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ABSTRACT

A generative incremental dependency parser enhanced with sequence encodings from a large language

model was used to calculate a syntactic surprisal measure in order to analyze the ambiguity present when

listening to an audiobook. This metric was correlated with BOLD fMRI signal, confirming the hypoth-

esis that derivations with low predicted probability require greater effort to understand. This surprisal

metric was validated at various levels of parallel processing, providing evidence that increasing the level

of parallelism creates a significantly better predictor for the data, up to a threshold which includes most

viable derivations. The brain regions associated with increased activation for higher levels of parallelism

across English and Chinese were identified as bilateral superior temporal gyrus activations.
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CHAPTER 1

INTRODUCTION

§ 1.1 Overview

This work aims to analyze human sentence comprehension in the brain by modeling syntactic ambiguity

using dependency parsing. While listening to speech, humans process the words they hear into a meaning-

ful representation. Building this semantic representation involves combining individual word meanings

into phrases, according to the syntactic relationships between words. While there are different theories

of syntax, one of the most fundamental analyses is how individual words relate to one another. This is

captured in Dependency Grammar by the head - dependent relationship between words (Tesnière, 1959).

However, determining the correct relationships is not always straightforward. At times a sentence can

be globally ambiguous, resulting in two or more different interpretations. More commonly, multiple

representations are possible because the entire sentence has not yet been heard. Human sentence com-

prehension is incremental, and predictions about the rest of the sentence are continually being made

and updated over time (DeLong et al., 2014; Kamide et al., 2003; Marslen-Wilson, 1973; Tanenhaus et al.,

1995). A discrepancy between this prediction and the updated analysis after new information is observed

corresponds to high comprehension difficulty. In addition, some alternate interpretations are simply

not plausible, and would be predicted with low probability. If a sentence parsing strategy claims to be

cognitively plausible, then its predictions about the relative difficulty of disambiguating between interpre-

tations must correlate with human behavior. In this study, fMRI data collected while participants listen

to an audiobook serves as the ground truth against which the complexity predictions of a dependency

parser are evaluated.
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§ 1.2 Motivation

This approach follows the language comprehension studies reviewed in Hale et al., 2022 in evaluating a

word-by-word complexity metric against brain data. However, most studies are limited by their analysis

of metrics related to the top ranked syntactic analysis. Notable exceptions are Hale et al., 2018 and Crabbé

et al., 2019 which consider the dynamic parsing process and include characteristics of the top derivations

included in the beam in their processing predictions. These studies both use Recurrent Neural Network

Grammars (Dyer et al., 2016) to indicate the phrase structure. In contrast, this work relies on Dependency

Grammar, which Boston et al., 2011 showed is able to predict sentence comprehension difficulty via eye

fixation data. In addition, Boston et al., 2011 also varied the number of alternate derivations taken into ac-

count, and found evidence in favor of ranked parallel processing. Although ambiguity in natural language

is a given, authorities differ on the parsing strategy of the human system. The debate between ranked

parallel and serial processing of only the best derivation, with potential for reanalysis, has been discussed

since Fodor et al., 1974. Although some such as Van Gompel et al., 2005 are in favor of serial processing,

others such as Jurafsky, 1996 claim that humans employ ranked parallel processing. The extent to which

ambiguity processing, which requires analysis of alternative derivations, occurs is still in question across

languages.

In addition to clarifying the amount of ambiguity resolution required for language understanding

using Dependency Parsing, another motivation for this work is to incorporate the parsing improvements

possible with large language models. Modern AI models are trained on larger datasets, more accurately

including distributional linguistic information; however, they pose a difficulty with regards to explain-

ability. Instead of deriving a metric directly from the output of a large language model, or correlating next

word predictions with fMRI data, as in Schrimpf et al., 2021 and Caucheteux and King, 2022, this work

uses uses large language model (LLM) embeddings to train an incremental parser, providing a probability

for each possible derivation. This provides a level of explanation valuable when analyzing the linguistic

structures involved in the processing of ambiguity.
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§ 1.3 Contributions

This ability to calculate a probability for each derivation from a generative dependency parser was de-

veloped by Buys and Blunsom, 2018, who used an RNN sequence model to encode the sentences. This

work replaces the RNN with pretrained LLM embeddings, which contribute to a significant increase in

accuracy, while still relying on the exact marginalization framework provided by Buys and Blunsom, 2018.

In addition, the incremental, left-to-right nature of the parser was exploited in order to calculate the

probabilities for sentence-medial, partially complete derivations. Although including these derivations

increases the total number under consideration factorially, the top k were calculated efficiently by using a

new summation layer and the original dynamic program.

With these derivations in hand, various applications of surprisal as a complexity metric were examined,

resulting in a syntactic surprisal metric that takes advantage of increased accuracy from a generative model,

without explicitly including word generation probabilities in order to focus on syntactic differences.

This surprisal metric was validated at various levels of parallel processing, using the Little Prince fMRI

dataset (Li et al., 2022). Since increasing k resulted in a significantly better predictor for the data, this

analysis provides new evidence in favor of parallel processing, at low values of k.

