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ABSTRACT
I n brain tumor diagnosis and treat ment,

standardo approach, through which an exper
process is becoming increasingly infeasible as patient data volumes exceed quantities
which can beeliably segmented in reasonable periods of time. Additionally, brain
tumors exhibit wide variation in type, extent and location, further complicating task. This
renders manual segmentation a tioce@msuming and labentensive undertaking, shown
to yield inconsistent results. Automated models, implemented with deep learning
architectures have demonstrated a faster, more consistent segmentation approach. While
the benefits of automated models have been established, they have historically failed to
be integratd into clinical practice. Research indicates that bridging the clinical gap
requires establishing Atrusto and Atranspa
automated tools. This paper proposes color space visualization of automated
segmentatiomesults, designed to improve standard segmentation practices through
collaborative effort between automation and expert knowledge.
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CHAPTER ONE

INTRODUCTIONAND PURPOSE

Artificial Intelligence (Al) tools have revolutionized the field of data

mining by enablingknowledge discovery in largeomplexdatasets withunprecedented
speedand accuracyin recent history, efforts have bemade to apply Al deep learning
(DL) modek for biomedical image analysié. specific instances the use of deep
learning models for image analysis in cancer diagnbsisiany cancer types, tumor
segmentation is popular image analysis task, used to guide both diagnosis and treatment
intervention Tumor segmentation is an inherently complex task, further complicated in
certain locations suchasthebrddoor r ent fAgol d s thaminder do met h
segmentation areecoming increasingly infeasible with the time and resources available.
Volumes of patient medical imaging data are increasing exponentially, along with
enhanced imaging protocols producing images with more detailed data than ever before.
As the demand fdpiomedical image analysis increases, it is necessary to evaluate and
improve current methods to ensure patient care is provided swiftly and knowledgeably
for successful intervention.

A number of benchmark studies of deep learning models for brain tumor
segmentation have received high accuracy and efficiency relative figaltestandard
manual diagnosigAt the same time, these models have thus largely failed to be

iImplemented across clinical institutioriairther research explains thatile fast and



accurate diagnosis ideal, furtherequirements for clinical diagnostic tools exidbst
frequently, clinicaktudiesreport interpretability and transparency as barriers inhibiting
clinical trust of automated diagnostic toods benchmark DL models fdarain tumor
segmentation have failed to addréssher relevantlinical concerns, the models have
also failed tagain popularity in use

This paper addresspsevious work on botktateof-the-artbenchmark DL
architectures fobiomedical image analysis and the established need for clinical trust in
diagnostic tools. The purpose of this study is to present an approadingdeep
architectures for brain tumor segmentation in conjunction withrexdthexplanatory
visualization. The intention of this approach is to use expert evaluation, an element used
in current clinical practice, to work alongside DL models in a combined effprettict
and evaluate tumor segmentation results. The goal, hemprovide the best patient
care possible by retaining the advantages of both automated and manual approaches for

brain tumor segmentation.

1.1CONTRIBUTIONS
The primary contributioof this work is the registration and enhancement module
as part of a serrautomated brain tumor segmentation process. This tumor segmentation
process isounded on principles of interpretable deep learnim@gn effort to incorporate
domain knowledge intoealworld deep learning implementations. This semiomated
process involves deploying a benchmark deep automated model for brain tumor
segmentation, followed by a registration and enhancement module to guide expert

evaluation within the domain and idigeestablish clinical trust in automated diagnostic



tools for biomedical image analysis.&bBnhancememodulecombinesadvancements

in computer vision, human computer interaction and data visualizatiomptovethe
explanatory value adutomatedegmatationpredictiors for expert readergurther work

should implement these methods and tools in the real clinical setting so that the value and

use may be evaluated.



CHAPTER TWO

BRAIN AND CENTRAL NERVOUS SYSTEM TUMORS

Brain tumors are a growing concern for society as they rate among the most
common human diseasig§ and carry relatively poor prognosis for patiedtdNational
Cancer Institute (NClinitiative, the SEER progranmdicates that in 2019,
approximately 24,000 Americamgerediagnosed with brain cancetile 18,000
Americansdied of the diseasf42]. This program also estimates thia¢ tmedian age at
diagnosis of brain cancer patients is 59 yeamndthatonly 32.9% of those diagnosed
with brain cancer are expected to survive five ygé4pb The frequency and gravity of
brain tumors have identified the immediateed to improve brain cancer prognosisie
is one of the most influential factors in brain cancer progncalstive to both diagnosis
and treatment since brain cancan progress rapidly and tumor stage at diagnosis
strongly influences patient progsis[42]. Relative to other cancer sites, brain tumors are
associateavith higher symptom burdediue to the unique neurocognitisgmptomd4].
This is in part due to the restrictil@cation inside the skuWhichleaves little room for

growth before brain function is affectgt, 55].

2.1 CAUSE AND TREATMENT
Most cancers are caused by a mutation of the Deoxyribonucleic Acid (DNA)

sequence which alters the genes responsible for cellular reprodudjoBNA serves



as an instruction manual for genes, which carry out a number of cycles relevant to both
cancer instance and growth.témor manifests as the result of a genetic mutation causing
the uncontrolled growth of cel[46]. Other relevant DNA mutations consider the
apoptosis, necrosis and angiogenesitilarprocesses. Apoptosd necrosis are both
cell death cycles. Apoptosisas fipr o gcreainimedde at ho whi ch i nhi bi
transcription and complicates regulatory pathw&g. Angiogenesiss a support cycle,
in which genes establish vascular networks to support the needs of therbcatycer
incidence angiogenesis allows cancergpread and grow by establishing vascular
networks to support newly formed tum¢is$, 55. A number of environmental, lifestyle,
and diet factors can cause any of these mutations and result in [d&jce

Treatment optins for brain tumor patients consider both diagnostic information
and relevant patiergpecific information such as age, gender and religious restrictions.
Most frequently, treatment options for brain tumors include surgical removal or resection,
radiationtherapy, chemotherapy, and other neprecisiontherapiesuch asntensity

modulated proton therapy (IMPT).

2.2PRIMARY AND METASTATIC TUMORS
Tumorsaremost generallgategorizedsbenignor malignant Malignancy
indicates the degree of aggressiveness of the t{@howvhereas benign tumors are not
aggressiveThough not aggressive, benign brain tumors can pose detrimental threats to
patient wellbeing due tdue to their restrictive location in the braind potential for
functional deficit and elevated symptom burfén where room for tumor growth is

limited by restricted neuroplasticif$2]. A further classification labels tumor pamary



or metastaticPrimary reflects a tumor which originates in the brahereas ratastatic
tumors formas a result ofancer cells spreading fronsaparag primary tumor location

in the body[3, 53. Primay braintumors carry high rates of mortality and morbidity,

with an estimated a mortality rate of 6(0&). Primary tumors are less common than
metastasis, but present more frequently in older adults and cHi8fle®rimacy or
metastasis, number of tumors, size and location is all taken into consideration for both

treatment planning and determining patient prognégis

2.3 TUMOR GRADING

Tumormalignancyis measured in gradedV, wherelower grades indicatiess
aggressive tumsrandgrade increases with malignan@j.[Grades | and Il are referred
to as o6l ow gradedé while gr adiagendral,lbweand | V
grades are associated with better prognosis andtéongsurvival.The grading criterion
Is largely based on four morphological criteria: cytological atypia, mitotic activity,
microvascular proliferation, and necrofiS]. Grade | tumorsrebenign slow growing
anddo notexhibitany of the four morphotgical criteria[53]. Grade Il tumorshow only
cytological atypia of the four criterion awdn be either malignant or nomalignant
These tumorare generally slowrowing but are known to recur as higlggade tumors
as the disease progres§g3]. Grade Il indicates tumors which exhibit both anaplasia
and mitotic activy, are malignant andlsoassociated with recurrence as at a higher
grade. Grade Idumorspresent with anaplasia, mitotic activity, microvascular
proliferation and/or necrosis. These tumors are aggressively malignant and exhibit rapid

rates of reproduatn [53].



2.4TUMOR CLASSIFICATION

The World Health Organization publishéte most populareference standards
for tumorgrading andcategorizationA 2007 revision of these standaassiders both
braintumorsand central nervous system (CNS) tumas s single€ategorization group
These standards delineadeer 120 distinct classifications of brain and CNS tunpdys
13]. The specifications for each category were updegedntly ina2016revision.Prior
thisrevision, brain neoplasms weeskassified largelyon histopathologic analysikl2)
followed by surgical biopsy or resectif®, 3§. This raised concerns thiaistological
classificationdid not comprehensivelaccount for thevarious differentiationsvhich can
co-exist within a single tumdi56]. Further concerns noted thadthologists attribute
importance of the WHO grading criteria differeni82, 55, 56]

The 2016 update of the WHO standards intended to improve diagnostic accuracy,
patient management and treatment respfBewith a number of notable changes. One
changas the inclusion of molecular markarsconjunctionwith histological criteria for
ddining distinct tumor entitie§54, 54. Specifically,moleculaiTmma r k er s ar e Al ay ¢
with histopathologal criteria, such that a tumor classification might be made solely on
histopathological consideratiorempdmolecular markers provide additional clarification
when required or suggestgsb]. Current standards do not classify brain lesions saolely
a molecular basigb3]. Molecular markers are intended to narrowly defirsinct
classifications with the intent of improving diagnostic accuracyesrablingbeter inter
laboratory comparisofb3, 54. Though the WHO prodesdetailed criterion for brain
tumor diagnosis, tumarading andategorization remains difficult as cellular structures

become illdefined and more difficult to distinguish at higher grad&g.



A final point on the2016revision is theadditionofa 6 Not Ot her wi s e
or NOS classification. The NOS designation is applied in cases where there is insufficient
information to classify a tumor according to the established guid¢BdgsThis can
manifest in a number of instances, such as, when genetic testing is not available, genetic
testing results are not compatible with other tumor classticafuidelines, or in
instances of uncertainty of tumor features due to insufficient sampling or artifacts which
obstruct analysifb6]. This revision also icludesdistinct considerations for pediatric

tumors separate from those of adult tunjéf3.

