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ABSTRACT

When building datasets for machine learning, it is often much easier and less expensive to collect data

than to label it, resulting in large pools of unlabeled data. Active learning (AL) is a subfield of machine

learning that focuses on choosing which unlabeled points to label next for a given dataset and task, with the

core assumption that labeling certain points will result in higher performance models than other points.

Standard AL approaches identify informative samples by querying a trained task model. Task-agnostic

AL approaches ignore the task model and instead makes selections based on separately defined properties

of the dataset. We seek to combine these approaches and measure the contribution of incorporating task-

agnostic information into task-focused AL. We use a ResNet classifier as our task model and experiment

across two AL utility functions with and without added information from a variational autoencoder

(VAE).

INDEX WORDS: Active Learning, Deep Learning, Semi-Supervised Learning, Variational

Autoencoder
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CHAPTER 1

INTRODUCTION

For many machine learning problems, labeling data is time consuming and expensive. Data is often

gathered at a faster rate than it can be labeled, resulting in large pools of unlabeled data. The field of active

learning (AL) provides methods for choosing which unlabeled points are best to label next.

In AL, the utility of unlabeled points is typically defined with respect to a task model that is trained on

the labeled set. The points of highest utility are those which, if labeled and trained on, would result in the

greatest reduction of the task model’s average loss. Since this is a determination that cannot be made until

a given point is actually labeled, various heuristics for informativeness have been proposed for comparing

unlabeled points in this context.

The heuristics can be broadly divided into two approaches: task-focused and task-agnostic. Task-

focused approaches have access to the task model, including its weights and outputs [1, 2, 3]. Task-agnostic

approaches select points based on separate observations of the dataset [4, 5], only using the task model

when measuring performance.

We propose a novel methodology for incorporating task-agnostic information into task-focused ap-

proaches. We start by training a variational autoencoder (VAE) to learn features for representing the

dataset separately from the task model. We then incorporate these features into two relevant task-focused

methods from the literature, in each case entangling the task model information with the additional

task-agnostic VAE features.
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CHAPTER 2

RELATED LITERATURE

§ 2.1 Active learning

In active learning (AL), we consider a partially labeled datasetD ⊂ Rn
. We have a labeled subset L ⊂ D

and an unlabeled subset U ⊂ D such that L ∪ U = D and L ∩ U = ∅. We also consider a supervised

task model

T : Rn → {0, 1, ..., c},

where c is the number of classes inD.
1

AL is comprised of heuristics for selecting high priority unlabeled

points u ∈ U to be labeled.

Algorithm 1: Measuring the performance of a given active learning heuristic

Input: training dataset D, task model T , budget β, initial number of labels ξ, desired number of

labels η, set selection heuristicH
L← ξ-sized random subset of D
U ← D\L
A← ∅
train T on L
while |L| ≤ η do

S ← β-sized subset of U , selected usingH
L← L ∪ S
retrain or fine-tune T on L
a← (validation accuracy of T , |L|) // save accuracy tuple
A← A ∪ a // record accuracies across the labeling process

end
create a line graph plotting a0 against a1 for each a ∈ A

1
We limit our analysis to classifiers as they are the most common type of task model in the AL literature.
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Much of the early active learning (AL) literature is based on shallower, less computationally demand-

ing networks since deeper architectures were not well-developed at the time. Settles [6] provides a review

of these early methods, with the main branches being membership query synthesis [7], stream-based sam-

pling [8], and pool-based sampling [9]. The latter method takes a holistic approach of ranking all available

unlabeled points by some chosen heuristicH and choosing to label the points of highest ranking. This is

the current default AL approach, as technological advancements have made it a less demanding task in

terms of processing and memory.

The popularity of the pool-based method has led to a widely-used evaluation procedure, which we

describe in Algorithm 1. This procedure trains a task model T on the initial labeled data, records its test

accuracy, then usesH to label a set of unlabeled points. We then once again trainT on the labeled data and

record its accuracy. This is repeated until a desired number of labels is reached, and then the accuracies can

be graphed against the number of available labels to demonstrate performance over the course of labeling.

We can separately pass multiple heuristics through this evaluation algorithm to compare their performance

based on the resulting accuracy graphs. This is utilized in many AL papers to show the efficacy of their

methods in comparison to others [1, 2, 3, 10].

The prevailing approach to the pool-based method has been to choose unlabeled points for which

the model is most uncertain, the assumption being that uncertain points will be the most informative [11].