In comparing surprisal at various levels of parallel processing, brain regions associated with increased

activation for higher levels of parallel processing across English and Chinese were identified, namely the

superior temporal gyrus in both left and right hemispheres. This significant difference in activation implies

that these regions are involved in disambiguating among competing syntactic derivations. The bilateral

activation coincides with the expectation to see greater right hemisphere activation in naturalistic listening

data, compared with studies using individual sentences, as well as with the conclusions of Mason et al.,

2003 who predict bilateral activation among homologous regions, when processing difficulty exceeds a

threshold.
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§ 1.4 Thesis Structure

Before detailing these contributions, we begin by reviewing the related literature in Chapter 2, which

includes background on Dependency Parsing and its annotation schemas, as well as psycholinguistic

studies related to syntactic processing.

Chapter 3 discusses the development of the dependency parser, the choice of complexity metric to

reflect the ambiguity level at each word, and finally turns to the evaluation of this metric against fMRI

data.

Then, Chapter 4 presents and discusses the results, while Chapter 5 concludes.
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CHAPTER 2

BACKGROUND AND RELATED WORK

§ 2.1 Dependency Parsing

The theory of Dependency Grammar posits that syntactic structure can be summarized by a set of relations

between words in the sentence. These relations are binary and asymmetric (Tesnière, 1959). For a corpus of

sentences in any language, each sentence has a dependency tree containing labeled, directed arcs between

each word and its dependents.

An example dependency tree is given in Fig. 2.1. The arcs point from head to dependent, where

each word has no more than one head. The ROOT symbol is included so that a complete dependency

graph (which can then be called tree) has exactly one head per word in the sentence. The ROOT sym-

bol is not allowed to have a head. A further condition is that of acyclicity: there is no subset of depen-

dency arcs such that the head of a word is also its dependent (even with intervening words). That is,

a graph G is acyclic when there is no (non-empty) subset of arcs (dependent, label, head) satisfying:

{(i0, l1, i1), (i1, l2, i2), ..., (ik−1, lk, ik)} such that i0 = ik (Nivre, 2008).

ROOT My drawing was not of a hat

nmod:poss

nsubj

cop

advmod

case

det

root

Figure 2.1: A dependency tree for a sentence from The Little Prince, according to the Universal Depen-
dencies (UD) framework
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§ 2.2 Annotation Schemas

However, there are different ideas about the criteria for deciding between which two words to draw a

dependency relation, and which word in the pair should be the head. De Marneffe and Nivre, 2019 review

a summary of common characteristics between a head H and a dependent D in a construction C:

Table 2.1: Characteristics for identifying a syntactic relationship between a head H and a dependent D in
a construction C (De Marneffe and Nivre, 2019; Hudson, 1990; Zwicky, 1985)

1 H determines the syntactic category of C and can often replace C.
2 H determines the semantic category of C; D provides semantic specification.
3 H is obligatory; D may be optional.
4 H selects D and determines whether D is obligatory or optional.
5 The form of D depends on H (agreement or government).
6 The linear position of D is specified with reference to H.

Some dependency relation are uncontroversial: verbs are always considered the head of their argu-

ments, even though the head cannot replace the construction (1), but the verbal head selects its arguments

(4). Other constructions follow characteristic (1) and are also uncontroversial, e.g. adjectives are depen-

dents on the noun they modify.

However, other constructions have conflicting explanations. According to Mel’cuk et al., 1988, dif-

ferent relations can be drawn based on semantic, syntactic, or morphological criteria. Even syntactic

dependencies could be different based on deep or surface representations.

One particular difficulty is the representation of function words (e.g. auxiliaries, prepositions, deter-

miners). For these words, the properties for identifying a syntactic head (Table 2.1) are often distributed

across multiple words. For example, subject-verb agreement (5) is marked on auxiliary verbs in English,

but valency (4) is determined by the main verb.

The Universal Dependencies Corpora makes the decision to categorize content words as heads instead

of function words (De Marneffe et al., 2021). This is justified by setting the goal of making the dependency

relations most comparable across languages. In many languages function words are not used (to the same

extent), or morphological inflection is used instead of separate function words. With the UD framework,
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the core dependencies remain the same when the same sentence is translated into different languages,

when the content words are used as heads of any function words present.

In contrast, the Surface-Syntactic Universal Dependencies (SUD) annotation schema uses function

words as heads, which corresponds to characteristic (1) of heads, determining the syntactic distribution

of the construction (Gerdes et al., 2021).

ROOT My drawing was not of a hat

udep subj

comp:pred

mod

comp:obj

det

root

Figure 2.2: A dependency tree for a sentence from The Little Prince, according to the Surface-Syntactic
Universal Dependencies (SUD) framework

§ 2.3 Transition System

When analyzing algorithms that can generate a dependency tree, there are two classes which differ in

the storage system for partially processed tokens (tokens that have been read and are being considered

for attachment). The first type uses open lists, which allows all (including non-projective) dependency

structures to be processed (Covington, 2001; Nivre et al., 2007). In contrast stack-based algorithms are

typically restricted to projective graphs (Kudo and Matsumoto, 2002; Yamada and Matsumoto, 2003;

Nivre, 2003). Projective dependency graphs are defined by Mel’cuk et al., 1988 such that arcs between

words do not cross and no arc covers the top node.

For stack-based algorithms, a parser configuration (c) is defined as a stack, buffer, and dependency arcs

already drawn c = (σ, β,A). The transition system is a set of maps from configuration to configuration.

The transition system processes the words in each sentence w0:n from left to right, where w0 is the root

symbol, ROOT, and wn is the end-of-sentence symbol, EOS. To satisfy the condition of projectivity, the

ROOT symbol is the top node, which is not permitted to have a head.