25 CHALLENGES INTUMOR CLASSIFICATION

Though molecular markers provide additional clarification for tumor
categorization, there remamoncerns surroundinipe feasibility of obtaining molecular
genetic information in the realistic clinical setting. Broadly, these conceassn that
manyclinical institutiondack access to the necessary tools for genetic tefiijg
Furtherconceris mentionthat molecular genetic procedures are complicated and time
consumingdue tolack of a specified process for obtaining molecular information, which
contribute tanter-observer and intenstitutional variability[53].

In addition topotentials for human error and variation, broad tumor variation
further complicates classificatioBrain tumors are notoriously heterogeneous, meaning
that a single tumor can present differing histopathologic features in tissue samples taken
from different locationsas tumor biology varies throughout the extent of the lesion [38,
49]. At the same time, procedures involving extracting brain tissue carry inherent

biological risk, affecting the practicality of obtaining more robust sampplass,

S|



histopathabgical analysidurtheris dependent upon the extent to which the tumor

samples are representative of the tumor as a whole.

2.6 GLIOMA BRAIN TUMORS

The dataset used for this study is composed of brain and CNS tumors classified in
the Glioma groupGliomaaccount for over 70% of all brain tumors and arentiost
frequently diagnosegroup of brain and CNS tunj4l, 46, 49] followed by the
Meningioma group41]. Glioma refers t@ group of tumorsvhich originate in the glial
cells. There are three known variations of glialls associated with cancand tumorsn
the Glioma group artiurther classified based dhetype of glial cell involved 3.
Theseclassifications include Astrocytomg.(I-IV), Oligodendroglioma (g. HlI),
Ependymoma (d-Ill), andGlioblastomad. IV ), where further subclassification for
each of these four groups considers grade, age (pediatric or adult), and cellular features
[62]. High grade Glioma present comparatively high mortality rates to other types of
cancers, with a median survival rafeooly two yeard43]. Gliomaare notoriously
heterogeneous88] and infiltrative lesions [46Jvhich present challenges diagnosinsl
treatment decision3.he incidence and severity of Glioma tumors identify an immediate

need for improving diagnosis and treatment of these lesions.



CHAPTER3

DIAGNOSTIC MODALITIES AND BIOMEDICAL DATA

3.1INVASIVE AND NON-INVASIVE DIAGNOSIS

Medical diagnostic procedures can be generally classifiet/asive or non
invasive. Invasive procedures require biological samples to be extracted from tha body
for some type of medical instrument to penetrate the d®idpsy is popular imasive
diagnostic procedure used in cancer diagnosis-iNaasivediagnosis gathers
information through questiamg, physical examination, observationbiomedical
imaging. Biomedical imaging apopular resource used for cancer diagnosis, treatment
planning and treatment response assessment since it provides quantitative imaging data
with little or no biological risk to the patient.

Biomedical imagings available in a number ofodalitieswhich are considered
asstructural or functional, dependent upihe type of information provided. Structural
imaging depicts structural and anatomical information on the imaged organ or region.
Functional imaging reflects functional information of the imaged organ through
biomarkers and metabolic functior&ructurdimaging modalities are routinely used in
brain tumor diagnosis to gatheformation on the shapextent and position of the

tumor in the brairj16, 84).
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3.2COMPUTED TOMOGRAPHY

The two most widely utilized imaging modalities for brain tumor diagnosis are
Computed Tomography (CT) imaging and Magn&esonance Imaging (MRIpoth of
which provide structural informatioil€T imaginguses a series stibsequent and
revolvingx-ray scans to image the human body layer by IE8@r CT is associated with
enhanced biological risk for the use of seriesa}{ imaging, which rguires exposing
patients taonized radiation Doses of ionized radiation used in medical imaging have
definitively been identified as a cause of carj@8t. The concerriior ionized radiation
exposure is amplified in Ciielativeto X-ray, since a CT scan conducts a series-cays
andthereforeexposes patieato much hgher doses of ionized radiation. It is estimated
than a single chest CT scan exposes the patient to over 100 times more ionized radiation
than a similar xay imaging procedur8]. Further the parameterfor CT imaging
protocolsare not standardizetie effective dose of ionized radiation expostages
substantiallywithin and across institutiori28]. A CT image reflects similar tissue
informationto an MR image but is generally regarded as inféaocancer diagnosis due

to the associated biological haz§2gl

3.3 MAGNETIC RESONANCE IMAGING
In contrast with CT, MRI is not associated with any known biological haziards.
a Magnetic Resonance Imaging sdae, patient lays inside the MR and thachine
emits a strong magnetic field around the region being imaged. This magnetic field forces
theprotons in the body to align along a linear vector. Radio waves are then employed to

deflect the vector of aligned protons. The intensity o riéflection isplottedin

11



grayscale to create a cressctional image of the orgé#]. Since MR images use signal
intensitymeasuredrom a mechanicalisplacementit is possible tadentify necrotic
from healthy tissue, as each have unique mechanical relaxatiof}ime

An MR scan can be performed with a number of different paramgegaences)
each of wirch producedistinct variationof contrast in the resulting ima¢g. A CT
image reflects similar tissueformationto an MR image but is generally regarded as
inferior in the case of cancer diagnosis due to the associated biological kazardncer
diagnosis, common segnces includ&LAIR, T1, T1-ce and T2[8, 1§. Fluid
attenuated inversion recoveiyLAIR) is used to distinguish edema region from
cerebrospinal fluid (CSF). FLAIR restricts the signal of water molecules flowing in the
brain, allowing for CSF signals to be interpreted more cl¢8rl{§. T1 (also called T4
weighted)provides enhanced gray and tehmatter contrast and used to annotate
healthy brain tissue and view CEI5]. T1-ce (contrast enhanced$es thd'1l sequence
alongwith gadolinium contrast. Gadoliniura a contrast enhancement which is
intravenously both before and during 8eanandis usedo enhancehte contrast of
tumor bordersnecrotic core and active cell regidngsmaking them appear brigh{&, 8,
83]. The T2 sequence is sensitive to water conterd is usedo visualize the edematous

regions of the lesion with a bright contr§3t 8, 14.

3.4IMAGE ANALYSIS AND SEGMENTATION
Image Analysis is the process of extracting complex information from injdbes
Biomedical image analysis retrieves clinically relevant data from images émduide

diagnostic decision making and treatment plan@ing treatment response assessment

12



Segmentation is a stdomain of image analysis which divides images distinct buy
relatively homogeneousegments or regior80, 67]. In general, image segmentation is
useful for image understanding, feature extraction, and interprefa@ibnmage
segmentation can be a very complex tagpedent upon the type of structured being
segmented, size of the dataset gadability in the regions of interef].

Image segmentation involves pixel classification, where pixels are identified with
one or more regions based on intensity, pattern recognitiatherquantfiable feature
such as texturgl2, 68]. Segmentation methods dnard or soft. Hard image
segmentation divides the image into regions which have@e¥dap all pixelsvoxels
are identified with only one regiseparatedby marked boundarie§oft segmentation
partitions the image into regions which oVap to some degre&his allows asingle
pixel to be associated with two or more regi@ssopposed to a single region in hard

segmentatiof6q].

3.5 TUMOR SEGMENTATION WITH MRI

In biomedical imaganalysis, tmor segmentation &sn applied image
segmentation task which defines turborders and regionsith the goal of identifying
and analyzing tumor features as a guide for diagnosis and treatment [3,. Btai0]
tumorsegmentation methods aresddor: tissue classification, tumor localization,
volume estimation, delineation of blood cells, surgical planning, atlas matching and
medical image registratigi0]. Some standardiimor segmentation methods are trained
to identify healthy brain matter (white matter (WM), gray matter (GMJ @8F) and

classifyabnormal matter as pathologi¢abl. A number of models are available which

13



experts have designéal guide tumor segmentatid@ased on morphological features and
known anatomical structurg¢$l].

Tumor segmentation eshighly technical and difficult tésfurther complicated
variation in brain tumor instancgt0]. Brain tumor variability presents in a number of
forms, including tumor heterogeneity, tumor infiltration, as well as size, shape and
location.This makes it exceptionally difficult to establish geally applicable
segmentation ruleg\nalysis of heterogeneous tumor images is challenging since the
heterogeneity presents as slightiousgrayscalesignal intensityacross tumor regions.
which may not beeadily distinguishable tthe humareye. Thiss an issue often related
to theGlioma group, which have a lower blobdain barrier than other tumonghich
inhibits the distribution of contrast during the imaging dedj. This isfurther
complicated by the tendency of these tumors ttub®r infiltrative,where the necrotic
coreto diffusesinto healthy tissue by extending tentalike structure§46, 49] This
makesdelineating tumor bordedifficult, as the borders become blurred in the diffusion
process. Infiltrative tumors have been shown to present high uncertainty amortg exper
neurosurgeons and neuroradiologists in defining tumor boundldgies

In addition to challenges tmmor variationjmage analysiand segmentatiois
furthercomplicated by factorassociated with MRihcludingimage noise, the partial
volume effect, and hardware inconsistencies. Noise in MRingatatacomplicates
Image segmentation by obscurimgnute differences in the signal intensitighich
separate tumor regiondoise and artifacts iMR scars have been shown tegatively
influence segmentation resslfi2, 18] The partial volume effecefers toblurred

intensity between tissue classes vimhaccurs at the border of distinct regions where a

14



single voxel represents more than one tissue[§pg. The final and perhaps most
severe challenge to MR analysis and effective tumor segmentation tools is the lack of
standard hardwar@nd institutional MRmaging protocols. Image intensities are not
consistent across MR scanngk®], and it is often the case that different institutions use
different imaginenardwarg51]. In addition there is no institutional standard fonage
acquisition parameters and contrast injection protdé&dls Furtherthe scale of
voxel/pixel values is not standardized in MR imag[iig]. Each of these variations
contributes t@ lack of MRI generalization from whictata generated from a single
machine or institution can reflect different gsagle values for the very same turfiat].
This makest challenging to create effective tumor segmentation models which
generalize well acrogastitutions and establishésstitutional biasvhich can directly

influence the accuracy of the segmentation r¢5saljt

3.6 TUMOR SEGMENTATION METHODS

Manual tumor segmentatidalso called expert segmentation) is therenti g o | d
standardo process a%lddhssypicallyinvlives a ladiologist t i t u't
sitting at a computer and ing a mouse to define the regiohinterest(ROI) in a series
of two-dimensional images taken from various andlesgesare evaluated one at a
time, and once thROl is identified, the radiologist annotates tumor features and borders
[25]. An advantage of this process is theeof expert knowledgewhich is readily
available without sophisticated pr@nd posfprocessing softwarg2]. A second
advantageisthabanual sl i ce edi ti-ygc aisse opvdarafsorsmed o

complex interpretations can be madéhout arobust training set to leafrom [82].

