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Abstract

In this study, we propose a novel generative model that combines the strengths of two well-

known generative models: normalizing flows and diffusion models. Normalizing flows lack

the ability to fully map to Gaussian space, resulting in limited expressiveness. To overcome

this, our model utilizes normalizing flows to map the complex data distribution to a latent

distribution and then employs a diffusion model to make the latent distribution achieve

equivalence to a Gaussian distribution. Additionally, we introduce a new training procedure

that combines maximum likelihood estimation from normalizing flows and variational lower

bound from diffusion models, resulting in a unified end-to-end architecture. We evaluate our

model using the Fréchet Inception Distance and Negative Log-likelihood scores and show that

our model outperforms Neural Spline Flows [7] and gives comparable results to traditional

diffusion models [13]. Our work presents a promising direction in the field of generative

modeling, specifically in image synthesis.

Index words: Generative models, Normalizing flows, Diffusion models, Fréchet
Inception Distance, Negative Log-likelihood
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Chapter 1

Introduction

Generative models are a type of machine learning algorithm that creates new samples by

learning the probability distribution of examples in a given dataset. Its ability to generate

new realistic samples using various data types like images[32, 17], texts [38, 1], audio [19, 41],

has increased their popularity in recent times. The main objective of generative models is to

learn the underlying data distribution, and the ability to sample from the learned distribution

is an added advantage of the generative models. These models have applications in numerous

fields like robotics [35, 9], computer vision [40, 3], natural language processing [25], etc.

Apart from direct applications in the real world, these models can also be used to further

improve the existing machine learning models by providing fresh data which can be utilized

for robust training and testing of models [2, 39]. This allows to produce more generalized

models without losing accuracy. One very important application can be in the healthcare

industry [37, 26, 28], where the data is very limited for the existing models.

In this thesis, our focus lies on an alternative category of generative models called nor-

malizing flows [5, 6, 20, 12, 10] and diffusion models [13, 36]. These models represent a recent

and actively evolving area of research.

Normalizing flows, also known as flow-based generative models, constitute a specific type
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of generative model that uses invertible transformations. Their objective is to acquire infor-

mation about a data distribution from a series of transformations that are both invertible and

bijective. The primary aim is to establish a mapping between the original data distribution,

which can be intricate and unknown, and a well-understood and simple distribution, such as

the Gaussian distribution. By systematically applying a sequence of invertible transforma-

tions, normalizing flows empower us to explicitly model the data distribution. The central

concept underlying normalizing flows involves initiating the process with a base distribution,

typically a known distribution like the Gaussian distribution. Then, through the applica-

tion of a sequence of learned transformations, the data is effectively mapped to the desired

distribution. Importantly, each transformation is meticulously designed to be invertible,

meaning that it possesses a well-defined inverse transformation. This property allows us to

reliably map samples from the target distribution back to the base distribution or vice versa.

These transformations are typically parametrized by neural networks, allowing for flexibil-

ity and expressiveness. By stacking multiple transformations together, a complex mapping

can be learned, enabling the model to capture intricate structures and dependencies in the

data. One of the notable advantages of normalizing flows is their ability to perform exact

log-likelihood estimation. This means that they can provide an accurate measure of how

likely a given sample is under the learned distribution. This property is valuable for tasks

such as density estimation, where knowing the likelihood of a sample is essential. However,

normalizing flows also has its limitations. One challenge is mapping complex data distribu-

tions to a pure Gaussian distribution. While normalizing flows aim to transform the data

distribution into a known distribution, in practice, it is often observed that the assumption

of the transformed data points following the base distribution is violated. This can lead to

approximations and discrepancies when sampling from the inverse transformations.

Diffusion models approach the problem of learning the data distribution in a different

manner. Instead of applying a series of transformations, diffusion models iteratively diffuse
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noise over the actual data samples. The model then performs a series of steps, known as

denoising steps, where it gradually transforms the noise sample to resemble a valid sample

from the true data distribution. The number of timesteps used to diffuse noise determines

the complexity of the modeling process. Diffusion models have the advantage of being able

to generate highly realistic images. However, a downside is that diffusion models take a long

time to train and sample as they require a larger number of timesteps. The larger number

of timesteps ensures that the resulting noisy latent sample after adding noise to the actual

sample is a valid sample from the base distribution.

To summarize, we have two distinct types of generative models known as normalizing

flow models and diffusion models. These models are specifically designed to tackle the

challenge of comprehending intricate data distributions. Normalizing flows accomplish this

by employing a series of invertible transformations that effectively map the data distribution

to a familiar and well-understood distribution. On the other hand, diffusion models adopt

an iterative process where noise is gradually introduced into the data and subsequently

learned to be removed or reduced. It is important to recognize that each approach possesses

its own unique strengths and limitations, rendering them suitable for various scenarios and

applications within the realm of generative modeling.

1.1 Approach

This paper addresses the limitations inherent in normalizing flows and diffusion models by

introducing a novel generative model that leverages the strengths of both approaches. Our

primary objective is to combine these two architectures to create a unified framework that

overcomes the specific drawbacks associated with each model, ultimately achieving superior

performance in generating high-quality samples.

The key motivation behind our work is to address the challenge faced by normalizing
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flows in fully mapping complex data distributions to complete Gaussian distributions [31]

[16]. To address this, our model applies a sequence of invertible transformations. These

transformations aim to convert the original complex data distribution into a Gaussian distri-

bution. However, it is important to note that even after these transformations, the resulting

distribution may not perfectly adhere to a Gaussian distribution. To achieve a complete

transformation to pure Gaussian distribution, we incorporate diffusion models into our ar-

chitecture. The diffusion models play a vital role in further enhancing the intermediate

distribution, ensuring a comprehensive transformation that captures the desirable charac-

teristics of a Gaussian distribution. This integration allows us to harness the best of both

worlds, mitigating the limitations of each model and achieving superior generative perfor-

mance. For the sampling process, Gaussian noise is first passed through a denoising network

which ensures the generation of latent samples following the diffusion model framework. Fur-

ther, we pass these latent samples through a normalizing flow model, which uses its inverse

transformations and knowledge of learned probability distribution to generate final samples

from the latent samples. Through the sequential application of these two steps, we are able

to generate high-quality images that accurately reflect the underlying data distribution.