The set of possible transitions varies depending on the specific parser, but all transitions fall within

the shift-reduce parsing system, where Shift transitions move the next word into focus (i.e. onto the

stack), and Reduce transitions remove a word from the stack, normally as the result of drawing an arc
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between two words. The order by which the arcs between words are drawn can be classified using the terms

top-down and bottom-up, but these are defined differently from their standard meaning in context-free

parsing. Top-down construction of dependency graphs does not involve any prediction of nodes, since

the dependency graph does not have non-terminal nodes, and the terminal nodes are given by the input

string. In terms of context-free parsing, all dependency parsing algorithms would therefore be bottom-up.

However, for dependency parsing, the term top-down is defined as attaching a dependent to its head

before the dependent is attached to all of its dependents. Conversely, bottom-up means that a dependent

must be attached to its head before that head is attached to its head (Nivre, 2004).

The arc-eager system (Nivre, 2003) draws arcs as soon as possible, even if the dependent has not yet

been attached to its own dependents. This system has 4 possible transitions, where Shift and Right-Arc

both shift the word from the buffer to the stack, but Right-Arc also draws a dependency arc from the word

on top of the stack to the next word on the buffer, before shifting the word. The other possible transitions,

Left-Arc and Reduce are contingent on the status of the word on top of the stack. If the word is already

headed, it can be popped from stack with (Reduce), while if it has no head, an arc can be drawn from

the next word on the buffer to the word on top of the stack (Left-Arc). Drawing arcs as soon as possible

reduces the number of words on the stack, making this system the most incremental. However, this also

means that left-dependents are processed bottom-up, and right-dependents are processed top-down.

In contrast, a true bottom-up system requires all dependents of a word to be found before the word

can find its head. This system can be arc-standard (Nivre, 2004) or arc-hybrid (Kuhlmann et al., 2011). The

arc-standard system has a simple set of allowed transitions: Shift moves the next word from the buffer to

the stack, while Left-Arc and Right-Arc are symmetric, that is both draw arcs between the first and second

elements of the stack, and only of the direction of the arc distinguishes the transitions (e.g. Left-Arc draws

an arc from the second stack element to the first stack element). Finally, the arc-hybrid system is named

for its combination of transitions from the arc-standard and arc-eager systems. The Shift and Right-Arc

transitions are defined identically to the arc-standard system. The Left-Arc transition is the same as the

arc-eager system, however this transition can always apply. This is because all words on the stack do not

have a head, which simplifies the record keeping when using this system. As noted, both arc-standard and

8



arc-hybrid systems are bottom-up, although the Left-Arc transition is defined differently. However, this

does not change the order in which arcs are drawn. The difference simply comes down to applying a Shift

action before or after the left-arc is drawn.

A sample transition action sequence for the sentence in Fig. 2.1 is shown in Table 2.2, which uses

the UD framework. In contrast, Table 2.3 shows the same sentence from Fig. 2.2, which uses the SUD

framework. It is apparent in this example, and generally true for English, that SUD has a shorter average

distance between words linked by a dependency.

Table 2.2: Arc-hybrid transition system derivation for the UD sentence from Fig. 2.1

Stack σ Index β Prediction
ROOT My Shift(My)
ROOT, My drawing Left-Arc(nmod:poss)
ROOT drawing Shift(drawing)
ROOT, drawing was Shift(was)
ROOT, drawing, was not Shift(not)
ROOT, drawing, was, not of Shift(of)
ROOT, drawing, was, not, of a Shift(a)
ROOT, drawing, was, not, of, a hat Left-Arc(det)
ROOT, drawing, was, not, of hat Left-Arc(case)
ROOT, drawing, was, not hat Left-Arc(advmod)
ROOT, drawing, was hat Left-Arc(cop)
ROOT, drawing hat Left-Arc(nsubj)
ROOT hat Shift(hat)
ROOT, hat EOS Right-Arc(root)
ROOT EOS reduce (p=1)

The comparison between UD and SUD in Tables 2.2 and 2.3 illustrates the result of shorter average

distance between words linked by relations: the stack is shorter on average for the SUD framework. This

observation that working memory requirements are greater for longer dependency distances is the reason

for a cross-linguistic preference for shorter distance between dependencies. Liu, 2008 analyzed corpora

from 20 languages and found that the average dependency distance only varies slightly, and is always

smaller than four, which is within working memory constraints (Cowan, 2001). Futrell et al., 2015 also

found that dependency length is smaller than a random baseline for 37 languages. Nevertheless, long-

distance dependencies are still possible, and even common in some languages, since there are competing

preferences which may result in requiring longer average dependency distance (Hahn & Xu, 2022).
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Table 2.3: Arc-hybrid transition system derivation for the SUD sentence from Fig. 2.2

Stack σ Index β Prediction
ROOT My Shift(My)
ROOT, My drawing Left-Arc(udep)
ROOT drawing Shift(drawing)
ROOT, drawing was Left-Arc(subj)
ROOT was Shift(was)
ROOT, was not Shift(not)
ROOT, was, not of Right-Arc(mod)
ROOT, was of Shift(of)
ROOT, was, of a Shift(a)
ROOT, was, of, a hat Left-Arc(det)
ROOT, was, of hat Shift(hat)
ROOT, was, of, hat EOS Right-Arc(comp:obj)
ROOT, was, of EOS Right-Arc(comp:pred)
ROOT, was EOS Right-Arc(root)
ROOT EOS reduce (p=1)

§ 2.4 Deduction System

Although the number of transitions required to parse a sentence is exponential on the number of words

in the sentence, some sequences of transitions can be shared across different analyses. This process of

sharing computations is implemented with dynamic programming, where transitions are modeled as

push computations, which can be tabulated with a deduction system. This allows for polynomial time

and space parsing, despite an exponential search space (Kuhlmann et al., 2011).