15



While manual annotation & populamand endurin@pproach, it suffers serious
limitations and is rapidly becomingnainsustainable procedshe concernfor
sustainabilityin this process is thale volume of patient imaging data being generated
greatly exceeds the amount that experts can realistically aja8jzélanual slice
editing is a tediouime-consuming task, even for experienced reaf8r8, 33, 45, 84]

At the same time, a single medical image contains vast amounts ¢84ladad the

volume of patient data beingmgrated is increasing exponentigiBd]. It is estimated

that a singt colon cancer case generates over 20 Terabytes of dat@tj8g]it is not

feasible to manually annotate the vast, and rapidly growing volumes of imaging data in a
reasonable amount of tinj@, 24, 81].

In addition manual segmentation produces accuracy concktedical images
contain data which the human visual system is unable to datectgle MRI system can
produce images equal to 65,535 distinct gray lefigls Thehuman visual system
restricts expert ability to detect minor differencegtiayscald82], andcan negatively
iImpact segmentan result§26]. This is, in additiorto extenuatingactors which inhibit
image interpretation, such as structural noise in the images, incomplete visual search
patters, suboptimal image quality and fati§@#. Further accuracy concerns consider
readerbias, where individuals attribute different levels of importance to diagnostic
criteria andhave varying leels of expertis¢32].

These challengefygether with the inherent difficulty of the profession, make it
unsurprising that studies show significant int@md intrareader variation in expert
segmentation resul{9, 20, 29, 32, 55, §1Furtherstudies demonstrate thaterreader

variability has influencethe quality of diagnosig32] and is likely significant in the
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impact of evaluating tumor response and progression $&cific studies find manual
segmentation to be biased toward larger models and in the process noted that the average
time for a single manual tumor segmentation session took over two hourasg

concerns for data volumes, processing times, andbibty identify a need fobuilding

efficient and accurate segmentation methods.

3.7AUTOMATED DIAGNOSTIC TOOLS

This section focuses on Al tools such as DL as promising approach for improving
current tumor segmentation methods. Perhaps thesawste limitation of manual
segmentation is that volumes of patient data are expanding at rates which far exceed
human resources needed to analyze thdrthe same time, there is data present in MR
Images which is inaccessible to experts due to restnitd the human visual system.
Computational models, deep learning architectures specifically are powerful resources
and practical application for efficient and effective biomedical image analysis [46, 81].
Computational modelgvercome several limitatiored manual segmentation with
efficient data processing powered by quantitative mathematical representation. DL
models represent image data mathematically rather than visually. Thus enabling the
identificationof patterns in the pixel datelevant toclassfication and predictionvithout
the inherent limitations of the human visual sys{ég). Mathematical representation of
pixel data enables quantitively separation of pixel values which would have otherwise
been inaccessible due to slight variation in value. In addition, these learning models use
simultaneous layered functions which process images in a fraction of the time needed for

manual segmentation while maintaining comparatively higher accuracy metrics. For
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example, this study proposes extended kNet architecturega popular implementation
of deep learning architecture, whisbgments an entire brawth speedsanging from as
little as 25 seconds to 3 minufe]. These times are compelling in comparison to the
average two hours needed for a single manual segmentitamsitioning from manual
segmentation to automated or seautomated segmentation approaches will help
radiologists and clinicians provide the bpessible treatment options to patients faster,
obtaining relevant tumor information more quickly to be used in treatment pldd8ing

58].

3.8CANCER DISPARITY

Cancer disparity identifies an additional purpose for transitioning from manual to
automatedind semiautomated cancer diagnostic approachemany regions across
Americaand across the world, thesgistrural areas with low medical infrastructure and
fewer doctors than are needed to treat the populatidiresidents lack accessible
healthcareand hospital resourcg$5, 91]. Residentof ruraland lowincomeareas are
more likely to face a number of other challenges in meeting their healthcare needs. This
Is particularly relevant in the scope of cancer, where rural populations suffer from an
increased risk of cancer death compared to urban giqs[92] and lowincome
residents see an elevated cancer incidence ffrdiher, rural populations experience
shorter survival times relative to metropolitan residents Réal clinical circumstance
often fails to neet the needs of rural populations. In turn, these populations are often

diagnosed with tumors at a higher grade, presumably due to physical and economic
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barriers which make early intervention more difficult for rural populations, which in turn
see worse pgnosis than metropolitan cancer pati¢bg.

It is hopeful that the implementation afitomatedools can have sigincant
benefit in areas of low medical infrastructuiPgimarily, these tools are believed to be
useful for helping clinicians work more efficientiywhich is especially important in
regions with low medical infrastructurg addition, automatetbols have potential to
service lowincome populations better, where studiedicate that automated diagnostic
tools required fobiomedical image analysill probably be cheaper than expert image
analysig58]. This is a promising step fonaking healthcare resources more available to
populations byoffsetting the economic and physical limitations which these populations
are known to suffer from. In turn, we hope to see increased survival and prognosis of

rural cancer patients, by providing accessible treatment options.
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CHAPTER4

AUTOMATED AND SEMI-AUTOMATED SEGMENTATION

4.1 ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

Artificial Intelligencei s a fi el d devoted to building
to automate routine labor, understand speech or images, make diagnosis in medicine and
support basic [A/cAlsadknbwnaé r les efairelhd r api dl vy
solved problens that are intellectually difficult for human beings but relatively straight
forward for computersproblems that can be described by a list of formal, mathematical
r u |l [27k dogether, theseleas are the foundation of Al learning models for medical
image analysis: to undgand medical images and support medical diagnosis though
heave computational elements with a foundation of formal mathematical\iuhds.
tumor segmentation is tirm@nsuming and labentensive for radiologists, Al tools are
able to tackle this taskare efficiently

The field of Al expands much further than the learning models discussed in this
paper. Learning models are a large, but not comprehensive extension of Al. The core
principle of learning model® fi | e arrmake insighfrom input datavithout specific
guidelines or instructions to complete a defined {8k Learning architecturesse
input data to build representative models to interpret the data and aginoiledge
for prediction and classification tasks. The key difference between theategories of

learning modelss that deep learning refers to a specific set of models which loosely
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simulate human decision making in a computational mg@@krUnlike ML models,

deep models obtain feature informattuerarchically rather than linearlf27]. ML

model s a where Atludture @efimesdirect function mapping input data to output
predictionorc | assi fi cation based on feature extra
layers between the input and output vectors which allow more complicated concepts to be
broken down into simpler ones built on top of one andtddr Deeparchitecturesearn

complex concepts and rélanships by breaking them down into simpler concepts and
relationships and combining these simplified concepts for a greater feature understanding

and representation of the total concpough multiple levels of compositid27].

4.2 AUTOMATION AND LEARNING

For thetumor segmentation task, MR images are used as input data to learn
featuresor variables and attributes in tiraageset Once features have been extracted
from the data, they are evaluated for relevance in the feature selection process. Feature
relevancas measure of the extent to which a feature provides information relevant to
solving the task at harjd@3]. In short, some features provimkormation which carried
weight in predictive outpuivhile others provide little or no useful information to the
task. The purposkeature selectiois to reduce the dimensionality of the algorithm by
reducing the search space. Considering only the most intuitive features and ignoring the
less useful feates minimizes the necessary computational resources of the model
without reducing the accuracy.

Recently, popular approach&stools for segmentatioimplement variations of

the deep learning architectures known as neural networks. Neural networks eefer
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family of models which mimic the structure of human neural system to learn from the
data and make observations. By far the most popular in this family for medical image
analysis are Convolutional Neural Networks (CNM), 16] This is because the
hierarchical structure of CNNs utilize gj@ and configural information from images
[11]. High spatial resolution is necessary for characterizing features in heterogeneous
tumors[65]. CNNs utilize this information using a convolution layers which build
hierarchical feature map. This succession of layers obtains features which are invariant to
transl ation and distortion antotheake i nto
neighboring pixels in determining a segmentation r¢46lt

A stateof-the-art learning network is the-Met, an encodetdlecoder network
which models the convolution functions of a CNN along with pooling arskmpling
operations. These networks have quickly beee@ry accomplished in image processing
and classification tasks as the convolution function accounts for spatial information and
the pooling and wsampling operations enable hitgvel feature encoding while
controlling dimensionality and computationakources. The result is that these models

have achieved high model sensitivity and prediction accuatyd[l.

4.3 EVALUATING LEARNING MODELS
Machine learning models are evaluated on a number of metrics, but the most
relevant to biomedical image analysis and tumor segmentation consider factors related to
classification accuracy, algorithm performance and computational respiZtes
Sensitivity is a true positive fraction whiclpresents the probability that a diagnostic

test is positive, given that a person has the didda$eFor tumor segentation,
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sensitivity is the probability that a pixel is classified as tumor given that it is in the
necrotic zone. Specificity is a true negative fraction which reflects the probability that a
diagnostic test is negative, given that a person does nothadeseas@t7]. For
segmentation, this is the probability that a pixel is classifies as healthy given that it is
healthy tissue. Accuracy refers to the probability that a pixel is classified accurately,
whether it be necrotic or healthy. Important factors for automated brain tumor
segmentation models are accuracy of results, computation time, and rob[&tness
Computation time refers to the time it takes the model to generate therdagon

result, and robustness is a factor representing how well a model performs on all relevant

data outside of the training data.