To validate the efficacy of our proposed architecture, we conduct evaluations on three

widely used datasets: MNIST [23], CIFAR-10 [22], and CELEB-A [24]. We employ two

evaluation metrics such as Fréchet Inception Distance (FID) [11] [34] and Negative Log-

likelihood. These metrics provide comprehensive insights into the performance of our model,

allowing us to quantitatively demonstrate its superiority over existing approaches. We con-

ducted experiments to compare our model with other models like Denoising Diffusion Prob-

abilistic Models (DDPM) [13] and Neural Spline Flows (NSF) [7]. The experimental results

demonstrate that our proposed method yields results comparable to those of DDPM while

surpassing the performance of the NSF model. This indicates that our method holds the

potential to significantly enhance existing normalizing flow models. Moreover, our model
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exhibits lower negative log-likelihood values and FID scores compared to the NSF model,

suggesting that our methodology achieves a superior quality of generated samples when com-

pared to traditional normalizing flow models. On all three datasets, our model achieves FID

scores comparable to those of DDPM, implying that the quality of the generated samples is

on par with that of conventional diffusion models. Additionally, our model also has faster

sampling times in comparison to diffusion models. By reiterating these findings, we un-

derscore the ability of our proposed method to rival established approaches while offering

improved accuracy and faster sampling times. This highlights the potential of our method-

ology to advance the field of generative modeling by combining the strengths of traditional

diffusion models and normalizing flow models.
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Chapter 2

Related Work

In recent years, normalizing flows and diffusion models have been widely studied in the

generative modeling field of machine learning. This extensive research has led to many papers

that propose various approaches to improve the performance of these models. Some of the

important and interesting findings have been mentioned below, starting with comparatively

basic types of generative models like Generative Adversarial Networks (GANs), Variational

Auto-encoders (VAEs), and Autoregressive models:

GANs [8] are a type of generative model that have two parts, a generator network, and a

discriminator network. The generator generates new fake samples by using the latent space

mapping of the given distribution, and the discriminator tries to distinguish between these

new fake samples with the original samples. The main objective of GANs is to minimize the

discriminator loss while maximizing the generator loss. VAEs [21], on the other hand, encode

the sample from the given distribution into a low dimensional latent space and then decode it

back, reconstructing the new sample. The loss of VAEs consists of the reconstruction loss and

KL divergence. Autoregressive models involve computing the joint probability of a sequence

of attributes by calculating the conditional probabilities of each attribute in relation to its

earlier attributes. These models provide an excellent way for estimating the original density
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of the data distribution but lack in expressiveness; that is, the newly generated samples are

not distinct enough from the actual ones.

Dinh et al. [6] proposed a generative model architecture (RealNVP) based on a series

of affine transformations and non-linear coupling functions. The RealNVP model starts

by splitting the input data sample into two counterparts and applies a series of invertible

transformations only on one part, keeping the other part unchanged. This process is iter-

atively done along with adding perturbations in-between layers. This paper laid the main

foundation for normalizing flows and other flow-based generative architectures.

Kingma et al. [20] introduced the use of invertible 1x1 convolutions in the flow-based

generative models, enabling them to learn feature map transformations in a much more

efficient manner. The key contribution of Glow lies in its use of invertible 1×1 convolutions,

which are computationally efficient and allow for flexible modeling of dependencies between

the input and output variables. These convolutions ensure that the transformation process

is reversible, meaning that the original data can be accurately recovered from the generated

samples. It leverages the concept of squeezing, which reduces the spatial dimensions of the

data, making it easier to model. Additionally, the authors introduce a concept called multi-

scale architecture, which enables the model to capture both global and local dependencies

within the data. The basic idea behind the multi-scale architecture is to process the data

at different scales. It involves dividing the input image into multiple levels, where each

level represents a different scale of the image. At each level, the model learns to capture

the dependencies specific to that scale while also considering the contextual information

from other scales. In the Glow model, the multi-scale architecture is implemented using

a sequence of levels. Each level consists of a squeeze transformation and act-norm layer

along with two main operations: an invertible 1×1 convolution layer and a coupling layer.

The coupling layer is responsible for splitting the input data into two parts and applying an

element-wise affine transformation to one of the parts. This transformation allows the model
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to capture local variations in the data. The other part remains unchanged and serves as a

conditioning variable for the transformation. By applying this transformation, the model can

model dependencies within the data at that scale. The invertible 1×1 convolution layer acts

as a mixing operation that allows information to flow between different scales. It reshapes

and reorganizes the data in a way that captures global dependencies. Importantly, this

convolution is invertible, meaning that the original data can be accurately recovered from

the transformed data. By stacking multiple levels, each with its coupling and convolution

layers, the multi-scale architecture captures dependencies at different scales. The lower levels

capture fine-grained details and local structures, while the higher levels capture more global

patterns and larger-scale dependencies.

Grathwohl et al. [10] introduced a new type of flow-based generative model called Free-

form Continuous Dynamics (FFJORD), which uses continuous-time differential equations

to model the transformation of original data to a known distribution. Unlike other flow-

based generative models, this model requires fewer parameters and computations to generate

comparable results since they don’t need to explicitly specify the number of transformations

to map original data to a known distribution.

Durkan et al. [7] utilized a different type of transformation called piece-wise rational-

quadratic spline transformation, as compared to the affine transformations in other baseline

flow-based models. This enabled for modeling of high dimensional, complex, and multi-

modal distribution, giving state-of-the-art results in the flow-based generative models. For

our proposed architecture, we build upon the neural spline architecture combining it with

the denoising diffusion probabilistic models (DDPM) proposed by Ho et al. [13], which is the

main architecture that diffusion models are built. The diffusion process is where we make the

model learn to denoise a pure noisy image which represents the Gaussian distribution. The

DDPM architecture also involved the use of an attention mechanism and the incorporation

of additional prior knowledge by conditionally training the model. Apart from generative
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modeling, these models are also extensively used for other tasks such as image in-painting,

text-to-image generation, etc.

DiffusionCNF [18] utilizes a conditional normalizing flow to model the diffusion process

in diffusion models. DiffusionCNF aims to reduce the sampling time of the diffusion models

by using conditional normalizing flow instead of the U-Net architecture that DDPM uses.

DDPM uses a Gaussian assumption to denoise a sample in the reverse process. DiffusionCNF

gets rid of this assumption by utilizing a normalizing flow conditioned on noisy samples, as

normalizing flows have the ability to map complex data distributions to simple ones. While

our approach aims to solve the drawbacks of normalizing flows, DiffussionCNF aims to solve

the drawbacks of diffusion models.

Postels et al. [31] address the limitations of normalizing flows on real-world data. Real-

world data usually exists on a lower-dimensional manifold within a higher-dimension space.