Each parser state according to the transition system, as defined in Section 2.3, contains two variables

(σ, β): the stack σ which contains words seen but not yet completely processed, and the buffer β which

represents the current word index. The notation σ|i indicates that word i is on top of the stack. The

initial state is ([0], 1), and the final state is ([], n).

For this transition system definition, creating a dynamic programming algorithm hinges on modeling

the sequence of transitions as a sequence of push computations, as implemented by Kuhlmann et al., 2011

and Cohen et al., 2011. Each push computation can include multiple transition actions, but ultimately

results in exactly one node being added to the stack. The most basic push computation is one shift

10



transition, while two push computations can be combined with a reduce (left or right arc) transition to

create a new push computation.

shift :[i, j − 1] → [j − 1, j]

reduce :[i, k][k, j] → [i, j]

The dynamic program is modeled as a deduction system (Shieber et al., 1995), where items [i, j] are

defined to imply a push computation exists which results in state (σ|i, j). With this definition, the action

sequence for an entire sentence can be decoded with the Viterbi algorithm, keeping track of the highest

scoring index for splitting the push computation into two smaller spanning push computations. The

Viterbi path probability vn(j) at word n for parser state j (with previous parser state i) is calculated:

vn(j) = maxNi=1vn−1(i)× ptr(j|i)× pgen(wn|j) (2.1)

The Viterbi path probability for the previous parser state i, where a transition exists from i to j, is mul-

tiplied by that transition probability as well as by the probability of generating the next word, given the

current parser state j. Although there are N derivations which lead to state j, only the maximum scoring

path is recorded as the Viterbi path probability (Jurafsky, 2000).

§ 2.5 Brain Networks for Syntax

The brain regions involved in language comprehension have been widely studied using lesion studies,

more invasive analyses during surgery, and relatively newer technologies such as EEG, MEG, and fMRI

data. These studies agree that regions involved in language include the inferior frontal gyrus (IFG), the

superior temporal gyrus (STG), and parts of the middle temporal gyrus (MTG) and the inferior parietal

and angular gyrus in the parietal lobe (Friederici, 2011).

Probing the regions involved in syntax specifically is difficult because setting up an experiment where

sentences are manipulated to isolate specific effects, such as syntactic structure difficulty, may result in ef-
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fects attributable to the specifics of the experimental paradigm. Other data are collected when participants

are engaged in natural tasks such as listening to a story.

Interestingly, recent studies using such naturalistic paradigms report brain activation in the right

hemisphere in addition to the expected left hemisphere activations (Binder et al., 2009; Huth et al., 2016;

Wehbe et al., 2014).

Recent work by Pasquiou et al., 2023 aims to differentiate the regions involved in syntactic and seman-

tic processing from fMRI data while listening to The Little Prince by masking either content words or

function words from the text (Li et al., 2022). This syntax or semantic specific text was modeled by word

embeddings and sequence encodings, which were correlated with fMRI signal. They found overlap in

brain regions involved in syntactic and semantic processes, which is expected because of how intertwined

the concepts are. For example, compositionality is implicated in both language comprehension processes.

However, there were also differences in hemispheres, with the right hemisphere showing greater overlap

in function in the same region, while the left hemisphere was more clearly delineated in syntactic and

semantic regions.

Crabbé et al., 2019 also studied variable levels of syntactic parallel processing using fMRI the Little

Prince dataset Li et al., 2022. They found that an RNNG parser with a variable beam width provided

complexity metrics, which were predictive of bilateral brain activation in the superior temporal gyrus

region.
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CHAPTER 3

METHODS

§ 3.1 Parser Training

The construction of the Dependency parser relies on the work of Buys and Blunsom, 2018, which employs

the transition based parsing system detailed in Nivre, 2008. However, accuracy is improved by replacing

sequence encoding via LSTM with the output of BLOOM, an open-access large language model (Scao

et al., 2022). The BigScience Large Open-science Open-access Multilingual Language Model (BLOOM)

relies on the transformer architecture introduced by Vaswani et al., 2017, but uses only the decoder. The

BLOOM model is trained on the ROOTS corpus, which includes 46 natural languages and 13 program-

ming languages. Of the 1.6TB of training data, 30% is English, and 16% is Chinese. Although the full

BLOOM model has 176 billion training parameters, smaller models are also trained using the same archi-

tecture and training data, where the smallest model has 560 million trained parameters. This BLOOM-560

model differs from the largest model in that it has 24 layers instead of 70, hidden layers have a width of

1024 instead of 14,336, and there are 16 attention heads instead of 112. The BLOOM-560 model is used

throughout this work, since increasing the size to the BLOOM-7b1 model (with 7,069 million parameters)

had no significant increase in accuracy. This corresponds to the observations of Oh and Schuler, 2023 and

Pasquiou et al., 2023, who correlate large language model encodings to human reading times and fMRI

data, respectively, and find that smaller models provide an equal (or better) fit to the human data.

The parser is trained on Universal Dependency corpora, which are available in over 100 languages (De

Marneffe et al., 2021). The English model is trained on the English Web Treebank (EWT) corpus, which

contains 12,543 training sentences, and 2,001 development set sentences. The Chinese model is trained

on the GSD corpus, which contains 3,997 training sentences and 500 development set sentences. Words

seen only once in the training data are replaced with unknown word tokens for the purpose of training
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the next word prediction classifier, but the original word is input to the BLOOM tokenizer for encoding.