4.4 SEGMENTATION TECHNIQUES

Tumor segmentation techniqueaywin how features are considered to build
segmentation modke This paper uses a thresholding technique. Thresholding techniques
classify pixels in the image based on intensity and color information, where a threshold is
set for each classification, and pixels are sorted accordibglyhresholding approaches
are known to be most effective when the object and background, in this case the brain
and other matter, are clearly separdtddEdgebased segmentation considers the edges
and contours in the image and is known to fail of the image is too complearfiters to
be clearly identified1]. Edgebased segmentation is used in the second phase of this
study for the visual enhancement mod&egion based segmentation extracts pixels and
compares these pixels with other neighboring pixels in the region to exploit spatial

information within the regiongl]. Finally, volumetric segmentation is the rendering of a
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threedimensional volume from twdimensional images by stacking consecutive images
togethel[31]. Some consider volumetric segmentation a superior technique for

biomedical image analysis as the segmentation result allows ther@tézrto look

through the volume, and because these models are capable of accommodating significant
variability in biological structures over time and across individi&ls The model used

in this study uses a thresholding technique to create a volumetric segmentation.

45 AUTOMATED AND SEMI-AUTOMATED

Automated methods fdarain tumor segmentaticarebroadly classified as either
semtautomatic or automatic based on the level of interaction between a human and the
model. Semautomatic methods involve some level of humaaraxttion where fully
automated segmentation models do not. This involvement varies between models, but
common frameworks for serautomated segmentation involve an expert input in one of
ways: for outlining the region of interest (RQ1Y], setting the parameters of the model
[8, 13, initializing the methodl12], and analyzing the visual information for feedback
and checking the accuracy of the segmentation rggulthegeneralbpurpose of semi
automated segmentation is to exptb# advantages tioth expert knowledge and
computational performance. In these cases, the radiologist interacts with the model as a
guide, making idetifications to help the model achieve the best result, providing
feedback to improve model robustness and evaluating the overall credibility of the model.
As experts in the field, radiologists have extensive training and experience in tumor
segmentation. Atomated models streamline the computation processgrhentation but

cannot replace expert experience and trairdggniautomatiorallows experts to
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analyze, interpret and assess results, camiploth expert knowledge and
computational efficiency foobtaining the best possible resaittd establishing clinical
trust Fully automated segmentation models involve no human intera8tivantages of
these modelsclude the full labor shift from manual to computational relieving experts
from the most labemtensive parts of diagnostic testing, and promoting accurate,

consistent and reproducible segmentation ref2dis

4.6 LIMITATIONS FOR CLINICAL LEARNING MODELS DATA

While datasurplus is a major challenge to manual tumor segmentation and image
analysis, a lack ofataavailability for researchs one of the greatest limitatiots the
advancement dearning model$or biomedical image analysi$he amount of patient
data in existence is in no way similar to the amount that any person, group, or clinical
institution hasaccess to. This is true for tumor imaging datgenerabs well as labeled,
segmented data. Crowaburéng, or annotation of largecale datasets through
collaboration is a potential response to this problem, but is limited by the potential for
accuracyloss from lesghanexpert sources drawing groutrdith for training[35].

To construct a representative model, the number of images collected should be
relatively high and instances of quite varied shapes should be s¢lE&;t&9, 35, 82]
Patient data is private with legal, institutional and societal barriers limiting d&&ss
For these reasons, it is difficult or even impossible for researchers to obtain medical
images for training and testing sampl&§] and expert segmentatigto train with[33,

35]. Learning modelsequire robust datasets in order to generalize wallakedmodel

cannot perform well on examples of classifications which it has notégesed to in
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training[13,27]. The performance & models directly restricted to the variability in the
training datgd27]. Insufficiently deep architectures or insufficient training examples lead
to models with poor generalizatiphl, 27. Lack of available and robust data is a major

limitation to model advancement and causes issues for model prd&igion

4.7LIMITATIONS: FALSE DISCOVERY

Anot her concern with automated brain tu
di s c ov e rthg cost of misadassification is higRl, 22, 3§. It is proposed that the
Abl ack boxodo characteristic of ML18m8d,del s ma
since it can be difficult to follow how the model classifies results from input to output.
Brain tumor diagnosisisa fihi gh st akeso application, whe
model robustngs or poor generalization can have a detrimental impact on overall patient
care False results can guide clinicians to médkénformed patient care decisions, such
as not treating a patient who the algorithm output led the clinician to believe the jzatien
healthy when the patient is actually diseased. This problem is clarified by studies which
suggest physicians are highly influencesbynputer aided diagnosti€AD) systems

[44).

4 8LIMITATIONS: THE ABLACK BOXOo
Perhaps the most common complaint of DL
which refers to the opacity of these mod@3# and the inherent difficulty in
understanding and interpreting these models intuitiiely37]. The internal function of

ML and DL frameworks make itifficult to determine the underlying reason or process

26



by which an output is determin¢86]. Thislack of transparency has historically deterred
nonexperts from understanding and applying these m¢8&]sThe transparency

limitation for nonexpert interpretation is exacerbated for deep networks. There is a
generally understood tradadf between shallow and deep networks (ML and @)ere

deep architectures, the more complex of the two, yield higher accuracy and precision at
the expense of interpretabilifg4]. Machine learning models, then, working with a more
linearfunctionality, have increased interpretability but decreased performance to their
deep counterpar{s4].

The inherent challenge of interpreting these models has generated criticism for
their place irthe medical domain, even in with the promise of better efficiency and
accuracy. While automated segmentation provides quantitative and accurate prediction
and classification resulf85], critics maintain that the medical sector requires something
more than accuracy and tirefficiency: transparency. Further, it is not clear what
transparency and interpretability in these models would look like. Manual tumor
segmentation and diagnosis refers to biological interpretation and predictive signatures
[18]. Automated segmentation uses mathematical functions and matsiatrans for
segmentation results, without consideration of biomarkers or predictive signatures. The
problem, then, becomes building credibility and transparency for the clinicians who use
these models, but who have also not strayed from the clinicabggoidard, which has a

totally different functionality and decisiemaking process.
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CHAPTERS

RESEARCH AND CLINICAL REALITY

5.1 FUNDAMENTAL DIAGNOSTIC DIFFERENCES

Standard linical diagnosis can be understomilow a model of diagnostic
reasoningshaped by domain knowledgpecialized trainingnd experience. Generally,
this diagnostic reasoning model begimth a working hypothesiand proceeds t@sting
the hypothesis, acquiring and interpreting diagnostic,daid then confirming, rejecting,
or forming a new hypothesis as information is gathered over{88jeThe initial
hypothesis is typicallgstablished based on contributing factors from both patient
circumstance and clinical experience. Generally, patient case factors such as observed or
reported symptomandpatientfamily medical history, are considertmyether with
clinical experience iorder to determine possible or probable diagnoses. This information
is used to guide further diagnostic testing until a hypothesis can be confirmed or denied
with some level of confidence.

Automated segmentatias afundamentally different process whiokpresents,
learnsandinterprets andliagnostic data according to quantitative analyssrning
models use mathematidainctions to determine the correlation between varialphes.
This mathematical functionalignablesautomated segmentation models to describe
feature relationships with high accuracy amasestablishrsegmentation results based

gquantitative dataRelative to current standard practices, this is done time and resource
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efficiently. At the same timehe credibility of these models in the healthcare sector is
arguably limited by their fundamentadiktinctionsfrom clinical norms A notable
consequence of this distinction is that automated maldet®ot consider causal fact@s
relevant to diagnostic predictions, whesaisal factors have historicaltarried vast

importarcein standard clinicatliagnostic dagnosis.

5.2 CLINICAL CONCERNS

The invention of tools for clinical diagnosis is, relatively speaking, not a new
idea.Automated learningnodels have been widelygposed foibrain tumor
classification andumor grading taskg38, 39, 40, 41, 45Theseautomatedools have
existedfor some time nowwith continued innovations promising unprecedented speed
and accuracy in biomedical data mining tasksecent history, everalof thesemodels
implemented for testinm clinical institutionsin order to identify potential directions for
model refining and improvemenihile the research investment in these models is
abundant, clinical diagnostic support systems hlausfailed to be routinely
implemented in healthcare institutions. One redsanndthis failure isa lack of
communication between researchers and clinicihgch has led to the engineering of
automated modelhatfail to meet clinicastandardgor diagnostic tool$3, 19, 84, 89]
As the end users alutomatedliagnostida ool s, cl inicians pl ay
ability to thrive being that clinicians ultimately decide whether or not to use these tools
[9]. In order to bridge the gap between researchraakvorld clinical implementation,
clinical needs must be addressed dlugrhlyin the development of all clinical diagnostic

tools. Several studies have soughttlearly define clinical standards for diagnostic tools
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Largely, findings indicate benchmark automated models fail to meet clinical standards for
interpretability and transparen{®, 23, 84 with additional desires fanserfriendly

interfaces [3, 9, 84.

5.3 INTERPRETABLEDEEPLEARNING

It has been established that clinicians want diagnostic tools which prioritize
interpretability and ease of use [9] but remainslearwhat thisentailsfrom a
developmental standpointher e i s a | ack of consensus on
machne learningn any domainlt nonetheless remains thdgep learningystems
intended for the medical domaneed be supplemented to improve human understanding
and decisiormaking[19]. Certainworkee x pl ai n Ai rasleosefyr et abi | i t y
synonymous with explatability, and claimthat the transparency standard for diagnostic
tools can be met by providing clinicians with a validation standard for evaluating the
model[19,22].1 n t hi s s e n spovidetlihi@ansivithgraunds foi s t o
justifying the resultlt is mentioned that this approachisuséf f or fAhi gh st ake
diagnostic cases where the cost of mistakes can be detrinTémsahpproach is further
supported by the argument that @Athe human
relationships can often not be identified for a number of red48hsand yet, diagnostic
decisions are still made with some level of confidence.