Normalizing flows are good at learning the underlying data distribution, but they often seem

to have problems when the data is in a lower dimensional surface called a manifold within

a higher dimensional space. The paper mentions that finding the probability of a specific

point on the manifold within a higher dimensional space becomes 0 for all points outside

the manifold. Calculating the logarithm of the determinant of the Jacobian also becomes

infinitely large. These issues cause an optimization problem to arise, leading to an ill-posed

optimization problem. A lot of existing works solve this problem by adding noise to the

manifold space [20, 15, 16]. The authors of [31] solve this problem by sampling directly from

the original data distribution by using the knowledge of the noise model and the perturbed

data distribution. They establish that normalizing flow models that are trained on the

perturbed data implicitly capture the underlying manifold in regions where the data is most

likely to be found. Using that information, they propose an optimization objective that finds

the point in the higher dimensional space that is most likely closer to the point in manifold

space. Horvat et al. [15] also aim to solve the same problem described by [31] by adding
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noise to the manifold space. They proposed a methodology called Denoising Normalizing

Flow (DNF) which follows a three-step process: Inflation, Learning, and Denoising. In

the inflation phase, DNF adds noise to the manifold space in order to inflate it to higher

dimensional data. This makes it easier to use normalizing flows to learn the distribution of

data. Finally, DNF learns a denoising mapping similar to a denoising autoencoder. The loss

function used in DNF calculates the error between the original data and denoised data.

Zhang et al. [42] have recently made efforts in the field of combining normalizing flows

with diffusion models, proposing a novel architecture called ”Diffusion Normalizing Flows.”

Their focus primarily revolves around the employment of the diffusion process, where nor-

malizing flows are utilized to progressively transform noise-corrupted images. Their proposed

solution effectively combines the strengths of normalizing flows and diffusion models, sharing

similarities with our own proposed architecture. Nevertheless, it is crucial to acknowledge

that there exist some distinctions between the two methodologies. In the case of ”Diffusion

Normalizing Flows,” the overall process largely mirrors that of the diffusion process. Much

like diffusion models, Diffusion Normalizing Flows encompass a forward process and a back-

ward process. The forward process takes an input and subjects it to a function, incorporating

some noise in the process. Conversely, the backward process entails a distinct transformation

that encompasses both a drift term and an additional term. Notably, in Diffusion Normaliz-

ing Flows, the drift term within the backward process is amenable to learning, affording the

model the capacity to adapt and enhance its performance over time. Essentially, Diffusion

Normalizing Flows utilize these two processes to facilitate bidirectional data transformation,

capitalizing on the ability to learn from and refine the transformation based on the unique

characteristics of the data. In contrast, our architecture incorporates both normalizing flows

and diffusion models within the learning process. This involves training and optimizing both

the networks, that is, the CNN (Convolutional Neural Network) based flow network from

normalizing flows models as well as U-Net from diffusion models.
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Chapter 3

Preliminaries

This preliminaries section introduces some basic concepts and notations that are used through-

out the paper. We start by defining distributions, invertible transformations, and the Ja-

cobian as normalizing flows are inherently dependent on these concepts. Normalizing flow

models are a class of generative models that learn to transform a simple, easy-to-sample

distribution into a more complex distribution of interest. Diffusion models are a class of

generative models that learn to generate data by gradually adding noise to a latent repre-

sentation. Both these models will be explained in detail. Further, the mathematical concepts

behind these models, the loss functions used to train these models, and the advantages and

disadvantages of each of these will be discussed.

3.1 Notations

3.1.1 Distributions

A distribution can be thought of as a probability measure that assigns a probability to each

possible outcome of a random experiment. The probability density function (pdf) associated

with a distribution serves as a function that quantifies the likelihood of the random variable
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assuming a specific value. To illustrate, the pdf of the standard normal distribution can be

represented using the subsequent formula:

f(x) =
1√
2π

exp

(
−x2

2

)
(3.1)

3.1.2 Invertible Transformations

An invertible transformation can be simply put as a mathematical function that can be re-

versed to get the original variable back from the transformed variable. In other words, if f(x)

is an invertible transformation, then there exists a function f−1(y) such that f(f−1(y)) = y

for all y. For example, the function f(x) = log(x) is an invertible transformation, because

its inverse is f−1(y) = exp(y).

3.1.3 Jacobian

The Jacobian of a transformation f(x) is a matrix that contains the partial derivatives of

f(x) with respect to x. The Jacobian can be used to compute the change of variables formula,

which is a formula that relates the pdf of a transformed distribution to the pdf of the original

distribution. The change of variables formula is given by the following equation:

p(x) = p(f(x))

∣∣∣∣∂f(x)∂x

∣∣∣∣ (3.2)

where p(x) is the pdf of the original distribution, p(f(x)) is the pdf of the transformed

distribution, and |J(f(x))| is the absolute value of the determinant of the Jacobian matrix

of f(x).
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3.1.4 Log-likelihood

The log-likelihood of a data point x can be expressed as the logarithm of the probability

that x was generated from a distribution p(x). This measure is commonly employed as a

loss function in generative modeling. The log-likelihood of x is determined by the following

equation:

log p(x) = log

(∫
p(x|y)p(y)dy

)
(3.3)

Here, p(x|y) denotes the likelihood of x given y, and p(y) represents the prior distribution

of y.

Throughout this document, we will utilize these symbols to explain normalizing flow mod-

els and diffusion models. As required, we will furnish supplementary clarifications regarding

these symbols.

3.2 Normalizing Flows

Normalizing flows are generative models that map samples from a simple distribution to a

target distribution of interest via a series of invertible transformations. Let z be a sample

from a simple distribution, such as a standard Gaussian, and x be a sample from the target

distribution pX. The goal is to learn a bijective mapping f : z → x, where f can be

represented as a composition ofK invertible transformations fK◦· · ·◦f1, with fk : RD → RD.

Further, the probability density function (pdf) of x can be produced by modifying the

pdf of z, according to the change of variables formula, given x = f(z):

pX(x) = pZ(z)

∣∣∣∣det ∂f(z)∂z

∣∣∣∣−1

(3.4)

It is possible to build a flow f that can accurately approximate the desired distribution
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pX by selecting the right transformations. A popular choice is the Affine transformation

which is represented as follows:

fk(z) = uk ⊙ z+ bk (3.5)

where uk and bk are learnable parameters, and ⊙ represents the element-wise multipli-

cation. The determinant of the fk Jacobian matrix is calculated as follows:

det
∂fk(z)

∂z
=

D∏
i=1

uk,i (3.6)

where uk,i is the i-th element of uk.

