFID tags were neighbors by ID alone. That is, all RFID IDs were taken as random and

arbitrary.
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3.3 AUTONOMOUS EXPLORATION

Once A.T.I.C.U.S.S. could successfully detect, distinguish, and store separate RFID tags,
the autonomous mapping methods could be written.

Since ROS does not have an autonomous mapper program, one had to be written, or
rather, three were written. Since it does have an autonomous navigation ability which relies
on the package known as Move Base, this was used and adapted into three autonomous
methods for exploring an unknown environment.

The following sections describe the various autonomous exploration algorithms developed
in order to test the above RFID Mapper. In order to understand the architecture of the robot

during the experiments, see Figure 3.1.

3.3.1 RANDOM

The first method was Random Mapping. This method moves the robot to a random location
of the already known map. While counter-intuitive, as the robot can only move to positions
on the already existing map, by moving to a new location, more area for exploration is
revealed. This means the most efficient moves for this method are going to be on the edge of
the known map, however, the pattern is still randomized. A random move into the middle

of the known map will add very little new information, if any. See Figure 3.2.

3.3.2 GREEDY

The second algorithm developed was Greedy Mapping. This takes a greedy approach, where
it moves to the closest location with the most amount of unknown area. It is inspired in
concept to a Frontier Approach [70], however, involves less planning. Frontier Approach
remembers unexplored areas and marks them as frontiers. These are added to a stack and
eventually, all frontiers are explored. Greedy is similar to this in that the most unexplored
areas are generally found at the frontiers of the map. The rest of the algorithm is relatively

simple: ten random points are chosen on the currently explored map, and each area within
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Figure 3.1: Architecture of A.T.I.C.U.S.S. Here, the ability to read RFIDs can be turned
on or off. When on, it sends a location signal to the SLAM node. The SLAM node is also
constantly receiving data from the Kinect Sensor, the odometers, and the Gyro. The SLAM
node, in turn, verifies the location and expands the current map. The autonomous exploration
method then reads this map in order to determine the next move. Once a decision has been
made, a command is sent to Move Base to move the robot to a new location.
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Figure 3.2: Explanation of Exploration: white is the known map, grey is unexplored space.
At the end of the third move, the robot’s current map is larger than the start. It can now
move to any area in white and further expand the map.
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five meters of each point was analyzed for the amount of unknown space (u). In Gmapping,
gray pixels represent unknown space on the map, white represents open space, and black
represents occupied space, or rather, walls an obstacles. The area with the most amount of
gray pixels is the least explored. The distance (d) to the randomly chosen point was also

measured. The point with the highest unknown space to distance ratio:

¢
d

was chosen as the winner and next goal for the robot.

3.3.3 EVOLVED EXPLORATION

The third exploration method was an Evolved Behavior-Based Exploration. To handle the
structure of the evolution, we used DEAP (Distributed Evolutionary Algorithms in Python)
[9]. DEAP is a package for Python that allows quick implementation as the only code that
needs to be written for the simplest GA is a Fitness Function and the structure of an
Individual.

The approach taken for this thesis is not a traditional Behavior Based approach; since
Move Base controls the minor navigational aspects of the robot, such as path planning
and obstacle avoidance, we did not feel that developing simple behaviors was warranted.
So instead, the behaviors dictate where the robot moves next, or more specifically, which
algorithm chooses its next move. These moves either belong to a Global Exploration Strategy
or a Local Exploration Strategy, much as Schmidt did in [55]. With this being the case, each
individual consists of eight floating point values. The first four represent the probability that

a certain global exploratory move is chosen. The moves are as follows:
e Random: performs a random move, taken from the above Random Exploration Method.

e Greedy: performs a greedy move, also taken from the above Greedy Exploration

Method.
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e Ten meters forward: moves the robot to a point ten meters forward. If the point is
on the other side of a wall, it will try to get to that location. If it can’t move to that

position, it will get as close as possible.
e No Move. Allows the robot to continue Local Exploration.

These represent a Global Exploration strategy.