Other works conclude that the diagnostic transparency standard can be met
throughexpert interaction and enhanced dasaalization to translate the complex logic
behind the so c al[23eBhsed dnlhase findinyy the underdtandirg 0

in this study ighatan effective approach for enhancing the transparency of automated
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diagnostic modelsstablishes a standard whalfows end users to evaluateodel
performancevith reasos to confirm or deny thprediction before any action is taken on
behalf of the cliniciaj21]. From the clinical standpointtansparency is valued as the
foundation ofa creditable and faithful diagnosis and serves as a reasonable defense
against adversarial attackb]. Several works corroborate the idea that credible
diagnostic toolslo not require expert understanding of functionasitylong as they
supplementlinical understandingvith established standards for supportimglenyng
model result$34].

Healthcare institutions pla@premium on the reasoning and comprehensibility
of diagnostic system82]. Theability to explain diagnostic decisions is of significant
interest to clinician$32], possibly even more so in high stakes cases like brain tumor
diagnosis, where the cost of being wgas substantiallransitioning automated
diagnostic tools from research to clinical reality requalescal motivation to do so.
Establishing model credibility among nexpert users is a critical step toward

implementing deep models into reabrld situated use.

5.4 HUMAN-ORIENTED DATA REPRESENTATION
Visual interfaces with enhanced representation have the potential to add
transparency to automated clinical tools for tumor segmentation by exploiting domain
specific knowledgéo gain credibility Datavisualizationis concerned with the graphical
representationf data set values and patterBffective data visualization models
represent datatuitively well in termsof patterns and distinction$Vell-founded visual

modelshave proven to be dfignificant value in enhancing knowledge discovery and
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analysis of clastabeled dat§36]. Recent studies have explored data visualization
models as #ool for enhancing the explanatory context of diagnostic moateds
improving model understanding2]. Several studies report thasual and interactive
user interfaes, when implemented efttively, are effectivan enabling users to integrate
domain knowledge to interpret complex modé&lg.

Thebenefits of graphical odel representation in enhancing the explanatory
power of datare well exploredA highly relevant studyinds that data visualization is a
potentially powerful tool for enhamyg visual reasoning and model credibility in
automatednodels for diagnosis direast cancdiB6]. Further studieanalyze the
explanatory value of color differentiation in perception of model odtputlassification
tasks One particulastudyproposes a method for increasing visual reasoningamith
interfacewhich uses color differentiatiaio display quantitativand qualitative
similarities among queries and cldalels[87]. The authors of thisstudyoast - a A wi n
wino methodol ogy f or e, ohthegoends thdte gisaal i mi nat o
interface allows better formalizatida supporthe visual reasoning pcesg87]. This
methodologyhas potential to biurther enrichedn cases of expert usehere domain
knowledge and enhanced visualizataam be used as collaborative tools for assisting
model understanding hese studies are among many whgoksent significant evidence
to support the use of visual models as a means of exploiting expert domain knowledge for
overall increased visual reasngiand model understandingurther, visual models are a
practical approach for enhancing deep model understgrukitgg that visual
enhancement modules are generally-tmst in terms of timefficiency and

computational resources.
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5.5COLOR DISCRIMINATION

It remains wellestablished that data visualizatioas potential tthe an effective
tool for information gairand model understandingutspecificstandards for
Aeffectivel yo r epr e areeffectivewvigualdngetfage notentyai n unc
represents the data accurately and comprehensively but also in a manner which is
intuitive for the end users. In context, an effective visual model foortwegmentation
visualizes the segmentation result in a manner which enables a radiologist to apply
domain knowledge for evaluation as a standard for validating or invalidating model
output. If successfully implemented, the intention is that the radiolsgadble to
determine model credibility in reference to expert knowledge of industry standards.

Biomedical images each contain vast amounts of data and standard visual
representations of thkataarenot optimized for human visual interpretatioim this
case, statef-the-art visualization methods can play a key role in enhancing the
discriminatory power of biomedical image representations. Previous work explains that
thehuman visual system and color discriminatesehighly relevant to enhancing
information content in monochrome MR images for expert interpretg@@@n

The limited explanatory content of monochrome medical images can generally be
explained with color differentiationtaskS.o |l or di scr i mi nati on t ask
ability to detect small differences between two aisstimuli when examples of similar
chromatic composition are presenféd]. A person with normal color vision can
distinguish millions of ctors[76]. Those with serious color deficieycan discriminate
only afew hundred different colofg6]. However, this reflects general stiards for

distinct (not continuous or connected) color experiences, whereas color differentiation
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becomes a far more challenging task when colors are presented in a continuous space,
such as an image

Thehuman visual system projects all possible color impressions inte three
dimensional spacend olor perceptions differ othesethree dimensions: intensijtihe
brightness factor of the perception, libhe color andchroma ¢aturatio, or the level of
fic ol or f[64]70].eSeverd predefined color spaces have been created which
represent colors according t colomspaced®®GBc al v a
(red, green, bluegnother iIHSV (hue, saturation, valugj7], a model intended to be
designed to consider human sense of d&lof. Generally, color spaces differ upon
scope, order and uniformity.

The human eye is unable to perceive continuous change inacal@only able
to differentiate colors when theresgnificantchangg 60]. Thethreshold for change
detection64] is subjective to each person but generally within a standard matg.
margin was popularized by Ernst Weber, & &8ntury psychologist who explained this
concept as fAJusto Noort i ficVéeabiisbloedpsiaed afamdy. eolorc e
differencewith distance formulas. Euclidean distance is a popular metric for cubic color
representations suchasR@Bn | i ght of Weber 6s Law, vVvisua
maximize the instances dND have enhanced discriminatory power relevant to color

differentiation tasks.

5.6 MRl COLOR ENHANCEMENT

Since MR images are monochrome, pixel values are distinguished as variations of

intensity using only a single hue. Applying the concept of uniform and distinguishable
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color distance thresholds, the discriminatory power of MR images can be enhanced by
maximizing the instances of JND over the image. The intentionirsctease visual
discrimination power by taking advantageadarger range ovehe human visual system
and expanding the differences between pixel valdiethe same time, it is crucial to
maintain uniformity and visual cues [78] in the translation so that the data is accurately
represented according to the intensity information [77], but over a larger range of hues.
By modeling the same data in a visual interface which utilizes all threetagpeolor
impression, the data takes a more huoamtered approach to improving pixel
discrimination for classification by mapping the pixels into a complete color space
instead of along a single hue vectdiis is done to enhance the difference ¢ading to
color distance) between similar values in the MR scan.

Several studies have considered the value of colorized tumor segmentation, both
for the actual segmentation process and for interpretation of segmentation Fesults.
studies which use calization in the segmentation process, many report promising results
with improved segmentation accuracy. This study reports an improved segmentation
result obtained using color space translations as a preprocessing fi€th8averal
similar studies report increaseldssification accuracy using color translated images for
training segmentation moddl&2, 77, 90] While this is a popular approach with
established advantagelis comes at the expense of higher computational costs
compared tanonochrome imagesue todimensionality expansiof7]. For this reason,
the current study focuses on the value of color translations for segmentation evaluation.

Several earlier works address various applications for color translation of

monochrome medical images for enhancing discrimination p&wer.approach for
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transforming monochrome images uses 38 colors to represent the 38 basic types of soft
tissues in the human brdi®0]. This study reports that a single MRI sequence is
insufficient for precise pathological evaluation, but that the colorized images enhance
discriminatory powerdr information gain in pathological interpretation. The result, as
reportedis an increased visualization of tissue density and opaqueness for easier analysis
of brain regions individually and the brain in entirg®9]. Onestudyuses a color space
translation algorithnio evaluate head and neck tumors with a-tieér-coded ma@and

reports information gain in image interpretation and visualizing tumor heterogaity

A similar study maps twadimensional (hue, intensity) pixel information into a 20

contrast scale and found similar improvements in erihgriata conspicuity and

efficiency of interpretatiofi85]. Other stutes encountered similar findings on the

positive effects of color mapping MRI data for increasing interpretation performance of
inexperienced readefg1]. These findings support motivations for using color space
projection as a todbr information gain and model understatingh clinical expert

evaluation.
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CHAPTERG

RESEARCH METHOD3ART ONE: THESEGMENTATION TASK

The purpose this study is to propose a samtdomated approach for brain

tumor segmentation which combines staft¢he-art deep learning and computer vision
innovation with methods of current clinical practice in a collaborative effort to identify
moreeff i ci ent tumor segmentation methods. Man
st andar dounsustanabte idue & concems for relevant-ffieiency in cancer
diagnosis and rapidly growing quantities of patient imaging data to be pro¢&8kett
the same time, manual segmentation is a historically relevant process with established
clinical trust, whilemore time and resourgdficient benchmark automated tumor
segmentation approaches have failed to gain popularity in clinical practice. Priesstud
i ndicate that deep | earning tumor segment a
unmet clinical standards for diagnostic tools [3, 19, 84, 89]. While current benchmark
models exceed clinical standards of speed and accuracy [46], additional sdocern
interpretability, transparency and a uféendly interface remain largelynaddresse(B,
9, 23, 84]. This study presents enhanced visualization and export collaboration as an
approach to interpretable deep learning and adapting benchmark deemlear
segmentation approaches to meet clinical industry standards for diagnostic tools.

The Methods used in this study are divided into two subsequent tfasks:

segmentation task and the registration and enhancement task. In the segmentation task, a
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benchmark deep learning model for brain tumor segmentation is trained with and
evaluated on a brain tumor dataset. In the registration and enhancement task, the resulting
segmentation predictions are registered as images and the data is translateduato a vis
representation intended to enhance discriminatory power and perceptual uniformity
according to standards of human visual percepkaure 1gives an overview of the

entire study broken down into the segmentation and registration and enhancement tasks

Figure 2explains each of the subtasks

Testing
Study
_ _ Postprocessin
Registration <

and
Enhancement

Enhancement

Figure 1: StudyOverview

This chapter focuses on the segmentation task and explains the first three tasks in
the total fivetask overview presented kigure 2 The intention of the segmentation task
is to utilize recent innovations in deep learning models such as-Met tr bain tumor
segmentation. This, and similar automated architectures for brain tumor segmentation
complete the task with better time efficiency and accuracy relative to the currently

popular manual segmentation process.
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Preprocessing

Postprocessing

Preparing the image
for input to the
learning model.