A popular early method was to label the unlabeled points of highest Shannon entropy [12] under the

task model, which is a measure of uncertainty between the classes of the data. This method is now more

commonly used in combination with a representativeness measure [10] to encourage that very similar

samples are not successively selected.

§ 2.1.1 Recent heuristics using deep features

For convolutional neural networks (CNNs) in image classification settings, the task model T can be

decomposed into a feature-generating module

Tf : Rn → Rf ,

3



which maps the input data vectors to the output of the final fully connected layer before classification,

and a classification module

Tc : Rf → {0, 1, ..., c},

where c is the number of classes.

(1) Core-set and MedAL

Recent deep learning-based AL methods have approached the notion of uncertainty in terms of the

rich features generated by the learned model T . Core-set [1] and MedAL [2] select unlabeled points that

are the furthest from the labeled set in terms of L2 distance between the learned features. For core-set,

each point constructing the set S in step 6 of Algorithm 1 is chosen by

u∗ = argmax
u∈U

min
ℓ∈L
||(Tf (u)− Tf (ℓ))||2,

where U is the unlabeled set and L is the labeled set. The analogous operation for MedAL is

u∗ = argmax
u∈U

1

|L|

|L|∑
i=1

||Tf (u)− Tf (Li)||2.

Note that after a point u∗
is chosen, the selection of the next point assumes the previous u∗

to be in the

labeled set. This way we discourage choosing sets that are closely packed together, leading to sets that are

more diverse in terms of their features. This effect is more pronounced in the core-set method since it

takes the minimum distance whereas MedAL uses the average distance.

(2) Loss prediction

Another recent method [3] trains a regression network to predict the loss of the task model, then

takes the heuristicH to select the unlabeled points of highest predicted loss. To implement this, the loss

prediction network P is attached to a ResNet task model T and is trained jointly with T . The inputs

to P are the features output by the ResNet’s four residual blocks. These features are mapped into the

same dimensionality via a fully connected layer and then concatenated to form a representation c. An

additional fully connected layer then maps c into a single value constituting the loss prediction:

4



u∗ = argmaxu∈UP(u).

When attempting to train a network to directly predict T ’s loss during training, the ground truth

losses naturally decrease as T is optimized, resulting in a moving objective. The authors of [3] find that

a more stable ground truth is the inequality between the losses of given pairs of points. In this case,P is

trained on pairs of labeled points, so thatP is penalized for producing predicted loss pairs that exhibit a

different inequality than the corresponding true loss pair.

More specifically, for each batch of labeled data Lbatch ⊂ L that is propagated through T during

training, the batch of true losses is computed and split randomly into a batch of pairs Pbatch. The loss

prediction network produces a corresponding batch of predicted loss pairs, denoted P̃batch. The following

pair loss is then computed given each p ∈ Pbatch and its corresponding p̃ ∈ P̃batch:

Lpair(p, p̃) = max(0,−I(p) · (p̃(1) − p̃(2)) + ξ),

where I is the following indicator function for pair inequality:

I(p) =


1, p(1) > p(2)

−1, p(1) ≤ p(2)
.

§ 2.2 Variational Autoencoders

Variational autoencoders (VAEs) [13] are an unsupervised method for modeling data using Bayesian poste-

rior inference. We begin with the Bayesian assumption that the data is well-modeled by some distribution,

commonly a multivariate Gaussian. We also assume that this data distribution can be inferred reasonably

well by a lower dimensional random variable, also modeled by a multivariate Gaussian.

The inference process then consists of an encoding into the lower dimensional latent variable, followed

by a decoding back into the data dimension. We parametrize both the encoder and the decoder as neural

networks, jointly optimizing their parameters with the following loss function [14]:

Lθ,ϕ(x) = log pθ(x|z) + [log pθ(z)− log qϕ(z|x)],
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where θ and ϕ are the parameters of the encoder and the decoder, respectively. The first term is the

reconstruction error, penalizing the parameters for producing poor reconstructions of the input data.

The second term is the regularization error, encouraging the encoding to resemble a pre-selected prior

distribution, commonly a unit Gaussian prior.

The encoder of a well-optimized VAE can be used to generate latent encodings with rich features which

are sufficient to approximately reconstruct the data. The features also have some geometric consistency, in

the sense that the encoder is encouraged to generate encodings in the pattern of a Gaussian distribution.

§ 2.3 t-SNE Dimensionality Reduction and Visualization

Many methods have been developed for visualizing high-dimensional data, which can be informative in

machine learning where many important objects are high dimensional and difficult to analyze. In our

research, we utilize the popular dimensionality reduction technique t-SNE.