Once the robot reaches its next location, we wanted the robot to be able to do local
exploratory moves, local being defined as the five meters around the robot after reaching its
destination. Each individual also has a custom move list of five moves. These are unique to
the individual for each situation, and they are randomly chosen from the following simple

moves:
e Face left
e Face right
e Random turn

e Face nearest wall: this is a method adapted from the calibration methods that came

with ROS. It simply turns until the robot is facing a wall.
e Move forward two meters.
e Move forward a random distance between zero and five meters.
e Move to local frontier, being defined as an area with unexplored area within five meters.

e Random local move: Moves the robot to a random point in the five meter area sur-

rounding it.

e No Move. This allows the robot to skip local exploration and continue exploring the

larger environment.
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These custom moves are chosen with regard to an evolved probability, similar to the Global
Exploration segment of the genome. The probability that a certain move will be chosen at
random is what is represented in the genome of the individual. A high probability of a certain
move means the individual will perform this move more often, however, it is not the only
move it will perform. This was done in order to prevent stagnation as well as keep the robot
more robust for unknown situations. The Local Exploration moves are meant to allow the
robot room to evolve different patterns of movement dependent on the configuration of the
local environment.

In order to determine the local environment, we used a Randomized Hough Transform
(RHT) [67, 69]. It was very simplified, as it was only looking for two walls on the already
explored map and comparing them. Since the Aware House is all open space, corners, or
hallways, we decided finding two walls was sufficient. This was done by applying a RHT to
the local map and adding an allowance to consider a group of similar lines as the same line.
If there were no lines, this was considered an open area. If there was one, this was a wall.
If two lines were found, the angle between them was found; if they were parallel, it was a
hallway, and if they were perpendicular, it was a corner. However, due to the large amount
of noise in the map, each of the four conditions got a vote. These votes were adjusted by
a modifier, found in the last four floats of the individual. Dependent on the vote and the
modifier; one of four custom movesets was chosen.

The Genome Format of the individual is in the following format:

Or rather, a list, such as this:

Percentage for: [Random|Greedy|10m in front|Area around Robot]
[Outer Wall (1 line)| Hallway (2 parallel lines) |
Corner (other lines of significant length) | Open/Muddled/Free Space ]

Each individual then had four sets of custom moves, one for each area type. Each custom

moveset was five moves, one of eight primitive behaviors to be performed sequentially. This
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Table 3.1: Genome Configuration for Evolved Mapper
’ Global Search to Perform ‘

Random

Greedy

10m in Front

Area Around Robot

’ Types of Wall Configuration
Outer Wall

Hallway

Corner

Open/Muddled/Free Space

was done since simple obstacle avoidance behaviors were not developed above. These were

stored separately than the genome, yet still mutated under the same probability.

Table 3.2: Possible Moves for Local Exploration
] Integer Representing Custom Move \ Custom Move ‘

0 Forward Random Distance
Forward 2 Meters

Random Turn

Right Turn

Left Turn

Align to Wall

Move to Local Frontier

Random Move within 5 Meter Area
No Move

CO O UL i W N+~

Therefore, a custom moveset of

(0161513 ]1]

will move forward a random distance, move to a local frontier, turn to face a wall, turn
right, then move forward two meters. There is one custom moveset for each of the four area

types, be it outer wall, hallway, corner, or open space.
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An additional feature of the custom moves list was a Tie-Crossover. If two votes for the
area shape determined by the RHT tied, an in-run crossover of the custom moves occurred.
This was done in a method similar to the crossover function; by randomly selecting a mid-
point in the move list, performing the first voted custom moveset until that point, then
finishing with the last section of the second move list. Once the moveset was performed,
the Tie-Crossover was lost and not stored in the individual. This allows for more varied

movements in uncertain terrain.

FITNESS FUNCTION

The fitness of the individuals consisted of the robot’s average velocity plus the change of

entropy, plus any change in the map size during its run:
fitness = vel x 1000 4+ Aentropy * 1000 + Amap/10

The entropy value is calculated by the Gmapping program. It is an estimate of the entropy
in the distribution of the robot’s position, where higher values indicate greater uncertainty.
The velocity was used because of the constraint in time on the run due to the short battery
life. A moving robot will always be exploring more area than a robot that is stationary.
Velocity allows distance traveled to be beneficial and time spent calculating the next move
to be detrimental.

The values of average velocity of an individual and change in entropy are multiplied by
1000 simply because they were incredibly small and we wanted them to be the primary
motivation for evolution.

The robot’s GP was evolved in the environment; not in simulation. Due to the lack of
battery power on A.T.I.C.U.S.S., this was limited to a population of 6 for 14 generations, or
four runs of the robot due to limitations in the battery. Each individual in the generation

got one move, which determined its fitness.