Train segmentation
model on dataset

Test model
performance and
obtain segmentation
results

Image registration
and visualization of
segmentation results

3-Part Module for
enhancing the

representation of the

segmentation results

Figure 2: Task Overview

6.1 DATA

This method is trained and validated with imaging volumes provided by the
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Medical Image Computing and Computer Assisted Intervention (MICCAI) societlidor
annual Brain Tumor Segmentation (BraTS) Challdd@e 48, 49, 50, §7 The Bra

challenge is one of the largest research initiatives for automated andigemiated
segmentation of brain tumors. The BraTS challenge dataset is uniquely beneficial for ML
and DL models as it overcomes several limitations of medical image computasgtdat

The performance of automated models is directly dependent upon the quality of data that
is used to train the model. Ideally, an automated model will be able to perform well if

trained with a data set which is heterogeneous, representative and lvemspre.



In reality, such high caliber and robust datasets are rare in the medical field,
where patient privacy regulations heavily restrict the sharing and distribution of medical
data. Inteinstitutional variation aids the trained models in obtainietids generalization
by decreasing the learning effect of randomness and increasing objectivity to the imaging
protocols of specific institutions. Further the BraTS datasets are released with
segmentation and ground truth labels which have been anndtedadh expert
collaboration, reducing the potential impact of human error. Each dataset is annotated by
1-4 experts following the same established guidelines before ultimately being approved
by a boarecertified neureradiologist. It is believed that theffort of clear segmentation
criterion and collaboration reduces the potential bias of human error in the established
ground truth. Finally, this dataset is comparatively large, with many volumes of patient
data available for model training, validation dasting.

This implementation uses the 2018 BraTS Challenge set for training and the 2019
set for validation. Both of these sets consider Glioma tumors, the most widespread
category of brain lesion. Each set contains both glioblastoma cighagle gliona
(GBM/HGG) and lowgrade glioma (LGG) volumes which have been pathologically
confirmed. The 2018 set is sourced from 19 separate clinical institutions and includes
n=210 HGG patient volumes and n=75 LGG patient volumes totaling to n=285. The 2019
set cordiins n=259 HGG patient volumes and n=76 LGG patient volumes for a total of
335. Each patient volume contains 4 multimodatqguerative scans of file type NIfTI
(.nii). Each patient volume contains a single example of four distinct MR imaging
protocol: nave (T1), postcontract Tiweighted with gadolinium (T1Gd), T&eighted

(T2) and T2 Fluid Attenuated Inversion Recovery (FLAIR).
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6.2 PREPROCESSING

The BraTS dataset is preprocessed before distribution. This preliminary
preprocessing performs skgfripping by utilizing the brain extraction tool from the
Oxford center for Functional MRI of the Brain (FMRIB) software library, commonly
known as FSL. This preprocessing also includesrienting each scan according to the
left-posteriorsuperior coordinateystem and caegistering to a uniform T1 anatomical
template with the Linear Registration Tool (FLIRT) provided by FMRIB. Finally, images
are uniformly interpolated to a voxel resolution of 1Im#9g. The resulting images are
annotated with three defined segmentation labels, each diftgnegtdistinct tumor
regions and attributes. These labels identify the enhancing tumor core (ET, label 4), the
non-enhancing tumor regions (NET/NCR, label 1) and the peritumoral edema (ED label
2). To enhance data visualization, this approach rendersi@ewic segmentation. The
imaging volumes are also normalized using-4miax normalization, which rescales the
imaging data to a refined range based on the minimum and maximum voxel values

observed.

6.3 MODEL ARCHITECTURE
To obtain a segmentation result to enhance, | implemented the approach:
i 3-BSPNet with Pyramidal Refinement for Volumetric Brain Tumor Image
Segmentationo proposed [®yThNapprecabhtawardede i n and
second in the 2018 BraTS challenge, and the source code is avail@j@3h84, 95.
This model is an adapted-Net architecture, which the authors call-BI3PNet. The

main differentiation between 3BSPNet and tNet, according to the authors is the use
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of efficient convolutional

blocks instead of stacked convolutional layers to learn and

represent featured. visual model of the 3EESPNet network is reproduced from the

authors inFigure 3.

+ 2% 2 X 2 deconvolution upsampling
+ Skip connection

+ Strided ESP downsampling

S 2% 2% 2 strided convolution
4 Tulineas 11}:\.111111{511.2

Figure 3: 3ADESPnet Module

The 3DESPNet approacimplements an entb-end system design using a 3

dimensional adaptation

of thdfigient Spatial Pyramid module (ESP)oposed in94],

followed by pyramidal refinementndto-End is a system design principle first

popul ari zed

Designo.

Thi

by Sal paeeTo-ERIAABER@IMSYstema r k 0

i's principle suggests organi zin

rational principles of cost evaluation, where the cost of implementing functions at low

levels of a system may exceed the valuthose functions at the same lej@g].

TheESPmodule [94]is a deep model designedtvconvolutional factorization

in order to reduce the computational cost of deploying the model while maintaining

accuracy, relative to oth

er deep models for segmentation tasks. Per the authors, ESPNet is
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Afast, smalll, | ow popweeas ernwe d oswe d m@4etnactyi, o ry
Convolutional factorizabn is a technique for reducing the computational complexity of
operations by dividing the convolution operation into multiple steps. The convolution
factorization used here splits a standard convolution operation into two steps; a point
wise convolution dllowed by a spatial pyramid of dialed convolutions. Pointwise
convolutions refer to a 1 x 1 convolutional layer consisting also of a convolutional filter
of the same size which considers only a single point per channel at[® fimointwise
convolutions are widely used for parameter reduction in deep learning architectures by
adjusting the number of channels or dimensiarfsature maps in order to optimize
computational efficiency. Dilated convolutions are used for image registration, to
enhance image resolution by inserting zeroes between voxels in convolutional kernels
[99]. Dilated convolution operations are determined bijlation rate which specifies the
number of zeroes inserted between the image voxels. This network maps the standard 2
dimensional convolutional operations (n x n) tdiBensional convolutions (n x n x n) to
map the features into volumetric space.

The cawolutions here are employed as an encald®oder network, where the
network learns feature representations in the encoder phase and decodes these
representations in the following phase. In the encoder phase, the network performs a
single stride convolubin (a convolution operation in which stride=1, the default value
and stridedefinethe step size of the kernel) followed by three ESP convolution
operations which use addmensional kernel and a stride offhe ESP module is
reproduced from the authorsrfreference irrigure 4 below. The variation in kernel and

stride values allows the encoder to learn feature representations in multiple scales. It is
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important to note that the ESP convolution maps features into convolutional blocks as
opposed to the stdard method of stacking convolutional layers. The decoder phase
upsamples the feature representations output from the encoder with 3 x 3 x 3 de
convolution kernels followed by trilinear upsampling layer. The decoder outputs a feature

map to be passed to following pyramidal refinement module.

ESP Strategy

Rc(Iucc M1x1x1l,d
Split
Transform ((dyny x ny x ny,d | (ding X np x ng,d | [ d,ng X ng x ng,d |- [dyng X ng X ng, d)

Merge

Figure 4: Efficient Spatial Pyramid

The pyramidal refinement module is comprised of three layers: the projection
layer, the spatial pyramid pooling (SSP) block, and the pyramid pooling module (PSP)
block. A visualization of this module is reproduced from the authoEsgare 5.Per the
authors this module combines techniques for both featurelmaapd and convolutional
kerneltbased pooling methods, effectively establishing feature representations in
convolutional blocks opposed to the standard stacking of convolutional layers in order to
efficiently establish spatial information within the images. In the projection layer, the
ESP block is mapped into-@mensional space (where C= number of classes). This is
done using a-8limensional pointwise convolutional layer followed by batch

normalizaton and Rectified Linear Unit (ReLU). Batch normalization is used to adjust
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the means and variances or activations of the input layers. ReLU is an activation function
which outputs zero if input is negative and outputs identity (the input value) otherwise.
Following this is the SPP block. In this pooling layer, low dimensional feature vectors
(resulting from the ReLU operation) are ssdmpled with convolutional kernels of

varying dimensions. The output of this pooling block is the sum of the varied cdarolut
operations. The final PSP block takes as input the feature representation maps and divides
these maps into-Branches (where C= number of classes). The feature maps are then
downsampled, where each separate branch esampled with a different poolingte.

The feature maps are then transformed with pointwise convolutions and upsampled to the
resolution of the input feature maps with bilinear interpolation. The resulting feature

maps are then merged with the input maps (of the same resolution) amgp@rfeature
representation is returnefl.visual model of the SPP and PSP blocks is reproduced from

the authors irFigure 5. In this network, the pyramidal refinement module (comprised of

the aforementioned projection, SPP and PSP blocks) is completed final layer,

called the fAclassification | ayero. The cl a
block and upsamples the output by a factor of two with trilinear interpolation (as opposed

to bilinear interpolation in the PSP block).
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Figure5: SSP and PSP Blocks
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6.4 TRAINING

As a training set, | used the complete BraTS 2018 set including both HGG and
LGG volumes. For validation, the BraTS 2019 set was used. | opted to use a separate
validation set rather than partitioning the training seti{esauthors did) in order to
maximize the quantity of training data for the model to learn from and to maintain class
balance.