The parameters of the transformations are learned by maximizing the log-likelihood of

the data during training:

log pθ(x) = log pZ(z)−
K∑
k=1

log

∣∣∣∣det ∂fk
∂zk−1

∣∣∣∣ (3.7)

where θ denotes the parameters of the generative distribution pθ(x|z). The first term

on the right-hand side can be easily computed if the simple distribution pZ is known. The

second term, which is the log-determinant of the Jacobian, can be efficiently computed using

the LU decomposition.

3.2.1 Types of flows

Within the domain of normalizing flow models, the transformations applied to the data

are referred to as flows. Two commonly utilized flow architectures are coupling flows and

autoregressive flows, both of which offer expressive transformations for modeling intricate

distributions. In the following section, we will delve into these flow types and provide specific

examples.

14



3.2.1.a Coupling flows

Coupling flows are a form of transformation employed in numerous flow-based models to con-

struct complex distributions. They operate by dividing the data into two segments and ap-

plying the transformation function solely to one segment while leaving the other untouched.

Reversing the process allows us to convert the transformed data back into its original form.

Models such as [6] and [5] use the coupling flows.

3.2.1.b Autoregressive flows

Autoregressive flows constitute another type of transformation that relies on autoregressive

models. In such models, each data element is transformed based on preceding data elements.

Consequently, the output at any given step is contingent upon the input at that step as well

as all previous inputs. This transformation utilizes a set of functions that map the previous

inputs to the parameters for each step. [29] is a popular work using autoregressive flows.

3.2.2 Coupling Functions

Coupling functions, mathematical functions employed within various flows, play a crucial

role in coupling flows and autoregressive flows for data transformation. Coupling functions

enable the introduction of intricate transformations to the data, allowing the capture of

complex patterns. They can range from simple operations such as addition or multiplication

by a constant to sophisticated approaches like neural networks. In the subsequent section,

we will explore affine and spline coupling functions as they will be utilized in the proposed

method.
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3.2.2.a Affine coupling

Affine coupling is a type of coupling function commonly used in coupling flows. It provides

a simple and efficient way to transform the data by adding or scaling the input with a

set of parameters. Mathematically, the affine coupling can be defined as follows, with xi:j

representing a subvector or subset of elements from a vector x. Specifically, it refers to the

elements of x starting from index i up to (and including) index j:

y1:d = x1:d (3.8)

The first d elements of y are the same as the first d elements of x.

y(d+1):D = s(x1:d; θ)⊙ x(d+1):D + t(x1:d; θ) (3.9)

The remaining (D−d) elements of y are computed using the scaling factor s() and translation

factor t().

In the above equations, d represents the number of dimensions in the input x,D represents

the total number of dimensions, and ⊙ denotes element-wise multiplication. The scaling

factor s(x1:d; θ) and translation factor t(x1:d; θ) are functions that depend on the first d

dimensions of x and the parameters θ. These functions can be implemented using neural

networks or other mathematical functions to capture complex transformations.

Affine coupling is attractive because it allows for simple computation of the Jacobian

determinant, which is essential for the flow’s invertibility. Additionally, the coupling of

variables ensures that each variable is influenced by the other variables in the flow.
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3.2.2.b Spline coupling

Spline coupling functions utilize splines, which are piecewise-polynomial or piecewise-rational

functions, as coupling functions. Splines offer flexibility in capturing complex transforma-

tions while ensuring invertibility. There are different types of spline coupling functions, and

we’ll focus on rational quadratic splines.

Rational Quadratic Splines: Rational quadratic splines are another form of spline

coupling function. They are defined by specifying knots and derivatives at the inner points.

These splines provide a flexible way to model the transformation [7].

Mathematically, a rational quadratic spline coupling function can be defined as follows,

with xi:j representing a subvector or subset of elements from a vector x. Specifically, it refers

to the elements of x starting from index i up to (and including) index j:

y1:d = x1:d (3.10)

The first d elements of y are the same as the first d elements of x.

y(d+1):D = r(x1:d; θ)⊙ x(d+1):D + s(x1:d; θ) (3.11)

The remaining (D−d) elements of y are computed using the rational function r() and scaling

factor s().

In this equation, r(x1:d; θ) and s(x1:d; θ) are functions that depend on the first d dimen-

sions of x and the parameters θ.

Overall, the coupling functions provide a way to achieve more flexible transformations

in normalizing flows while maintaining invertibility. The choice of coupling function type

depends on the specific requirements and characteristics of the data being transformed. For

our proposed implementation, we utilized the rational quadratic spline coupling function as
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it showed better performance.

3.3 Diffusion Models

Diffusion models are a dynamic type of generative model that has attracted a lot of attention

lately and was inspired by non-equilibrium thermodynamics, providing a powerful framework

for modeling complex probability distributions. The basic idea behind diffusion models is

to start with a simple distribution, such as a uniform distribution, and then gradually add

noise to the distribution over time. The fundamental idea is to replicate the process of

noise addition that gradually changes a target distribution into a simple distribution using

a Markov chain. The final diffusion sampling can be viewed as a continuous time-dependent

transformation that converts the initial noise distribution into the desired distribution.

3.3.1 Forward process

The forward process in diffusion models involves iteratively adding noise to a given sample

to generate a sequence of correlated samples. This is achieved using a Markov chain, where

each step in the chain corresponds to a timestep. The timesteps in diffusion models represent

discrete intervals or steps at which noise is added to the samples. These timesteps are

predefined and determine the granularity of the diffusion process. The number of timesteps,

denoted as T , is a hyperparameter set by the user. A higher number of timesteps allows

for more precise modeling of the data distribution but increases computational complexity.

At each timestep, noise is added to the current sample, leading to a new sample in the

sequence. This process continues until the desired number of timesteps is reached. By

iteratively applying this process, the initial sample x0 is transformed into a sequence of

correlated samples x1, x2, ..., xT , where T is the total number of timesteps.

A Markov chain is defined as a sequence of random variables (or states) denoted as
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x1, x2, ..., xT , where T represents the number of steps or time points in the chain. Each

variable or state xt depends only on the previous state xt − 1 and is independent of all

other states in the chain. In other words, the future states in the Markov chain depend

solely on the current state and not on the past history of the chain. This property is known

as the Markov property. Mathematically, the Markov chain is defined by the conditional

probability distribution of each state given the previous state, denoted as P (xt|xt−1). Let’s

denote the initial sample as x0 and the variance of noise added at each timestep as βt. The

forward process can be expressed as [13]:

q(x1:T |x0) :=
T∏
t=1

q(xt|xt−1), q(xt|xt−1) := N
(
xt;

√
1− βtxt−1, βtI

)
(3.12)

where xt represents the sample at timestep t and βt controls the magnitude of the noise

added. This sequence captures the evolution of the data distribution from the data distri-

bution to the target distribution.