The general strategy in t-SNE is to take a given high dimensional set X ⊂ Rn
, randomly initialize a

corresponding lower dimensional set Y ⊂ Rl
of the same cardinality, and iteratively update Y to have

a similar data distribution as X in terms of conditional probability. Recall the multivariate Gaussian

distribution function

f(x) =
1√

(2π)n|Σ|
exp(−1

2
(x− µ)TΣ−1(x− µ))

which we use to model both distributions. The authors note that the conditional probability pj|i between

given points xi and xj can be specified in this context as

pj|i =
exp(−||xi − xj||2/2σ2

i )∑
k ̸=i exp(−||xi − xk||2/2σ2

i )

where σ is a variance hyperparameter.

We begin by initializing eachy ∈ Y as randomly sampled Gaussian noise in the desired dimensionality.

The conditional probability qj|i in the lower dimensionality is similar to pj|i, except that the authors keep

the variance constant at
1√
2

for simplicity:
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qj|i =
exp(−||yi − yj||2)∑
k ̸=i exp(−||yi − yk||2)

If pj|i and qj|i are equal, thenY has a similar distribution asX . Thus we can modifyY to more closely

resemble X by encouraging pj|i and qj|i to be closer. To achieve this, we define a cost function C as the

KL divergence between pj|i and qj|i:

C = KL(P ||Q) =
∑
i

∑
j

pi|j log
pi|j
qi|j

.

We can then calculate the gradient of C with respect to yi ∈ Y :

δC

δyi
= 2

∑
j

(pj|i − qj|i + pi|j − qi|j)(yi − yj).

We can now specify the update step as

Y(t) = Y(t−1) + λ
δC

δyi
+ α(t)(Y(t−1) − Y(t−2)),

where λ and α(t) are hyperparameters corresponding to learning rate and momentum, respectively.

With the update step, we can now run t-SNE to generate a lower dimensional representation of our

data with given number of components, learning rate, and additional hyperparameters on the training

process. For our purposes, we use the default hyperparameters in the scikit-learn Python package.
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CHAPTER 3

METHODOLOGY

We observe that both core-set and loss prediction utilize reasoning about a representation in a vector

space. In particular, the core-set method relies on distances between feature vectors modeled by the task

model T . Loss prediction relies on a fully connected layer mapping from a feature space to a single value,

producing different predictions depending on the values of the relevant feature vector. Both core-set and

loss prediction then produce evaluation heuristicsH indicating the uncertainty of all unlabeled points.

The most uncertain points are then assumed to be the most effective points to label next.

In each of these methods, the final heuristicH is derived from the task model, which is trained only on

the labeled points at a given timestep in the labeling procedure. To address this limitation, we suggest that

these methods may be improved by incorporating information learned over the entire dataset. For this

purpose we employ a variational autoencoder (VAE), which can be trained without labels and which can

produce useful representations of image datasets. These additional unsupervised features will constitute

a new perspective on the data, which may improve the active learning process.

We implement this by first training a VAE model V on the given dataset. V can then be used as a

function returning the VAE features for any given datapoint. We append these additional features to

the relevant vector spaces using vector concatenation, an operation we denote with the symbol ⌢. The

modified point selection operation in core-set then becomes

u∗ = argmax
u∈U

min
ℓ∈L
||[(Tf (u) ⌢ αV(u)]− [Tf (ℓ) ⌢ αV(ℓ)])||2,

8



whereα is a hyperparameter that scales the influence of the VAE features in computing the vector distance.

To similarly modify the loss prediction method, we concatenate the VAE features to the final ResNet

feature concatenation c before the loss prediction, so that the extra information is factored into the

training of the prediction networkP .
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CHAPTER 4

EXPERIMENTS

In order to measure the efficacy of the newly proposed methods, we generate accuracy graphs using

Algorithm 1, freezing all settings except the selection heuristicH. We then compare the performance of

the core-set and loss prediction heuristics with their VAE-augmented counterparts.

We use ResNet-18 pretrained on ImageNet as the task model, using the SGD optimizer with learning

rate 0.001 and momentum 0.9. We train on the MNIST [15] and ChestMNIST [16] datasets. ChestM-

NIST consists of 112,120 chest X-ray images resized to 28x28 and is one of several benchmark medical

image datasets introduced in [16].

For both datasets we experiment on randomly selected subsets, using 25000 points for MNIST and

30000 points for ChestMNIST. In both cases we begin with 3000 initial labels and label 3000 points per

active learning step. We opt to retrain the task model after each labeling step instead of fine-tuning.