This tokenizer has a significantly larger vocabulary than the number of words seen in the training data,

which is on the order of 3,000 for English, while the BLOOM tokenizer has a vocabulary size of around

250,000 for English. Words not seen even in this larger vocabulary are split into sub-words, potentially

down to the character level, resulting in a token sequence, which I interpret by selecting the embedding of

the right-most sub-word. This allows sequence encodings to be as detailed as possible, while still limiting

the vocabulary during training in order to allow dependency parsing states to impact the word generation

probabilities, instead of simply taking the next word prediction probabilities from the BLOOM model.

While training, sentences are shuffled at each epoch, and within batches (batch size = 16), which are

created from sentences of the same length. The BLOOM model is pretrained with 560 million parameters,

and has 25 layers, with an embedding dimension of 1024. I select the 17th layer as the representation to

input into the model, which was decided based on optimization of accuracy on the ParTUT UD corpus,

as seen in Fig. 3.1. Instead of fine-tuning the pre-trained BLOOM model on dependency parsing, a Pfeiffer

adapter is applied after each layer (Pfeiffer et al., 2020). This bottleneck adapter introduces a new linear

layer which reduces the dimension from 1024 down to 64 and back up to 1024, for input into the next

pre-trained BLOOM layer. The final output representation (layer=17) is reduced from size 1024 to 650

with a simple single layer feedforward neural network, with a sigmoid nonlinearity, and dropout of 0.5

applied first. During training, gradient norms are clipped to 5.0, the initial learning rate is 1.0, with a decay

factor of 1.7 applied every epoch after the initial 6 epochs.

§ 3.1.1 Accuracy

While state of the art methods employ information about the entire sentence (using global methods, or

incremental methods with bidirectional embeddings) in order to predict dependency relations, for the

purposes of creating a cognitively plausible model, strictly incremental methods must be used without

including useful information from words occuring later in the sentence. Accuracy is compared to Buys

and Blunsom, 2018 as a "base model" which employs the same transition system with encoding based

on an LSTM with random initial weights. This model was retrained on the same UD corpus instead of
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Figure 3.1: Labeled Accuracy Score (LAS), Unlabeled Accuracy Score (UAS), Label Accuracy for Depen-
dency Parser trained and evaluated on UD ParTUT corpus. Each model uses a different BLOOM layer
as a sequence encoder.

using the values reported in Buys and Blunsom, 2018 using the Penn TreeBank to make accuracy values

directly comparable. Accuracy is improved by initializing with FastText embeddings instead of random

intial weights, but training the BLOOM model with the Pfeiffer Adapter provides the greatest increase

in accuracy. The improvement in accuracy obtained by including the Pfeiffer Adapter is a significant

improvement over using pre-trained BLOOM embeddings directly, which is illustrated in Fig. 3.2.

Table 3.1: Labeled attachment score (LAS), Unlabeled attachment score (UAS), and Label accuracy score
for the UD corpus listed

Language Corpus Model LAS UAS Label accuracy
English EWT base 74.94 80.24 84.74
English EWT fastText 75.14 80.62 84.75
English EWT BLOOM 80.49 84.74 89.44
Chinese GSD base 55.30 62.79 80.87
Chinese GSD BLOOM 70.04 75.47 82.55
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Figure 3.2: Comparison of Labeled Accuracy Score (LAS) for each BLOOM layer encoding as input to the
Dependency Parser. Accuracy is improved by adding the Pfeiffer Adapter layers between each BLOOM
layer, compared to just BLOOM layers as input to classifiers.

Parser accuracy is evaluated after each epoch. The earliest epoch with highest UAS is chosen to prevent

unnecessarily decreasing the loss after accuracy has been reached.

§ 3.2 Derivation Probabilities

The transition system has three possible actions, which can be decomposed into transition and arc direc-

tion probabilities, as shown in Table 3.2. The sentence is encoded left-to-right by the BLOOM-560 model,

which uses the transformer architecture to create a representation of each word in its linear context, hi

Vaswani et al., 2017. Since the model includes self-attention layers, all words up to and including the

current word can influence the vector representation of the current word, to varying degrees according

trained weights Jurafsky, 2000. For word wi, hi is a vector encoding the word and its left context, w1:i.

The encoded sequence h predicts transition actions via a binary classifier, and word probabilities via a
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classifier:

ptr/dir = sigmoid(rT relu(Wtshσ0 +Wtbhβ)) (3.1)

pgen = softmax(RT tanh(Wgshσ0 +Wgbhβ)) (3.2)

where 1 = ptr(sh|hi, hj) + ptr(re|hi, hj) and 1 = pdir(la|hi, hj) + pdir(ra|hi, hj).