3.3.2 Reverse process

The reverse process in diffusion models plays a crucial role in reconstructing the original

sample from the sequence of correlated samples obtained through the forward process. By

iteratively removing the added noise in reverse order, the diffusion model aims to recover

the initial sample x0.

Mathematically, the reverse process is defined as follows [13]:

pθ(x0:T ) := p(xT )
T∏
t=1

pθ(xt−1 | xt), pθ(xt−1 | xt) := N (xt−1;µθ(xt, t); Σθ(xt, t)) (3.13)

In this equation, xt−1 represents the sample at timestep t − 1, which is obtained by

subtracting the noise from the current sample xt.
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By applying this reverse process sequentially, starting from the final sample xT and

moving backward to the initial sample x0, the diffusion model attempts to recover the original

data sample. This reverse process effectively denoises the samples and can also fill in missing

parts or in-paint the data.

3.3.3 Neural network architecture

To facilitate the learning of diffusion models, a neural network architecture is commonly em-

ployed. One popular choice is the U-Net architecture [33], which is well-suited for capturing

the complex relationships within the data. The U-Net architecture consists of an encoder

path and a decoder path.

In the context of diffusion models, the neural network architecture is designed to be

conditioned on the timesteps. This means that the network takes the current timestep as an

additional input and generates the corresponding transformation at each step of the diffusion

process.

In addition to the architectural choice of the U-Net, there are specific considerations

for predicting the noise in diffusion models. Instead of directly predicting the true data

sample, the network is trained to predict the mean of the added noise. This approach aligns

with [27] and its reparametrization technique. The reparametrization technique involves

learning the distribution of the added noise and sampling from it to generate the noise

values. By predicting the mean of the noise distribution instead of the true sample, the

network effectively models the noise properties, which are essential for the reverse process

and the denoising capabilities of the diffusion model.
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3.3.4 Log-likelihood estimation

To train diffusion models and compute the training objective, we optimize the variational

bound on the negative log-likelihood. This objective aims to maximize the negative log-

likelihood of the data under the model while incorporating a divergence term to regularize

the learning process. However, directly optimizing this objective can be challenging due to

the intractability of the likelihood.

Let’s denote the true data distribution as p(x0). The variational lower bound can be

written as [13]:

E [log p(x0)] = Eq

[
log p(xT )−

T−1∑
t=1

log p(xt−1|xt)q(xt|xt−1)

]
=: L (3.14)

However, optimizing this objective directly can be computationally expensive. Therefore,

diffusion models leverage parametrization and Bayesian statistics and assume a specific form

for the diffusion process to simplify the training objective.

Using these simplifications, the likelihood estimation problem can be reformulated as a

mean squared error (MSE) problem. The preliminary training objective can be calculated

as the MSE between the true data and the denoised data:

Ex0,ϵ

[∣∣ϵ− ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵ, t

)∣∣2] (3.15)
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Chapter 4

Methodology

This chapter delves into the comprehensive methodology to seamlessly integrate normaliz-

ing flows and diffusion model architectures for our proposed generative model. This section

starts by explaining the limitations of current techniques. It moves on to present a thorough

exploration of the implementation approach and algorithmic intricacies of the unified archi-

tecture, highlighting the intricacies of the forward process, backward process, and training

procedure. Furthermore, it provides insights into specific implementation details, including

the selection and utilization of distinct flow-based and diffusion models.

4.1 Limitations of current techniques

In normalizing flows, one of the challenges is to map complex data distributions to a complete

normal distribution. This process involves transforming the input data through a series of

invertible bijective transformations. The drawbacks of these bijective functions are that

they struggle to efficiently compute the logarithm of their Jacobian determinant, making

optimization challenging, and thus facing difficulties when dealing with random variables

that exist on manifolds, leading to ill-posed optimization problems and loss of information
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about the original distribution [31]. As a result, when sampling from the learned distribution

using the inverse transformations, certain approximations are introduced.

To elaborate on this, let’s consider a normalizing flow with a series of invertible transfor-

mations parametrized by θ, denoted as fθ. The goal is to learn a mapping from a complex

data distribution pdata to a simple base distribution, typically a multivariate normal distri-

bution pz.

During the forward pass of the normalizing flow, the input data x is transformed through

a sequence of functions fθ: z = fθ(x). Each transformation fθ introduces a change of

variables, which requires computing the determinant of the Jacobian matrix. The Jacobian

determinant captures the effect of the transformation on the probability density function

(PDF) of the data. The inverse pass of the normalizing flow involves sampling from the

learned distribution by applying the inverse transformations. Given a sample z from the

base distribution, the inverse transformations gθ attempt to map it back to the original data

space: x = gθ(z)

However, due to the complexity of the data distribution, the learned normalizing flow

may not perfectly approximate the true data distribution. This discrepancy between the true

data distribution pdata and the approximated distribution pθ introduces certain deviations

during the inverse transformation process. The sampling process assumes z, the output

of forward transformation, follows Gaussian distribution, but in practice, it often largely

deviates from the Gaussian distribution, which in turn causes gθ(z) to deviate from the data

distribution. This can result in sample data points that do not perfectly align with the true

data distribution and may exhibit certain deviations or imperfections.

Overall, while normalizing flows offer a powerful framework for learning complex data

distributions, the approximations involved in mapping to a complete normal distribution can

introduce certain imperfections when sampling using inverse transformations. To solve this

problem of the normalizing flow, we add a diffusion model at the end of the normalizing flow
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to ensure that the latent representation reaches pure Gaussian distribution. The output of

the normalizing flow is passed as an input of the diffusion model. The forward process of

the diffusion model takes the output of the normalizing flow as the input and progressively

adds noise to transform it into a complete Gaussian.