39

BEST INDIVIDUAL AFTER GP EvOLUTION

After evolution the best individual’s genome from the GP was as follows:

Table 3.3: Best Evolved Mapper
’ Global Search to Perform \ Probability of Search Occurring

Random 0.088214122273091888

Greedy 0.94566893173838107

10m in Front 0.87662834339175355

Area Around Robot 0.74001467048082403

Types of Wall Configuration | Modifying Weights to Voting Power
Outer Wall 0.57497086623511817

Hallway 0.2077178029975677

Corner 0.83682493551525061
Open/Muddled /Free Space | 0.6458008944

Table 3.4: Custom Moves for Best Individual

’ Outer Wall \ Hallway ‘
No Move Random 5m Move
No Move Random 5m Move
Random 5m Move Left Turn
Move to Local Frontier | Random 5m Move
Random Turn Move to Local Frontier
| Corner | Open/Muddled/Free Space |

Random 5m Move Random Turn

Forward 2m No Move

Forward Random Distance | No Move

Random 5m Move Forward 2m

Random 5m Move Random 5m Move

This shows that Greedy Mapping was chosen the most, followed by a move ten meters
forward and exploring the local area. Random moves were nearly never chosen. In terms of
weights for the Hough Transform, they were skewed in favor of corners, meaning that corner

moves were chosen the most, which consisted primarily of local random moves. Corner moves
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were probably weighted more heavily due to the fact that the area the robot was trained in
was primarily corners and walls, with very little straight hallways. In fact, most custom moves
were local random moves, with no move being the second most popular option. Aligning the
robot to the wall and turn right were entirely removed from the robot’s repertoire of local

moves.



CHAPTER 4

EXPERIMENTS

The best way to test how each mapping program performs, as well as the RFID mapper, is

to run them and compare the maps.

4.1 METHODOLOGY

A T.I.C.U.S.S. was tested in two different ways, once it was trained in the Aware house.
Firstly, maps of the Aware House were made using the different mapping methods. It was
then tested in a second environment, referred to here as the A-smart-ment. Here it was run
only in manual mode while the confidence values and disparity vales were logged. This was
done to compare quantitatively the differences between localizing with using RFID tags and

without.

4.1.1 AWARE HOUSE

This is the showroom for Interface. It is also a working environment. It has a square footage
of 22,895 square feet, so it is a rather large area. This limits the amount of space that can
be mapped. With this being the case, the area focused on for mapping is shown in Figure
4.1. This a zoom of Figure 1.3, which was mapped by the SRI robot.

For each of the three mapping algorithms, the best of two options is compared, once with
the RFID mapper on and once with it off. There is also a manual run, via remote control,
to serve as a baseline.

The major limiting factor on the robot is the battery life. Very early we knew it would

never map the entire Aware House in one run, therefore, we started each in the same location.

41
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Figure 4.1: Zoom of the corner focused on by A.T.I.C.U.S.S., mapped by the SRI Robot
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Also, because of the limited battery life and a limit on the amount of access to the Aware
House, the best of each run is compared. Once the development phase was finished, less than a
month remained of access to the Aware House, and each run took nearly a day. While many
more maps were generated for each method, most were unusable. This further challenges
Goal 3; generating usable maps in one run. This and similar issues will be addressed in the
Discussion section.

All runs started in the same location. Originally, we planned on giving each run a set
number of moves, but time became a better comparison factor of the methods, as well as
subjectively comparing the maps created. This was due to an inevitable degradation of the
map based on accrued errors. Whichever method could last longer while still creating a semi-
accurate map should be considered better. This also means that better methods produce a
larger map, as more area is explored. However, the biggest indicator for how good a method
was is to view the map created since the goal is to create usable maps. If one method produces
a more accurate map, it is superior.

Times are also recorded. Each run was stopped once the map devolved to a point where
it was unusable. While this isn’t really a factor in considering which method is the best, the
better methods do preserve the map for longer. Ideally, this would not be a concern. Gmap-
ping should allow the mapper to run indefinitely without destruction of the map. However,
due to inaccurate sensors and the environment having similar traits repeated throughout,
the Gmapping algorithm can get confused and lose the location of the robot, destroying the
previous map with the new one. This is why the runs with the RFID reader turned on last

longer.