We use a similar training strategy as in [2], training the task model until >99% train accuracy before

selecting new points to label. This ensures that the ResNet is similarly well fit to the labeled data at each

labeling iteration. This is implemented by training for 10 epochs on the initial training set and increasing

the training epochs by 5 after each labeling iteration.

The VAEs used for the experiments are trained for 20 epochs using an Adam optimizer with learning

rate 0.001 and weight decay 0.005. The VAE encoder architecture consists of four convolutional down-

sampling filters and two linear layers to learn the low dimensional mean and log variance. The decoder

consists of an upsampling convolution and four size-preserving convolutions to learn the reconstruction.
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Figure 4.1: Average results of Algorithm 1 on MNIST over 5 runs using the core-set heuristic versus the

VAE-augmented core-set heuristic.

Experiments were run five times, each with a separate set of randomly chosen initial labels, with the

displayed results showing the average validation accuracies across all runs. Figures 4.1 and 4.3 show the

core-set results, while Figures 4.2 and 4.4 show the loss prediction results. Within each 5-run batch, shared

random seeds were used to ensure that the task models being compared were supplied with the same initial

set of labels.

With four NVIDIA 2080 GPUs, the total runtime for the MNIST experiments was 5113s for core-set

and 4955s for loss prediction; for ChestMNIST, the total runtime was 7085s for core-set and 7209s for

loss prediction.

To investigate the qualitative difference between the VAE and non-VAE approaches, we performed

an additional experiment to visualize an example of core-set selection. We first train the ResNet-18 with

the same hyperparameter settings on 1000 initial labels from the ChestMNIST dataset, then randomly

choose 1556 (5%) of the unlabeled points from which to select 100 points to label. These smaller sizes were

chosen to promote visual clarity in the output graphs. We then use t-SNE [17] dimensionality reduction

to compare the ResNet features of the labeled set, the unlabeled set, and the points chosen to be labeled

by core-set. The results are displayed in Figures 4.5 and 4.6.
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Figure 4.2: Average results of Algorithm 1 on MNIST over 5 runs using the loss prediction heuristic versus

the VAE-augmented loss prediction heuristic.

Figure 4.3: Average results of Algorithm 1 on ChestMNIST over 5 runs using the core-set heuristic versus

the VAE-augmented core-set heuristic.

Figure 4.4: Average results of Algorithm 1 on ChestMNIST over 5 runs using the loss prediction heuristic

versus the VAE-augmented loss prediction heuristic.
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Figure 4.5: A t-SNE visualization of the ChestMNIST points chosen by core-set.

Overall, the VAE-augmented active learning heuristics did not exhibit a significant performance dif-

ference when compared with their counterparts. The only case of a significant p-value (<0.05) occurred

during loss prediction on the MNIST dataset at 21000 labels.

The t-SNE visualizations in Figures 4.5 and 4.6 show some of the influence that the VAE features

have on the core-set selection process. In 4.5, the selected points tend to be more spread out, while in 4.6

they cluster at one edge. This appears to mirror the transformation of the rest of the data, which is more

spread out without the VAE features, but becomes condensed in the center when they are introduced,

approaching the shape of a Gaussian distribution.

It seems that with the added VAE features, the selected points are further out of distribution in the

latent space. This makes sense because points tend to be more sparse at the tails of a Guassian distribution

and core-set prioritizes points that are well-isolated from other points.
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Figure 4.6: A t-SNE visualization of the ChestMNIST points chosen by core-set when the ResNet features

are augmented with VAE features.
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One reason for the lack of performance improvement may be the homogeneous nature of the VAE,

where the optimization goal is reconstruction rather than classification. Thus points may be chosen

by core-set on the basis of their ability to reconstruct, which does constitute a new perspective on their

uncertainty, but one which is not necessarily relevant to classification. This may be improved by using a

multimodal prior in the VAE, which may do a better job of modeling relevant differences between points.
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CHAPTER 5

CONCLUSION

Our original intuition was that additional unsupervised information may improve established active learn-

ing methods, especially when using a modern unsupervised representation method such as a VAE. The

experimental results did not indicate this hypothesis, but additional investigation of the VAE features

showed a notable change in the task model latent space. Though this did not result in superior point

selections in our case, it is of interest whether different approaches to latent space augmentation in active

learning may fare better.

Future work may explore the use of class-conditional VAEs in a similar application, since a VAE that

can utilize the available class labels may produce more relevant representations, and it could be retrained

along with the task model after each labeling iteration.
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