4.2 Algorithm

Algorithm 1: Training

repeat
x ∈ D;
t← Uniform({1, 2, ..., T});
ϵ ∼ N (0, I);
z0 ← fθ(x), where
fθ = f1 ◦ . . . ◦ fN−1 ◦ fN ;
zT =

√
ᾱtz0 +

√
1− ᾱtϵ,

Take the gradient descent
step on:
Ldiff = Lsimple+ λ ∗ Lvlb
L = Ldiff + log

∣∣∣det ∂fθ(x)
∂xT

∣∣∣;
until converged ;

Algorithm 2: Sampling

zT ∼ N (0, I);
for t = T to 1 do

n ∼ N (0, I), if t > 1, else
n = 0;
zt−1 =

1√
αt

(
zt − 1−αt√

1−ᾱt
ϵθ(zt, t)

)
+

σtn;

x = f−1
θ (z0), where

f−1
θ = f−1

N ◦ f
−1
N−1 ◦ . . . ◦ f

−1
1 ;

Output: x

Figure 4.1: Training and Sampling Algorithms

The forward process within our proposed architecture starts with an original data sample

denoted by x, where x ∈ D. This sample is then subjected to a series of transformation layers

within the normalizing flow section, resulting in the generation of a transformed variable,

z0. The series of transformation layers can be mathematically viewed as a composition of

various bijective functions given by:

fθ = f1 ◦ . . . ◦ fN1 ◦ fN (4.1)
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The transformed variable z0 is generated by passing x through the composition of bijective

functions fθ and is given by:

z0 = fθ(x) (4.2)

Significantly, this transformed variable represents a sample extracted from an intermedi-

ate simple latent distribution. Subsequently, the transformed variable z0 is provided as an

input to the diffusion part of the model, where an additional noise component is incorpo-

rated. This noise injection process facilitates the production of a pure noise variable, denoted

as zT , which is assumed to follow a Gaussian. zT is obtained using the closed-form solution

of the diffusion model.

zT =
√
αtz0 +

√
1− αtϵ, (4.3)

where αt = 1−βt and αt =
1
t

∑t
s=1 αs. β is the variance schedule that is used to add noise to

the data set, z0 is the transformed variable generated by a set of bijective transformations,

and ϵ is noise. The integration of the diffusion model after the normalizing flow brings

notable advantages, primarily addressing the limitation of the normalizing flow’s inability to

fully map to a Gaussian distribution. By leveraging the closed-form solution offered by the

diffusion model in the forward process, a complete mapping to Gaussian noise is achieved.

On the other hand, the backward process commences with the sampling of a random

noise vector, z0, drawn from a Gaussian distribution. This noise vector is then subjected

to the sampling process of the diffusion model, resulting in the generation of a transformed

variable, z. This transformed variable serves as an intermediate sample originating from

the simple latent distribution. Finally, the transformed variable z undergoes a series of

inverted normalizing flow layers, ultimately yielding the final output, x, which represents

the generated samples.

The incorporation of the diffusion model after the normalizing flow yields distinct advan-
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tages. By first denoising a complete Gaussian noise zT to an intermediate noisy sample z0

using fewer diffusion steps, the diffusion model ensures that the subsequent passage of this

noisy sample through the normalizing flow model facilitates the generation of high-quality

final samples x.

The training procedure for our proposed architecture entails the optimization of both the

normalizing flow layers and the diffusion models. The normalizing flow layers are trained us-

ing maximum likelihood estimation, wherein the loss function incorporates the log-likelihood

of the transformed variable and the determinant of the Jacobian matrix. Concurrently, the

diffusion model undergoes training utilizing a hybrid approach that combines the variational

lower bound and mean squared error (MSE) loss function, as proposed in [27]. The pri-

mary objective of the training procedure is to minimize the combined loss function, which

consolidates the loss contributions from both models.

In the combined architecture, the log-likelihood loss of the normalizing flows is replaced

by the diffusion loss, facilitating the unification of the loss from both models. Consequently,

the combined loss function is defined as the sum of the diffusion loss and the normalizing

flow. This formulation ensures a comprehensive optimization process that harnesses the

strengths of both normalizing flows and diffusion models.

We use maximum likelihood estimation to train the normalizing flow layers in the com-

bined architecture:

Lnf = log(pZ(fθ(x))) + log

∣∣∣∣det ∂fθ(x)∂xT

∣∣∣∣ (4.4)

And the hybrid of the variational lower bound and MSE loss function to train the diffusion

model part of the combined architecture:

Ldiff = |ϵ− ϵθ(ᾱt, fθ(x) + (1− ᾱt)ϵ, t)|22 (4.5)
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For a unified architecture, we combine the loss of both models by replacing the log(pZ(f(x)))

from the log-likelihood loss of normalizing flows with the diffusion loss. Then, the combined

loss function is defined as:

L = Ldiff + log

∣∣∣∣det ∂fθ(x)∂xT

∣∣∣∣
L = |ϵ− ϵθ(ᾱt, fθ(x) + (1− ᾱt)ϵ, t)|22 + log

∣∣∣∣det ∂fθ(x)∂xT

∣∣∣∣ (4.6)

By meticulously integrating the forward process, backward process, and training pro-

cedure, our proposed architecture harnesses the power of normalizing flows and diffusion

models, leading to the generation of high-quality samples that capture the underlying data

distribution. The utilization of this methodology sets the stage for subsequent chapters,

allowing for detailed experimentation, analysis, and conclusive findings.

4.3 Implementation Details

In terms of implementation, we first start with the implementation of the normalizing flow

part of the architecture. We implement a popular normalizing flow architecture such as

Spline Flows [14] [7], which uses the Glow [20] as the first part of our architecture. Next,

we implement the diffusion model part of our architecture. We use Denoising Diffusion

Probabilistic Models (DDPM) [13] for the diffusion process. We also use a suitable optimizer,

such as Adam, to minimize the loss function for training the normalizing flow model and the

diffusion model. Finally, we combine the normalizing flow and diffusion model into a unified

end-to-end architecture using our proposed training procedure.

Figure 4.2 shows the overall forward process of mapping the original data to Gaussian

distribution. We can see that the Normalizing Flows on its own cannot completely transform

the original data to pure Gaussian noise.

Overall, our implementation involves carefully selecting hyperparameters such as learning
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rate, batch size, and number of layers for both the normalizing flow and diffusion model

parts of the architecture. We will also use techniques such as early stopping and learning

rate annealing to prevent overfitting and ensure the stability of the training process.

Figure 4.2: Forward process of the proposed architecture. Part 1: Using normalizing flows
to map original data to a simpler latent distribution. Part 2: Further, using diffusion models
to completely transform the intermediate samples to pure Gaussian noise
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Chapter 5

Experiments

The experiments conducted in this thesis aim to evaluate the performance of our proposed

model and compare it with existing models in the field, such as Denoising Diffusion Prob-

abilistic Models (DDPM) [13] and Neural Spline Flows (NSF) [7]. To achieve this, we

have selected well-established datasets such as MNIST[23], CIFAR10[22], and CELEBA[24].