4.1.2 A-SMART-MENT

This is a much smaller area than the Aware House, 655 square feet, so served better for
testing the differences between using the RFID tags or not as the robot was able to make

a complete map in one run. The shorter distance also allowed the robot greater visibility
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of the walls, which are its primary landmarks. A map of the A-smart-ment can bee seen in
Figure 4.2.

Much like the Awarehouse, the A-smart-ment serves as a showcase for potential tech-
nology. Like the Awarehouse, it has RFID tags at the junctures of carpet tiles. It also houses
pressure sensors for movement and fall detection as well as motion activated lighting. These
exhibit possible technologies to help the elderly.

Here runs were done only in manual mode. 10 runs were done for each method; using
RFIDs or not using the RFIDs. Each run was timed to 15 minutes. During this time, the
Confidence values were recorded every few seconds for both methods, and for the RFID
Mapping method, the disparity between RFID location and robot location was also recorded.

This data could then be used to quantitatively compare the two mapping techniques.

4.2 RESULTS

The results of the runs were fairly similar. As follows, each result is discussed and the pro-
duced map is displayed for comparison purposes. For videos of each of these runs, please see
<https://www.youtube.com/channel/UCBEzz1zxm7b2ZLxDUpxfCcA/feed> The compared

RFID on and off runs are shown side by side for easier comprehension.

4.2.1 MANUAL RunN

Figure 4.3 and Figure 4.4 are maps made while A.T.I.C.U.S.S. was under remote control.
Both runs took 20 minutes. These two also best exemplify the disparity between having the
RFID reader on and having it off.

4.2.2 RanpOM RUN

The maps from the Random runs can be seen in Figure 4.3, showing the run with the RFID

Mapper turned off, and in Figure 4.4, where the RFID Mapper is turned on. The run with


<https://www.youtube.com/channel/UCBEzz1zxm7b2ZLxDUpxfCcA/feed>

Figure 4.2: Map of the A-smart-ment
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Figure 4.3: Remote Control Run with RFID Mapper turned off

Figure 4.4: Remote Control Run with RFID Mapper turned on
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Figure 4.5: Random Run with RFID Mapper turned off

the RFID Mapper turned off ran for 43 minutes and the run with the RFID Mapper on took

24 minutes.

4.2.3 GREEDY RuUN

Figure 4.7 shows the mapping results of the Greedy Algorithm without the RFID Mapper
turned on. It took 38 minutes until it was shut down once the map had degraded. Figure
4.8 shows the same algorithm but the the RFID mapper turned on. The result is after 90

minutes of run-time.



Figure 4.6: Random Run with RFID Mapper turned on
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Figure 4.7: Greedy run with RFID Mapper turned off

Figure 4.8: Greedy Run with RFID Mapper turned on
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Figure 4.9: Evolved Run with RFID Mapper turned off

4.2.4 EvoLVED RUN

Figure 4.9 and Figure 4.10 show the results for the Evolved Mapping behavior. Without the

RFID Mapper turned on, it took 44 minutes. With it on, it lasted 70 minutes.

4.2.5 A-SMART-MENT

The mapping of the the A-smart-ment was to serve as a quantitative comparison between
using the RFID tags for localization and not using them. Therefore, the Hypothesis is that
utilizing the RFID tags as landmarks will improve localization efforts. The Null Hypothesis
is then that there will be no difference between using the RFID tags or not. The differences
in the maps is nearly indistinguishable, it being a small environment. Two maps can be seen

in Figures 4.11 and 4.12.
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Figure 4.10: Evolved Run with RFID Mapper turned on

The Confidence was collected over time. The averages for the 10 runs with RFID and 10
runs without the RFID can be seen in Figure 4.13.

This graph compares directly the use over 10 runs of each method: using the RFID tags
and ignoring them.

The other value mapped during the runs was the Disparity between where the robot
thought it was at the time and where the current RFID was telling it was. These values
for the 10 runs can be seen in Figure 4.14. The average line for these values can be seen in
Figure 4.15.

This shows a trend of increasing Disparity between the robot’s localization and the RFID

tag coordinates. These results will be discussed in the next section.