In this implementation, a GeForce RTX 2080 Ti with 64GB DDR4 Graphics
Processing Unit (GPU) was used. On this machine, Anacardan 4.8.2 was built
with Python version 3.7.4 (released July 2019). Ugéingconda, | created an
environment for this module to install and access the various Python libraries and
dependencies which were required. The authors originally deployedddis using
PyTorch, an opesource machine learning library, version 0.3.1, with Compute Unified
Device Architecture (CUDA), a parallel computing platform and programming model for
GPU computing. This was originally done in 2018 for the BraTS challergeaithors
recommend using PyTorch version 0.3.1 (released February 2018) which is compatible
with CUDA 9.1 binaries (released December 2017). In this work, | modified the source
code for compatibility with more recent Anaconda and Python distributiongcassary
for resolving incompatibilities with older libraries. Specifically, | encountered
incompatibilities with CUDA version 9.1 upon initial install and upgraded to PyTorch
0.4.1 and CUDA 92. Since the imaging volumes are of file type NIfTI1 (.nthd?y
package NiBabel (version 2.3.0) was used to gain read and write permissions. For

scientific computing purposes, Numpy version 1.7.1 Anaconda distribution was installed
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in the environment. To work in conjunction with Numpy, seikiage version 0.15.@as
used for image processing with Numpy arrays.

| trained with a class size of 4 (representing the data labels), using a batch size of
128 images at full resolution with a learning rate of .0005 to 500 epochs. The number of
parameters used was 3,626,584. With each epoch, a loss function was calsirtgted u
the mean intersection over union was recorded. Mean intersection over union, also known
as the Jaccard index, is an evaluation metric for segmentation which reflects the percent
overlap between the predicted and the target through a quantitativerenesommon
pixels between the two. The mean loU represents the average over the four class labels at
each epoch. Training was initiated through a virtual private network (VPN) service and
lasted slightly under 7 days. Evaluation took under an hour. (thers report a
significantly shorter training time of approximately 5 hours under different conditions.
This vast difference can presumably be attributed to a number of contributing factors.
They train with less data, using the BraTS 2018 training sktamit80:20 split for
training and validation. They also train at full resolution, with a batch size of 4 where |
used 128. Additionally, they train to 300 epochs using a learning rate-efdrGbe first
200 epochs and a rate of Ider theremaining 100 where | trained to 500 with a

learning rate of 5econgant

6.5 SEGMENTATION RESULTS
The segmentation result is quantitatively evaluated using dice score calculations
for each class label. The authors report dice scores of .74 for @emh&noor (ET), 0.88

for whole tumor (WT) and .81 for core mask. These scores reflect performance on the
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BraTS 2018 officialtest/evaluation set and achieved second place in the official
challenge. Dice score calculations on my implementation act8ewn the WT label,
.88 for the CM label and .73 for ET and also reflect model performance on the BraTS

2018 official test set.

6.6 DISCUSSION

Relative to manual segmentation as the current standard clinical practice, these
are promising results. While mgitial model training was timeonsuming compared to
a typical manual segmentation session, where model training took a week and a typical
manual segmentation session las&urs (on average), observed testing times were
consistently brief at around2ninutes. Additionally, manual segmentation also observes
long training windows, where neuroradiologists undergo multiple years of instruction on
manual segmentation before results are produced. At the same time, testing windows are
much shorter as obsed for automated segmentation methods when compared to
manual.

Further, automated approaches have the potential to present more consistent
results by approaching the segmentation task from a strictly quantitative standpoint. In
context, this means thattamated networks for tumor segmentation use image
processing libraries, as Numpy and-Bitimage are used here, to represent image
properties as values in arrays. Representing the tumor images mathematically enables the
network to establish tumor featsrthrough functional differentiation between numerical
values. These values can then be attributed to tumor features and matched to labels,

through repeated exposure in the form of
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model as it learns. Simply p#tutomated models learn to attribute distinct tumor features
(and their corresponding labels) mathematically, and in this process, thresholds are
established for assigning labels and segmentation boundaries, where the threshold is met
(activated) when thieatures are observed. It is the fundamental working aspects of these
models which attribute to them consistency in the segmentation process and consistency
and reproducibility in the output segmentation results.

One of the greatest benefits of artifidiahrning models is the ability to process
large quantities of data quickly and to make objective observations from the data.
However, these models are not perfect. These models are engineered by humans, as is the
data that these models learn from, anche#dhese factors imbeds varying level of bias
into the models themselves and in turn the results. In addition, automated models are
constructed to learn from what is observed, meaning that these models fail when tested
on examples not represented in tite@ning data. Clinicians, on the other hand, are
adaptable. Clinicians, like all humans, continue to learn their entire lives. Clinicians are
able to adapt and adjust as necessary and this, combined with expert experience and
training, is indispensable the medical field.

Still, a concern for overall generalization remains, where automated models can
be limited by objectivity to the point that they are not (easily) adaptable. In context, the
model implemented in this study was trained with glioma sateced from 19 clinical
institutions with varying head MRI protocols and varying hardware signatures. It could
be the case that this model, when tested on glioma MRI data sourced from an unseen
institution, may not perform as well as observed with dataced from the training

institutions. This overgeneralization issue happens when the model attributes feature
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Importance to randomness or abstraction in the training data which is not representative
of the testing data due to variations in imaging promdwrdware, etc. This issue can be
resolved or negated by-teaining the model with additional data, but that process can
again be time consuming. However, current trends in hardware and software
development are working to mitigate the issue of genataiz, through faster, and more
efficient models and computing machinery. It is becoming an increasingly feasibly

options to O0retraind and adapt model s quic
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CHAPTER7

RESEARCH METHODS PART TWOVISUALIZATION

Studies in interpretable deep learning applications for clinical diagnosis show that
data visualization has significant value in enhancing the explanatory content of diagnostic
models and improving model understangd[22, 36]. In addition, effective visual
interfaces have been identified as a powerful tool for enhancing visual reasoning and
model credibility [36] as well as displaying quantitative similarities among class labels
through color differentiation [87]The contribution of the registration and enhancement
module is to present visualizations of the benchmarESPNet segmentation result for
the purpose of exploiting expert domain knowledge.

This chapter focuses on the main contribution of this studyreiistration and
enhancement task. The following segments outline the process of framing and enhancing
the segmentation result for the purpose of expert interpretdt@visual representation
IS 6enhanced® according t o iom taadnidceeasdds of
discrimination power. The purpose of this approach is to utilize advantages of expert
interpretation in the manual segmentation by exploiting principles of visual perception to
maximize the discriminatory power of visual data represiemist

In the registration task, the segmentation prediction from theESPNet
segmentation is visualized as an ovedayeach of the four corresponding input images.

This is done for the purpose of baseline evaluation and standard MR representation. The
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subsequent enhancement module utilizes three different methods fargoetsing the
monochrome representations in accordance with visual perception and computer vision
standards. The three enhancement methods implemented use color space translations,
overlays and contours to modify and ideally the representation of the MR scans and

segmentation results for the purpose of expert evaluation.

7.1 IMAGE REGISTRATION
Provided here is a single patient volume from the BraTS 2018 challenge training
set. Each patient volume includes single scan from each of the following MRI sequences:
T1-ce, T2, T1 and FLAIRN Figure 6. Also provided in each patient volume is a
segmentabn volume with labels. The purpose of varying MRI imaging sequences is that
each sequence is used to enhance visualization of distinct brain and tumor structures. The
biomedical scans are volumetric, ediBnensional, and reproduced here is a 2

dimensionaslice of each ]limensional volume.
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Figure 6: Input Data
Top row from left: t1, tice
Bottom row from left: t2, flair

The ground truth segmentation for this patient volume is reprodadgdure 7
belowlayered on the FLAIR sequence for context visualizafltrese figures depict the
original BraTsS files, preprocessed uniformly with the BraTS preprocessing modules with
the aforementioned skull stripping,-cegistration to the same anatomical template and

interpolation to the same resolution.

Figure 7: Dimensional Representation FLAIR
From left: Coronal slice 104, horizontal slice 47, sagittal slice 79
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7.2 COLOR SPACE PROJECTION

The images used for training and testing the deep network are represented in
grayscale color space. Grayscale images represent information on the dimensions of
luminance and intensity, where each pixel in the images can be explaihete
numeric values representing these two factors. In this light, grayscale images are 2
dimensional, not in reference to volumetric space, but in reference to the two dimensions
of values along the vectors of luminance and intensity which repribgeimage voxels.
Image computing refers to the field of representing, processing and interpreting images.
For computing purposes, and in the learning, network used here specifically, images are
represented as matrices (or Nuyna@Prays). In these arrays, image pixels are indexed
individually as numeric values. In grayscale computing, these numeric values represent

information on the luminance and intensity of each voxel.

7.3 GRAYSCALE SEGMENTATION RESULTS

The original segmentian results obtained and reproduced in grayscale are
reproduced belowFigure 8 (left) depicts the segmentation result alone whRitgure 8
(right) depicts the segmentation result layered with a FLAIR volume of the same patient
volume. This represents tirgut data for the color space projection model and serves as
a basdine representation of the n@mhanced data visualization of the segmentation
task. For the purpose of interpretation, it is useful to note here that the segmentation
result is layeredavith the FLAIR representation in the identical position as the result is

represented alone.
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Figure 8: Segmentation Results

7.4 COLOR PROJECTION SEGMENTRAON

The following approach converts the grsgale results into color space using
palettes descending from the HCL color model proposed in 2005 by Sarifuddin and
Missaou p9]. The HueChromaLuminance model was designed to exploit the
advantages of preexistifRedGreenBlue and CIELAB (L, a*, b*) color spaces. HCL is
a perceptually uniform color space, where perceptual uniformity refers to a measure of
consistency over the perceived similarity/difference of sets of equidistant points across
thecolorspacebP] . Thi s col or space is constructed

model s0 centered around the plby.£acbl ogi cal

coordinate (pixel valwue) in HCL space has
Hueisunderstab t o refer to the full <color spectr.
a color experience. Chroma is the fAcol orfu

Luminance i s t he 70. OheistqttureroleHCk sgpacaand coardmate e |
calculdions centers on the reasoning that the average human visual experience reacts to
color intensity logarithmically, rather than lineads visualized ifrigure 9, Reproduced

from HCI wizard GUI[59, 99.
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Figure 9: HCL Sequential Perceptuallyniform and RGB Colofpaces

To calculate the Luminance value of an HCL coordinate, the L value is calculated
as a linear combination of Mi ni mum and max

RGB value and Hgwdélot ed t he max)

_ Q.Max(R,G, B) + (1 - Q).Min(R, G, B)