These datasets have been widely used in the academic setting, providing a standardized

benchmark for evaluating the capabilities of various models. In this chapter, we will de-

scribe the experimental setup, including the environmental setup, evaluation metrics, and

training configurations, and present the obtained results. By conducting these experiments,

we seek to gain insights into the effectiveness and potential of our model, contributing to

the advancements in the field of generative models.

5.1 Environmental Setup

For running experiments on our model, the systems employed for conducting the research

played a crucial role. The primary computing resource utilized were various computers avail-

able in the Artificial Intelligence lab of the University of Georgia, which featured a powerful
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and dedicated NVIDIA’s RTX A5000 Graphics Processing Unit (GPU). The system boasted

notable specifications, including a substantial amount of Random Access Memory (RAM) of

256 Gigabytes (GB), ensuring efficient handling of large-scale computational tasks. The ex-

periments were conducted using the PyTorch framework [30], which is widely recognized for

its extensive capabilities in deep learning research. Specifically, version 1.13.1 was employed

to facilitate the implementation of various neural network models and algorithms. Fur-

thermore, the experiments relied on using Compute Unified Device Architecture (CUDA)

[4] with version V11.6.124 for accelerated GPU computing, enhancing the performance and

speed of the computations. CUDA is a parallel computing platform developed by NVIDIA

for utilizing the power of NVIDIA GPUs for general-purpose computing. The Python pro-

gramming language, in its Python 3.8.16 iteration, served as the primary coding language,

providing a versatile and user-friendly environment for developing and executing the experi-

mental procedures. Collectively, these meticulously chosen system specifications, along with

the PyTorch framework and specific versions of CUDA and Python, formed the foundation

for conducting the experiments in a robust and efficient manner.

5.2 Evaluation Metrics

In the evaluation metrics section, we utilize two crucial metrics to evaluate the performance

of generative models: Negative Log-Likelihood (Nll) and Fréchet Inception Distance (FID).

The negative log-likelihood metric measures the generative model’s ability to accurately

represent the underlying distribution of the training data. A lower value for negative log-

likelihood indicates superior model performance. Conversely, FID is a widely acknowledged

metric that assesses the similarity between the distributions of generated and real images.

Together, these two metrics provide a comprehensive evaluation of generative models, offering

valuable insights into their capabilities.
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5.2.1 Fréchet Inception Distance (FID)

The Fréchet Inception Distance (FID) [11] [34] has gained widespread recognition as an es-

sential evaluation metric utilized in the assessment of generated images within the domain

of generative models. This metric offers a robust measure of similarity between the distribu-

tion of generated images and that of real images. By comparing the features extracted from

the generated and reference images using a pre-trained Inception network, FID quantifies

the distance between the two distributions. Lower FID scores correspond to higher quality

and increased diversity among the generated images, indicating a closer resemblance to the

distribution of real images [11]. FID scores are dependent on the dimension of the feature

vectors chosen. For the purpose of experimentation, we chose the feature vector dimension

to be 192 because this selection ensured a separation between scores which led to efficient

comparison. This is an important point to consider before comparing our model with scores

in other papers.

For the purpose of evaluating the MNIST dataset, a custom-trained MNIST classifier

was utilized in place of the inception network typically employed in FID calculations. This

modification proved advantageous as it facilitated the efficient conversion of MNIST samples

into feature vectors, which were subsequently utilized for FID evaluation. This approach

ensured seamless integration of the FID evaluation process with the unique characteristics of

the MNIST dataset, allowing for comprehensive analysis and assessment of the quality and

diversity of generated MNIST images.

5.3 Training Configurations

The training configuration for the thesis experiments involves several parameters that have

a significant impact on the performance of the model. In this section, we will discuss these

parameters and their effects on the MNIST, CIFAR10, and CELEBA datasets. The training
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configurations are summarized in Table 5.1.

Parameters MNIST CIFAR10 CELEBA
Epochs 300 500 100
Batch Size 128 156 68
Image Size (1, 32, 32) (3, 32, 32) (3, 64, 64)
Levels 3 4 4
Steps per levels 8 15 10
Hidden Channels 64 128 128
Resnet blocks 2(nflow); 2(dpm) 3(nflow); 2(dpm) 3(nflow); 2(dpm)
Timesteps 500 500 500

Table 5.1: Training Configurations

Let’s begin by discussing the parameters related to the normalizing flow part of the pro-

posed model, which employs the Glow architecture from [20], specifically the levels and steps

per level parameters. The levels parameter represents the number of iterations in the multi-

scale architecture of the Glow framework. For the MNIST dataset, 3 levels are utilized,

while CIFAR10 and CELEBA employ 4 levels. At each level, the input data undergoes a

squeeze transformation which reduces the dimensionality of the data allowing the network to

learn from multiple latent dimensions. Increasing the number of levels allows the model to

capture complex patterns at different scales. Each level consists of a squeeze transformation,

an act-norm layer, and an invertible 1x1 convolution layer followed by steps per level. The

steps per level parameter signifies the number of coupling transformations applied at each

level. In the experiments, the MNIST dataset employs 8 steps per level, CIFAR10 uses 15

steps per level, and CELEBA utilizes 10 steps per level. Increasing the number of steps per

level allows the model to better approximate complex data distributions into base distribu-

tions like Gaussian. This also makes the model more expressive, and it is able to generate

high-quality samples. The combination of levels and steps per level parameter determines

the total number of transformations or flows used in the normalizing flow part of the pro-

posed model. Thus for MNIST, CIFAR10, and CELEBA, we used a total of 24, 60, and 40
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transformations, respectively. Overall we used less number of levels and steps per level for

the MNIST dataset as compared to the other datasets since the dataset has a single channel

and consists of simple handwritten digits.

Other parameters include hidden channels and resnet blocks which respectively determine

the number of channels or dimensions used in the hidden layers and the number of residual

blocks used in both the flow network from the normalizing flow part and U-Net from the

diffusion part of the model. The residual blocks used in the flow network are denoted by

”nflow,” and that used in the U-Net are denoted by ”dpm”. The MNIST dataset employs 64

hidden channels with 2 resnet blocks for both the networks, nflow and dpm, while CIFAR10

and CELEBA use 128 hidden channels with 3 resnet blocks in the nflow network and 2 resnet

blocks in the dpm network. Increasing the number of hidden channels and resnet blocks

enhances the model’s ability to capture intricate features but also increases computational

complexity. Again, we kept the number of hidden channels and resnet blocks less for the

MNIST model as compared to the models. For MNIST, the model was trained for 300

epochs with a batch size of 128, CIFAR10 for 500 epochs with a batch size of 156, and

CELEBA for 100 epochs with a batch size of 68. The number of epochs and batch size were

determined considering the time and computational constraints available. Another crucial

parameter is the timesteps, which determine the number of steps used for adding noise in

the diffusion part of our proposed model. Increasing the number of timesteps allows the

diffusion process to more accurately model complex data distributions. The experiments

use 500 timesteps for all datasets. Mainly in the DDPM model [13], the experiments were

performed using 1000 timesteps. Thus, we wanted to demonstrate that our proposed model

can utilize a lesser number of timesteps and still generate comparable samples to the DDPM

model. Careful selection of these parameters, as shown in Table 5.1, is essential to achieve

optimal performance in the trained models. The choices made in the table consider dataset

characteristics, model complexity, and computational constraints. By appropriately tuning
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these parameters, the models can effectively learn from the data and generate high-quality

outputs.