Figure 4.11: Map of A-smart-ment made using RFID tags
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Figure 4.12: Map of A-smart-ment made without using RFID tags
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Figure 4.13: Average Confidence over Time, Green being without RFID tags, Blue with
RFID



Figure 4.14: Disparity Levels for All 10 Runs using the RFID Tags
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Figure 4.15: Average Disparity over Time
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CHAPTER 5

DiscussioN, LIMITATIONS, AND FUTURE WORK

5.1 DISCUSSION OF RESULTS

As can be seen by the maps, the Turtlebot is not perfect at mapping. In fact, ROS recom-
mended to run a calibration of the odometers and gyro before every mapping run. However,
we found this to normally do more harm than good. What can also be seen from the maps
is a marked improvement in the quality of the map with the RFID Mapper turned on.

During observations, eventually, all maps deteriorated as the inaccurate odometry mis-
diagnosed the robot‘s orientation. The Gmapping Program uses multiple inputs, one of them
being a laser scanner. However, the Turtlebot uses a Kinect sensor in lieu of this, primarily
because an adequate laser scanner costs several thousands of dollars. The Kinect is only accu-
rate at about 10 meters, and completely degrades after around 20. It is also very noisy, and
does not provide enough clarity for accurate scan-matching for the Gmapping algorithm. The
RFID tags only give information about location, not orientation. Therefore, the Turtlebot
uses odometry information, which is often faulty. As time goes on, inaccurate orientation
readings accrue and destroy the map. After this, scan-matching is nearly impossible. This
means that eventually, as the same space is driven over and over again, the map accuracy is
eventually destroyed.

However, in several cases, the RFID tags allowed the map to reorient itself properly. This
can be seen in Figure 5.1. The protrusion of the wall is actually the starting orientation of
the map. Areas 1,2,3 on the left are the same area. The same goes for Areas 1 and 2 on the
right. This occurs when the detail from the Kinect is not confident enough, so the location is

taken from the odometry/gyrometer. On the right, however, the robot was eventually able to

o6
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Figure 5.1: Manual Runs Side-by-Side, showing the areas of Repetition

re-orient itself. On the left, it did not, and continued to re-map the same area in a staggered

rotation pattern, due to the drift in the odometry/gyrometer.

5.1.1 COMPARISON OF RUNS

In order to compare the different maps, each was imported into The GNU Image Manip-
ulation Program, or GIMP. GIMP is simply an open-source photo-editing program. Once
here, the differences between the common areas mapped could be seen. As the methods often
moved in different directions, the area mapped by all was relatively small. This common area
is shown in Figure 5.3.

Once in GIMP and separated into different layers, this common area could be set into
Difference mode, where difference between it and another layer show as white and common-
alities show as black. An example can be seen in Figure 5.4.

These images could then be compared with a Color Histogram, showing the count for
pixels of a certain color in the image. In this case, we are looking for black pixels, representing
commonality. Black is 0 on the scale of color saturation, where white is 255. Allowing some

room for grey common areas, pixels were counted if they were in the range of 0 to 25. The
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Figure 5.2: Comparison of different methods. From top to bottom: Greedy with RFID turned
off, Greedy with RFID turned on, and the SRI Developed Map, zoomed in.



Figure 5.3: Area Mapped by all runs of A.T.I.C.U.S.S.

Figure 5.4: Overlay of Common Area with Greedy without RFID Map

29
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Histogram shows the percentage of pixels in the image fitting 0 to 25. These numbers can

be seen here:

Table 5.1: Aware House Map Agreement Percentages

Without RFID [ With RFID

Manual 51.00% 70.20%

Random 67.90% 61.50%

Greedy 68.00% 66.70%

GA Evolved 72.70% 71.70%
[Average | 6490% [ = 67.53% |

These average percentages show that most of the time, the RFID tags improve map
quality, but only slightly. 3% is not a large improvement. In fact, most of the maps compared
show a higher correlation when the RFID is turned off. By looking at the maps and seeing
an improvement to the average correlation between the SRI map the the RFID maps, we
can say that the RFIDs do improve the Maps, but only slightly.

In order to further quantify the differences between using the RFID tags and not, we can
look at the differences in Confidences taken from mapping the A-smart-ment. This was done
by using a Wilcoxon Signed-Rank Test [43].

A Wilcoxon Signed-Rank Test is useful for determining if the difference between paired
results is significant enough to reject the null hypothesis. It is best used for a non-normal
distribution and when a random subset of the data is taken, smaller than 20. For the N pairs,
the difference is taken between each. Any difference equaling zero is stored, but removed from
the N count. The absolute value of these numbers is found, as well as the sign of the difference.
Once this is done, these values are ranked according to their absolute value. If there are any
ties, they share the average of the ranks they span. The ranks are then multiplied by the
signs of the differences. All negatives are added and all positives are added. W is the smaller

of the two numbers. If W is less than the critical value for that N, acquired from a Wilcoxon
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Signed-Rank Test Critical Values chart, then the result is significant and the null hypothesis

can be rejected. If W is larger than that, the null hypothesis fails rejection.