< 2

Figure 10: HCL Luminance Calculation

In this calculation, Q :(é 9 functions as a tuning parameter to account for
variations in saturated hues and hues with a large white component. Chroma is calculated
usingFigure 11where element@R, G, B are combinations of RGB ape components,
including reggreen, greeiblue and bluged.Finally, the Hue attribute ranges frefo
to 9O and is calculated dsgure 12. Figure 13 provides a visual reference for Hue,

Chroma and Luminance attributes and is reproduced here from [70].
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Figure11: HCL Chroma Calculation

-]
Figure 122 HCL Hue Calculation

H = arctan (
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Figure 13: Hue, Chroma and Luminance

A colormap uses a palette aflors and mapping function to map data values to
color [69]. Broadly, three classes of color palettes have descended from HCL space;
gualitative, sequential and diverging. The three classes are differentiated by the
trajectories of each the HCL componentith the Luminance value carrying the most
importance in the class distinction. In a qualitative colormap, each color in the palette is
given the same perceptual weight. This type of colormap distinguishes classes using
distinct hues with equal chromadaluminance values/p]. This kind of map is useful for

representing unordered categorical data. A sequential palette uses a monotonic function
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trajectory for luminance values (increasmglecreasing) to represent ordered numerical
data as a sequence.tut the chroma attribute, a sequential palette would correspond
to grayscalg70] as visualized irFigure 14, reproduced fromil0]]. A diverging palette

is modeled as a dudirection monotonic sequential mapping function, where values
diverge to two extremes from a central poif)][ A diverging palette is used to code
numerical information around a central vald8][ Figure 15 provides visual reference

for comparison between the classes of colormaps and is reproducgd G@m

Sequential colormaps (A) Qualitative (isoluminant)

Greys

Purples
Blues

(B) Sequential (single hue)

(C) Sequential (multi hue)

- .
.
Sl

(D) Diverging

Figure 14: Sequé'nrtial Colormaps Figure 15: HCL Map Variations

Greens
Oranges
Reds
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YIorRd
OrRd
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PuBuGn
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YiGn

An effective colormap for any task space is dependent upairtieture and
composition of the dataset, with consideration for factors of numerical ordering, scaling,

and spatial distribution/P]. A good colormap is a tool for effectively representing and



communicating data, and a bad map can lead to misrepresentmgunderstanding

data p9]. Principles of design in colormaps consider order, smoothness, uniformity and
discriminative power§8]. A colormap with order progresses through color values with

direction. Sequential and divergent are colormaps have evbergas qualitative maps

do not. Smoothness is the extent to which a colormap has identifiable boundaries.

Perceptual uniformity is a measure of constancy between equidistant values, where two

pairs of distinct values with the same difference measuréhalsmthe same impression

of fisamenesso. Finally, discriminative pow
measured by a count of Oj ust8gnibiDreferetab| e di
the average minimum threshold by which two values cambsistently differentiated

form one another.

7.5COLORIZATION AND VISUAL ENHANCEMENT METHODS

In this study, the goal is to enhance the visualization of brain imaging data and the
original data representation is grayscale. A brain/head MRI maps grayscale as a
representation of signal intensity produced by the mechanical reaction of the tissne withi
the imaged region to the strong magnetic forces emitted by the MR scanner. Since
distinct tissue compositions (more or less dense tissue/healthy or tumorous tissue) also
have distinct mechanical reactions to the magnetic fields, signal intensity estligng
image reflects anatomical features. In the same scope, grayscale images are represented
computationally as numerical arrays. In this representation, anatomical features then also
use numerical representation. An effective colormap for this datneas the

visualization while also retaining predetermined structure. The intent is to attain
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information gain though enhanced visualization while preventing information loss in the
translation.

Grayscale is a singlehannel scalar representation foagmg data and contains
only a single luminance value for each voxel. This means that grayscale is éhsiagle
sequential colormap where the hue is gray. Since the grayscale image has ordered
numerical values, a sequential colormap can be used to teatisdatalues into a multi
value colao space with a uniform function for mapping edenensional luminance
values into threglimensional HCL coordinate space. The purpose of doing this is to
maintain the inherent distribution of the data and represenathe distribution with
more color values across over the same range to increase the discriminatory power of the
color space by using values with the same distribution but with greater distance between
them. Using a wider colespace distance between pixalwes applies the concept of just
noticeable difference, where the distance between pixels is increased to enhance the
difference between visually similar color impressions. Mappingdamensional
grayscale values into@mensional HCL space exponentyadiffects the quantity of IND
instances within the image.

For this study, five distinct sequential and perceptually uniform gokpping
functions are applied to volumes from the-BBPNet segmentation results in an effort to
enhance the visualizatiori the segmentation result to increase interpretability and
establish model credibility. Each of the mapping functions is a variant using the HCL
model, but the parameters of the methods differ slightly and can be used to enhance
different image featuresirsilar to the use of separate MRI sequences for distinct contrast

enhancement. The colormapsed in this study are reproducedrigure 16 as
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reproduced from [1023dndc o me fr om t he O vingdivdirs & i ppadc, k adgrma
Opl as mad, caiivniflddrshesedmapsrare designed to be both sequential and
perceptually uniform. In addition, these maps account from the most common forms of

color blindness (all 5) and color vision deficiency (the cividis mépg cividis map is a

2018variationof the2015viridis packageadapted for coladeficiency p6, 104.

viridis

magma

lasma

inferno

cividis

Figure 16: The Viridis Package

This colormapping method uses Python 3.7 and Python libraries OpenCV,
NumPy, Nibabel and Matplotlib for image processing. This method processes a single
patient volume in each iteration. For each patient directory, 5 Niftl files are read using
Nibabel inb separate-8imensional [240] x [240] x [155] Numpy arrays. A linear
normalization is then used to scale the grayscale voxel values from (min)(max)-into 32
bit floating point format range 0-0.0. The normalization is necessary for properly
assigning inpttoutput values to the colormap since the HCL conversion relies on RGB
value calculations, and the-B# float RGB assignment requiresldnput. At this point,

Matplotlib is used to store n=1000 equidistant values from eachsydae into a lock
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up-tade (LUT) for each space. For reference, the cepices used are represented in
with n=3 and n=20 colors respectivétyFigure 17 reproduced fronPypi Palettable

[103] (the cividismapwas not available through this source
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Figure 17: Colormap Reference

All 5 volumes (t1, tice, t2, flair and segmentation result) are then input into the
conversion function which uses the stored color values as reference to supply the values.
With each color space (n=5) processing each image in a single patient volurmeh@=5
output is 25 distinct volumetric scans, or 3,875 (25 images with a depth of 155 in
dimension 3) twedimensional image slices. The automated segmentation result is
processed along with the MRI scans to this point. The result is 4 MR sequence images

and 1 automated segmentation image which have undergone visual enhancement

6
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individually. Slices from theeesulting images from this stage of enhancement are

reproduced irFigure 18.

W
‘&

Figure 18: Color Space Results
from left4 right viridis: magma, plasma, inferno, cividis
from top to bottom:t1, tte, t2, flair, segmentation
image slice 71/155
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This represents the first stage of enhanced visualization. At this stage, the tumor
segmentation resuand brain scans can be compared-bigside with an enhanced
view. The purpose of providing the segmentation result beside the full brain scan, without
any overlay or label is to provide a baseline enhancement for expert analysis. The
intention of thisstudy is to address current limitations of automated tools for
implementation in the reavorld clinical sector. Current limitations of automated tools
for brain tumor segmentation are associated with a lack of established clinical trust and
approval of tle validity and reliability of these methods. This stage of image
enhancement seeks to establish clinical trust through quantitative analysis aofi ease
transition from manual to automated segmentation. The manual segmentation process has
been a gecollidnisctaalndiar do f or many years, and
image analysis and interpretation. Expert neuroradiologists endure many years of training
and education to interpret these images and annotate both brain and tumor structures. For
mary clinical processionals, the manual segmentation process is not only a standard, but
also a trustworthy process. It is a process though which an expert uses training and
logical reasoning to assign tumor labels. The result of a manual segmentationisession
not only a segmentation result, but also hours of reasoning and explanation to support or
defend this result.

While the processes for manual and automated segmentation are fundamentally
different, processing and evaluation of the produced segmentesalts can be done
with relative similarity. This allows the expert reading the segmentation result to judge
the result similarly to how they would might judge their own segmentation work. In a

traditional manual session, an expert will sit at a sgréew the patient MRI scans, and
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carefully read the scans, identify points of interest and eventually determine tumor
landmarks. With automated segmentation models powered by deep learning
architectures, it is possible to streamline the often himng process of drawing the

tumor segmentation. At the same time, it is not necessary to streamline the evaluation
steps. With enhanced visualization of both the MR scans and predicted segmentation
boundaries, resident expert clinicians can carry out segmen&tauation and

critiquing as would be done with manual segmentation, but with enhanced visual

representation to support the segmentation.

7.6 ENHANCEMENT USING CONTOURS

In the second phase of image registration and enhancement, an edge detection
algorithm is run on the predicted segmentation result for each of the patient volumes.
Using OpenCV (open source computer vision for python) a Canny edge detection
algorithm is run on the segmentation files. This edge detection uses thresholding of pixel
values to establish edges. This is done for the grayscale segmentation files, ignoring the
color segmentations temporarily. For each segmentation, a binary image mask is output
cortaining the edges. From these binary masks, a function is then run to learn contours
with an established hierarchy from the images. The hierarchy considers the segmentation
regions separately so that contours can be drawn to reflect the three distireits¢igm
labels. Once the contours are learned, the contours are then drawn onto the colorized
image using a line size of n=0.25 so as to highlight and define the segmentation regions
without obscuring the enhanced data in and around the regions. This i clinician

to visualize the segmentation result with exact reference to extent and boundaries
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throughout the entire image volume (all 3 dimensionisg contour representations of

the images fronfrigure 18 are visualized ifrigure 19.

Figure 19: Contour Results
From left: viridis, magma, plasma, inferno, cividis
From top: t1, tice, t2, flair, segmentation mask binary output edge detection
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