Table 3.2: The arc-hybrid transition system, where states (before & after) are indicated by (stack, current
index) tuples

Action Before After Arc Probability
Shift (σ|i, j) (σ|i|j, j + 1) - ptr(sh|hi, hj)pgen(wj+1|hi, hj)

Left-arc (σ|i, j) (σ, j) j → i ptr(re|hi, hj)pdir(la|hi, hj)
Right-arc (σ|l|i, j) (σ|l, j) l → i ptr(re|hi, hj)pdir(ra|hi, hj)

The base model as defined by Buys and Blunsom, 2018, defines the marginal probability of each

sentence as the summation over all possible transitions to generate a string of words:

p(w1:n) =
∑
t

p(w1:n, a1:2n) (3.3)

The probability of a potential derivation of a complete sentence is the joint probability p(w0:n, a0:2n)

of parser transitions needed to draw dependency arcs, and the word generation probabilities, which also

depend on the arcs already drawn at each word. This joint probability factors as:

p(w1:n, a1:2n) =
n∏

i=1

(
p(wi|hσ

(mi)
1

,hi−1)

mi+1∏
j=mi+1

p(aj|hσ
(j)
1
,hi)

)
(3.4)

where hi is the sequence encoding after the string w0:i has been encoded. Therefore, then encoding

represents the word wi and its left context starting at the ROOT symbol, w0. The top element of the

stack at each transition j is represented by σ(j)
1 , while the variable mi indicates the number of transitions

before wi is generated. After wi is generated, the next transition is indexed mi + 1, and this transition is

optionally followed by additional reduce transitions, leading to the transition indexedmi+1 which directly

precedes the generation of word wi+1
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In order to correlate parser predictions to brain activity, and in particular to take multiple derivations

into consideration, it is necessary to include a metric which summarizes the parser prediction information.

One such metric is surprisal, revived by Hale, 2001 as a method of predicting sentence-processing difficulty

at a word. The basic formula is the logarithm of the inverse of the marginal probability.

log2

(
1

p(y)

)
= −log2(p(y)) (3.5)

Extending this to the incremental sentence comprehension situation, the surprisal of a word at posi-

tion wn which follows a string ending in wn−1, is a ratio of the information content at the current word

minus the previous information content:

−log2(p(w1:n|w1:n−1)) = −log2

(
p(wn, wn−1, ..., w1))

p(wn−1, ..., w1))

)
(3.6)

−log2(p(w1:n|w1:n−1)) = −log2(p(w1:n)) + log2(p(w1:n−1)) (3.7)

This value can be calculated from parser transition probabilities by taking the marginal probability of

each derivation of interest.

p(w0:n) =
∑
t

p(w0:n, t0:2n) (3.8)

However, since word probabilities are largely based on word frequency and the preceding string con-

text independent of syntax, the word generation probabilities overshadow the differences between p(w)

for individual derivations, Fig. 3.3. In order to see differences in competing syntactic derivations, one

option is to assume a nongenerative model, and identify each derivation only by the product of its tran-

sition probabilities. In addition, surprisal as introduced in Hale, 2001 is actually a sum over all parser

states. However, the parser states included in the sum are limited to the top ranking k, which indicates

the number of alternate derivations under consideration. This limitation corresponds to the same metric

used by Boston et al., 2011 who implemented beam search at various levels of k, while this method avoids
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Figure 3.3: A sentence from The Little Prince, showing incremental surprisal from overall derivation
probability (blue), and syntactic surprisal from transition probabilities only (orange)

decreasing parser accuracy at lower values of k.

p(an|an−1)k =
k∑

i=1

p(an|an−1)i (3.9)

However, the non-generative model suffers from the label bias problem, where global performance

suffers when individual actions are trained directly Eisenstein, 2019. Since the probabilities are locally

normalized, that is, all possible transitions at each word sum to 1, there is no method of penalizing unlikely

word sequences. The inclusion of word generation probabilities remedies this situation, and it may be

that the highest scoring transition sequence is not chosen as most likely for sentence based on the word

generation probabilities. In an effort to reflect this choice in the generative model without using explicit

word generation probabilities, I define the surprisal calculation using conditional probabilities, as the

action sequence needed to generate a string of words p(a|w) where a is the action sequence given a

certain sequence of words.

p(a|w)k =
k∑

i=1

p(a|w)i (3.10)

In the following, I investigate two formulations forp(a|w). The first is a one-step prediction of transitions:

p(an|wn−1). The second is transition sequence only, just as in the non-generative case, but the choice of
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derivation is “informed” by the highest scoring total probability.

p(a|w)k =
k∑

i=1

p(tr1:2n,w1:n)i
p(w1:n)i

(3.11)

The total number of possible parser states is equal to the sequence of Catalan numbers, so for a

sentence of length 1, C1 = 1, while C9 = 1430 which is the average sentence length in the Little Prince,

while the longest sentence has 52 words, which results in 2.98× 1028 derivations.

In this way, the parser is complete, and considers all derivation instead of being limited to a beam of

the top k options, but this analysis only considers the top ranking k derivations at each word in order to

investigate the degree of parallelism in human language comprehension. This is implemented by modify-

ing the Viterbi algorithm to keep a list of the top k transition actions at each split-point, instead of only

keeping track of the top 1 scoring action.

§ 3.3 fMRI Datasets

The English data were collected and preprocessed by John Hale, Shohini Bhattasali, and Jixing Li with the

help of Nathan Spreng and Wen-Ming Lu. The Chinese data were collected and preprocessed by Jixing

Li with the help of Yiming Yang.