In our case, the paired values are going be the confidence level while using the RFID

mapper and the confidence without using the RFIDs. Our null hypothesis is that there is

no difference between using the RFID Tags for localization and using them. The 10 runs of

each method are paired off to their counter. A random time T is chosen for each pair and the

confidence levels at that time are taken. This means N = 10. With N being the sample size,

the significant value for W must be less than 8, according to the Wilcoxon Signed-Rank Test.

If W is less than 8, then the value is significant. The values for the Wilcoxon Signed-Rank

Test can be seen in this table:

Table 5.2: Wilcoxon Signed-Rank Test on Confidence Levels

N || No RFID | RFID | No RFID - RFID | SGN | ABSOLUTE | Rank | Rank * SGN
1] 102.2119 | 99.8958 2.3161 1 2.3161 3 3

2 || 110.9270 | 79.6238 31.3031 1 31.3031 9 9

3| 112.6569 | 84.2009 28.4560 1 28.4560 7 7

4| 107.3379 | 113.2259 -5.8880 -1 5.8880 4 -4

5 111.5149 | 71.5043 40.0106 1 40.0106 10 10

6 || 101.7490 | 95.2353 6.5136 1 6.5136 5 5

7| 102.4530 | 104.3779 -1.9249 -1 1.9249 2 -2

8 || 104.3349 | 103.0830 1.2519 1 1.2519 1 1

9 || 112.1880 | 80.9244 31.2635 1 31.2635 8 8

10 82.9792 | 110.0240 -27.0447 -1 27.0447 6 -6
Total

31

-Sum 12

+Sum 43

W 12

The result of the Wilcoxon Signed-Rank Test is then a W of 12. 12 is greater than 8,

therefore, we cannot reject the null hypothesis. This means that according to our results in

the A-smart-ment, there is no significant difference between mapping with the RFID tags

and mapping without them.
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We can also see this in the graphs from our results from the A-smart-ment. While the
average confidence while using the RFID tags starts higher than without the tags, eventually
not using the tags catches up and surpasses the confidence levels of using the tags. The
disparity graph also shows this. Originally, while the map is being built, the RFID Disparity
is low. This value increases over time as the known-map becomes more accurate and the
map shifts, readjusting the XY coordinates of the map, but not the RFID tags. This could
also explain why the confidence levels while using the RFID tags are eventually surpassed.

While it’s true that we can see no difference in localization using the RFID tags, they
do improve the quality of the maps, slightly, as well as improve early localization in the
mapping process.

This doesn’t mean that RFID tags can be used as location landmarks on their own; it just
means that adding the capability to a mapping robot to read RFID tags that it itself mapped
does not improve its localization. This also makes sense, from a practical stand-point. When
the robot maps a tag, it makes an estimate of its position based on the environment it sees
and assigns the tag that location. Later, when re-encountering that tag, it already has an
estimated position based on the environment, an environment it has more fully explored than
the last time it encountered the tag. This tag then merely represents its past, and SLAM
techniques generally mean that this past estimate is going to be more inaccurate than its
current estimate as the known map has only improved. The RFID contains no additional
information that the robot doesn’t already have upon re-encountering it.

Of our original goals:

Add the capability to read and map RFIDs to the Turtlebot.

Add autonomous mapping software to the current ROS methods.

Compare different mapping algorithms.

Successfully autonomously map an environment using A.T.I.C.U.S.S.

Provide a map as accurate as given by the SRI robot.
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e Show that RFID Tags Improve Localization

all but the last two were achieved. Due to the inaccuracies of the hardware, we do not
see accurate maps in a large environment feasible with the platform. The software should

allow the robot to build continuously, ever expanding the known map.

5.2 LiMmitaTioNs oF A.T.I.C.U.S.S.

The greatest limitation is the battery life; at only two hours, almost no space of meaningful
size can be mapped in one run. Even the manual run took nearly a quarter of the robot’s
battery life, and only mapped a small fraction of the room. This makes our initial goal of a
One-Run-Mapper moot.