§ 3.3.1 Participants

All study participants were healthy, right-handed, young adults. They self-identified as native speakers

of the language in question, and had no history of psychiatric, neurological or other medical illness that

could compromise cognitive functions. All participants were paid and gave written informed consent

prior to participation, in accordance with the guidelines of the Human Research Participant Protection

Program at Cornell University or the Ethics Committee at Jiangsu Normal University for English and

Chinese particpants, respectively. The English dataset includes 51 participants (32 female, mean age = 21.3,

range = 18-37), and the Chinese dataset includes 35 participants (15 female, mean age = 19.3, range = 18-25).
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§ 3.3.2 Data Acquisition

The English audio stimulus is an English translation of The Little Prince, read by Karen Savage. The

Chinese audio stimulus is a Chinese translation of The Little Prince, read by a professional female Chinese

broadcaster. The English and Chinese audiobooks are 94 and 99 minutes in length, respectively. The

presentations were divided into nine sections, each lasting around ten minutes. Participants listened

passively to the nine sections and completed four quiz questions after each section (36 questions in total).

These questions were used to confirm participant comprehension of the story.

The English and Chinese brain imaging data were acquired with a 3T MRI GE Discovery MR750

scanner with a 32-channel head coil. Anatomical scans were acquired using a T1-weighted volumetric

magnetization prepared rapid gradient-echo pulse sequence. Blood-oxygen-level-dependent (BOLD)

functional scans were acquired using a multi-echo planar imaging sequence with online reconstruction

(TR = 2000 ms; TE’s = 12.8, 27.5, 43 ms; F = 77◦ 200 ; matrix size = 72 x 72; FOV = 240.0 mm x 240.0

mm; 2 x image acceleration; 33 axial slices, voxel size = 3.75 x 3.75 x 3.8 mm).

§ 3.3.3 Data Preprocessing

The English and Chinese fMRI data were preprocessed using AFNI version 16 (Cox, 1996). The first

4 volumes in each run were excluded from analyses to allow for T1-equilibration effects. Multi-echo

independent components analysis (ME-ICA, Kundu et al., 2012) was used to denoise data for motion,

physiology, and scanner artifacts. Images were then spatially normalized to the standard space of the

Montreal Neurological Institute (MNI) atlas, yielding a volumetric time series resampled at 2 mm cubic

voxels.

§ 3.4 Statistical Analysis

The goal of the analysis is to compare a model of fMRI signal from surprisal at varying levels of k. For

each subject, the BOLD (Blood Oxygenation Level Dependent) signal is modeled by a GLM at each voxel.

The regressors in the GLM include word rate, fundamental frequency (f0), word frequency, root mean

square intensity (RMS), and surprisal at the top k derivations. Root Mean Square intensity (RMS) an
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indicator of audio intensity at every 10 ms of the audio; word rate is a stick function marking the offset of

each spoken word; frequency is derived from the individual words in a movie subtitles database (Brysbaert

and New, 2009). Such predictors are here to ensure that conclusions about parsing difficulty would be

specific to parsing instead of general speech comprehension, which is known to be affected by these factors.

Specifically, lexical frequency was added as a covariate of noninterest, to statistically factor out effects of

general word frequency that would correlate with the overal expectation at each word.

Surprisal for each word was aligned to the offset of each word in the audiobook. Model comparisons

using cross-validated coefficient of determination (r2) maps were carried out in order to evaluate the

goodness of fit of the two surprisal calculations with BOLD signal. The predictors were convolved using

SPM’s (Friston et al., 2007) canonical HRF (Hemodynamic Response Function).

For every participant, the goal is to compute how much the inclusion of surprisal at varying levels of

k increases the cross-validated r2, from a baseline model including only the control variables. Therefore,

the r2 scores represent the variance explained in each voxel by the addition of surprisal to the model as a

predictor. Surprisal regressors at various levels of k are added to the base model separately in order keep

the number of parameters in each linear regression model constant.

To compare the impact of the number of alternate derivations included in the surprisal calculation on

fMRI signal explanation (i.e. r2 increase of each variable) a paired t-test was performed on each individual

r2 map, and obtained z-maps showing the regions where surprisal at one level of parallelism explains the

signal significantly better than surprisal at the other.
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CHAPTER 4

RESULTS AND DISCUSSION

§ 4.1 Results

§ 4.1.1 Complexity Metrics

The results for the English Universal Dependencies model are compared across different complexity met-

rics. The non-generative model selects for the top k transition probabilities, while the prediction model

makes a 1-step prediction from the joint transition and word probability at n− 1 to the next transition

only at word n.

In the following z-maps, the threshold K indicates the minimum voxel cluster size, while k indicates

the number of parser states considered by the complexity metric.

Figure 4.1: English Brain z-maps showing the significant clusters (K>25; p < .001 uncorrected) for the UD
model comparison between surprisal at k=1 vs k=5 for parser transitions only.

Both English paired t-tests on r2 maps show mainly bilateral activation of the superior temporal

gyrus. This region is indicated in other studies of syntactic ambiguity, e.g. Dunagan et al., 2022. This

study analyzes Object-Extracted Relative Clauses (ORC), and finds superior temporal gyrus activation

in Chinese ORC processing, and suggests, in accord with Jäger et al., 2015 that syntactic ambiguity is

involved in the comprehension of Chinese ORCs.

23



Figure 4.2: English Brain z-maps showing the significant clusters (K>25; p < .001 uncorrected) for the UD
model comparison between surprisal at k=1 vs k=5 for p(an|wn−1).

The final complexity metric calculates the probability of a derivation as the product of transition

probabilities which is the same as the non-generative model, but chooses the top k informed by the

generative model.

Figure 4.3: English Brain z-maps showing the significant clusters (K>25; p < .001 uncorrected) for the
UD model comparison between surprisal at k=1 vs k=5 for transition probabilities chosen by maximum
scoring generative probabilities.

This informed result differs from the other metrics in that it emphasizes the penalty incurred by

reanalysis - when the top derivation changes from one word to the next. With the other metrics, the top

derivation can only be abandoned when it decreases in probability, while in practice incorrect transitions

do not necessarily have low probabilities, and avoiding ungrammatical derivations is the responsibility

of word generation probabilities. Since the informed metric uses the full word generation information,

surprisal is increased over that of the prediction method when reanalysis occurs. This may explain the extra

activations at the right temporo-parietal junction.

Pasquiou et al., 2023 compared brain regions between syntax and semantics, and found that the right

temporo-parietal junction shows strong overlap with syntax and semantics, while the corresponding left
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region is more dominated by semantic processing. This corresponds to Fig. 4.3 which also shows only

relatively small regions of the temporo-parietal junction in the left hemisphere, and strong activation in

the right hemisphere.

Wehbe et al., 2014 also correlated various linguistic features with fMRI data in a naturalistic com-

prehension study. The syntactic features studies were part of speech, ordinal position in the sentence,

and dependency role in the sentence. These syntactic features predicted bilateral brain activation at the

temporo-parietal junction, but did not predict the STG activations observed in this study. This shows

that modeling dependency relations beyond the role label can give extra information about syntactic

processing which is key to understanding the brain regions involved.

§ 4.1.2 SUD Results

The results from the English Surface-Syntactic Universal Dependencies (SUD) model generally coincide

with those from the UD model. However, the regions involved are limited to the superior temporal gyrus.

Since the SUD model relies on function words instead of content words to head phrases, the regions also

involved in semantic processing may be less activated.

Figure 4.4: English Brain z-maps showing the significant clusters (K>25; p < .001 uncorrected) for the
SUD model comparison between surprisal at k=1 vs k=5 for parser transitions only.

§ 4.1.3 Chinese Results

The Chinese UD model results also coincide with their English counterparts. The right hemisphere seems

to have slightly stronger activation in Chinese, while for English the left hemisphere is generally slightly

stronger.
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Figure 4.5: English Brain z-maps showing the significant clusters (K>25; p < .001 uncorrected) for the
SUD model comparison between surprisal at k=1 vs k=5 for parser transitions chosen by maximum scoring
generative probabilities.

Figure 4.6: Chinese Brain z-maps showing the significant clusters (K>25; p < .001 uncorrected) for the
UD model comparison between surprisal at k=1 vs k=5 for parser transitions only.

§ 4.2 Discussion

Both Chinese and English paired t-tests on r2 maps show mainly bilateral activation of the superior

temporal gyrus. This region is expected based on other studies of syntactic processing, such as Crabbé

et al., 2019, Pasquiou et al., 2023 and Dunagan et al., 2022.

Although language processing has classically been viewed as taking place in the left hemisphere for

right handed individuals, Mason et al., 2003 have found that right-hemisphere regions are activated when

syntactic ambiguity beyond a certain threshold is encountered. This bilateral activation supports the

theory that ambiguity resolution does take place in naturalistic speech comprehension, beyond specific

laboratory situations such as garden-path sentences. Mason et al., 2003 found higher levels of brain acti-

vations for ambiguous sentences even when ambiguities were resolved in favor of expected constructions,

which corresponds to the theory of parallel processing.
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Figure 4.7: Chinese Brain z-maps showing the significant clusters (K>25; p < .001 uncorrected) for the
model comparison between surprisal at k=1 vs k=2.

The improvement of the model at k = 5 also indicates support for the theory that human sentence

processing is largely parallel instead of serial. Although many words in both models have surprisal ap-

proaching zero, indicating a non-ambiguous situation, the difference among the models occurs with

certain words where surprisal at k = 1 predicts difficulty, while surprisal at k = 5 predicts no difficulty

because the virtually all the probability mass is contained within the top 5 derivations. Since surprisal at

k = 5 provides a greater r2 increase, this provides evidence that several alternate derivations are actually

being updated during human sentence comprehension.
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CHAPTER 5

CONCLUSION

Using an incremental, generative, dependency parser enhanced with sequence encodings from a large

language model, several “syntactic surprisal” measures were proposed in order to analyze the syntactic

ambiguity present when listening to an audiobook. These metrics were calculated for partial dependency

trees, which provided a measure of processing difficulty at each word in the text. It was possible to correlate

these metrics with BOLD fMRI signal, validating the hypothesis that derivations with low predicted

probability require greater effort to understand.

The surprisal metrics were validated at various levels of parallel processing. Since increasing k provides

a significantly better predictor for the data, there is new evidence in favor of parallel processing.

Using these metrics also allowed for identification of the brain regions associated with increased acti-

vation for higher levels of k across English and Chinese, namely the superior temporal gyrus in both left

and right hemispheres. Additional activation at the temporo-parietal junction was also observed for the

surprisal metric which most emphasize probability change due to reanalysis. This evidence shows that

these regions are involved in disambiguating among competing syntactic derivations. The bilateral activa-

tion coincides with the expectation to see greater right hemisphere activation in naturalistic listening data

compared with studies using individual sentences, as well as with the prediction that the right hemisphere

regions are recruited when processing difficulty exceeds a threshold.

The brain regions involved in syntactic disambiguation were found to correspond between English and

Chinese data. Future work may validate these results across additional languages, particularly where greater

typological differences exist, especially variation in word order, morphology, and syntactic headedness.

Future work may also categorize temporary ambiguity according to different criteria, such as various
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dependency parsing transition systems and annotation schemas, although the current results predict the

same brain regions to be implicated.
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