Another obvious limitation with the methods tested is odometry. Generally, it has a
30% error in measurements. The Turtlebot relies on the odometry of the Create, which is
a ten year old design. Not only is it ten years old, but it was always intended to be mass-
marketable. Developed by iRobot under Rodney Brooks® ideas of reactive robotics, it put
Roombas into the homes of thousands of people. However, being completely reactive, it does
not need to know exactly where it is. This is not the case for mapping, so becomes a problem

when trying to use the Create for such a purpose.

5.3 FUTURE WORK

An improvement to the RFID Localization software is needed. The average confidence level
while using the RFID tags should not have dropped below that of not using the RFID tags.
This seems to indicate they almost detract, once improperly mapped.

In order to fix this, a more adaptive RFID Localizer needs to be implemented. Instead of
storing one X,Y value per tag, perhaps multiple values can be stored, like particles. When
a tag is read then, it takes an average of all particles for the RFID. This could improve the

confidence levels as well as make for a more adaptive and robust RFID Localizer. Pursuit
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of this would also improve localization for devices that are using only the RFID tags for
localization information, which is still viable.

A known limitation from the beginning was the decision to only use the ID of the RFID
tag. With a tag every 50cm in every direction, there are many more possibilities that simply
reading the tags ID. While the memory on a tag is small, it could be used to store information,
such as where it is, or what room it is in, or directions of nearby landmarks [66]. These ideas
were not delved into in the process of developing the robot.

Obviously, A.T.I.C.U.S.S. needs to be improved in order to be able to provide usable
maps. The first step would be better odometry. Luckily, or unluckily, in terms of this thesis,
Willow Garage has developed a new Turtlebot, due to release sometime before the end of
the year. It has an integrated gyro, which does not require calibration every run, improved
odometry, and integrated power-out ports to power and charge a laptop. This also means
that the Turtlebot can now charge itself and the laptop controlling it at the same time, in
a manner similar to a Roomba. It also has additional battery pack ports, to extend its run
time. But, it can still charge itself, which is a vast improvement. These factors alone could
improve A.T.I.C.U.S.S. enough to produce usable maps.

A.T.I.C.U.S.S. could also be made more ubiquitous with these changes. If it can charge
itself, once it finishes mapping an office, it can be used as an office assistant or tour guide,
of sorts. Voice recognition is a package of ROS, and while we did not use it for this thesis,
we did install it and get it running and used it to control A.T.I.C.U.S.S. with simple voice
commands. With RFID integrated into the maps, tags could be assigned callable locations,
such as “Bob‘s Office.” Then, when you have the robot take a stack of papers to Bob, it
simply navigates to a location of an aliased RFID tag.

Another obvious next step is to have multiple robots. Since this is intended for an office-
like environment, a kind of all-purpose robot, that provides security, information, and main-
tenance monitoring, multiple robots would be employed anyway. This would allow more area

to be explored quickly.



CHAPTER 6

CONCLUSION

SLAM is a major issue for current robotics. Through the combination of better sensors and
refined algorithms, robots can know where they are in relation to their environment. This is
necessary for any type of multi-location goal.

By combining Genetic Programming with Behavior Based Robotics, robots can be
evolved in order to have better exploratory behaviors, allowing them to build better maps
through SLAM.

Through the development of the SCOUT flooring system, Interface saw an opportunity
to aid in SLAM map building, by adding yet another sensor; fixed location RFIDs. These
provide landmarks that can re-orient the robot. A.T.I.C.U.S.S. uses the combination of many
techniques in order to map his environment. Genetic Programs evolve different behaviors to
each type of situation encountered in the Aware House; halls, corners, and open spaces. These
differences are determined by applying a Randomized Hough Transform to the current map.

A.T.I.C.U.S.S. successfully evolved RFID localization abilities and exploration behaviors.
However, due to drift of the odometry and gyrometer, the mapping results were limited.
RFIDs do add another measurement for accurate localization, however, without accurate
orientation information, these benefits are minor, yet still provide enough of a boost to the
initial phases of mapping.

A.T.I.C.U.S.S. was able to successfully evolve a decision process on when to use fixed
location RFIDs and when to remap their stored location. This same technique can be done

to other types of landmarks, whether they are images or structures. This is very important
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Figure 6.1: A.T.I.C.U.S.S. Exploring the Aware House

in areas where GPS intermittent or not available at all. By adjusting the shape of the map

based on landmarks, better maps can be made.
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