5.4 Results

This section presents a thorough analysis of the experimental findings obtained from the

MNIST, CIFAR10, and CELEBA datasets. We provide a comprehensive evaluation of our

model’s performance, focusing on key metrics such as the Negative Log-Likelihood (Nll)

and Fréchet Inception Distance (FID). Furthermore, we conduct a comparative analysis,

benchmarking our model against established DDPM [13] and NSF [7] models. For model

comparison, we evaluated the models on MNIST and CELEBA datasets. We specifically

choose MNIST and CELEBA datasets because generative models can pose difficulties in

evaluating and comparing solely through quantitative results. Using MNIST and CELEBA

datasets, we can visually check the generated samples and give conclusions about the models.

This comparison allows us to identify the unique strengths and limitations of our proposed

approach, showcasing its potential contributions to the field of generative modeling. The

evaluation results on different datasets are summarized in Table 5.2.

Table 5.2: Evaluation on Datasets

Datasets NLL FID
MNIST 0.93 1.85
CIFAR10 2.53 11.22
CELEBA 0.58 6.94

In relation to the MNIST dataset, our generative model demonstrates remarkable per-

formance with an NLL of 0.93 and an FID of 1.85. These values indicate the model’s

capability to effectively capture the underlying distribution of MNIST data. A lower FID

score implies a noteworthy similarity between the generated samples and authentic images.

The generated samples can be observed in Figure 5.1, clearly exhibiting the model’s precise
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generation of new MNIST samples. This exceptional fidelity can be attributed primarily

to the employment of an adequate number of flows and timesteps for modeling the MNIST

data. Additionally, the simplicity and distinctive nature of the grayscale MNIST dataset

contribute to the model’s proficiency in achieving high-quality results.

Figure 5.1: Samples generated using the MNIST dataset

On the CIFAR10 dataset, our model exhibits an NLL of 2.53 and an FID score of 11.22, as

seen in Table 5.2. The generated samples for the CIFAR10 dataset can be seen in Figure 5.3.

FID score of 11.22 is higher as compared to other datasets, demonstrating poor modeling

performance on the CIFAR10 dataset. This can be mainly because the CIFAR10 data

usually require a higher number of training epochs to converge properly. This can be seen

in Figure 5.2, which displays the training loss (NLL) curve for the CIFAR10 dataset. It is

observed that the model hasn’t converged even after 500 epochs. However, it is not certain

if more epochs and better loss convergence can improve the model performance significantly.
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Another reason for the high FID score can be attributed to the high number of levels and

dimensions of the CIFAR10 images. Since the CIFAR10 images are 32x32 pixels, employing

a higher number of levels in our model can lead to excessive compression of the image

data. Each level in our model utilizes a squeeze transformation, which applies a down-

sampling operation. With each squeeze operation employing a squeeze factor of 2, after

utilizing four levels, the final data dimension reduces to 2x2. This significant reduction in

dimensionality can result in the loss of fine details and intricate structures present in the

CIFAR10 images. Consequently, the generated samples may struggle to accurately capture

the complex characteristics of the dataset. To address this issue, future research should

focus on optimizing the level configuration of the model and finding a balance between

dimensionality reduction and preserving important image details.

Figure 5.2: CIFAR10 Training Loss (NLL vs Epochs)

For the CELEBA dataset, our generative model achieves an NLL of 0.58 and FID score

of 6.94; check Table 5.2 for evaluation metrics and Figure 5.4 for generated samples. It
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Figure 5.3: Samples generated using the CIFAR10 dataset

is observed that the generated samples are successfully able to generate human faces even

though the FID score is moderately high. Sometimes, evaluation metrics like FID fail to

capture the qualitative component of images, due to which the scores can be high, although

the generated samples can show good results. Our model was able to capture the overall

distribution of facial features in the CELEBA dataset, generating realistic images of human

faces. One notable observation was made during the analysis of the generated samples from

the CELEBA dataset. It was observed that all the generated samples exhibited a grey color

background, see Figure 5.4. One possible explanation for the consistent grey background

lies in the architectural choice of our model, where we implemented the glow architecture.

Strikingly, in the original Glow paper [20], similar results were observed with generated

images having a white or grey background for the CELEBA dataset. This correspondence
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implies that the architectural characteristics specific to the glow model could be influential

in shaping the uniformity of background colors. Additionally, we utilized dequantization as

a preprocessing step in our model, a common practice to convert discrete pixel values into

continuous representations. However, the precise effects of this preprocessing step on the

color distribution, including the background, necessitate further investigation and detailed

analysis.

Figure 5.4: Samples generated using the CELEBA dataset

5.4.1 Model Comparison

We conducted a comprehensive analysis and comparison of our proposed model, Diffused-

Flows, with two established models, DDPM and NSF. The results, as shown in Tables

5.3 and 5.4, highlight the performance of each model on the CELEBA and MNIST datasets,

respectively, considering factors such as loss, FID score, and sampling time. For the CELEBA
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dataset, the DDPM model and the NSF model both underwent training for 100 epochs with

1000 timesteps for the DDPM model and 80 flows for the NSF model, while our proposed

Diffused-Flows model employed a combination of 500 timesteps and 40 flows. Likewise, for

the MNIST dataset, the DDPM model utilized 1000 timesteps, and the NSF model utilized

48 flows and were both trained for 300 epochs, while our model incorporated a combination

of 500 timesteps and 24 flows with 300 epochs.

Notably, despite our model using fewer timesteps and flows compared to DDPM and

NSF, it achieved comparable results to DDPM and even outperformed the NSF model. By

emphasizing these details, we underscore the efficiency and effectiveness of our proposed

model in generating high-quality samples, showcasing its potential as a resource-efficient

and practical approach in the field of generative modeling. It is important to note that a

direct comparison of loss values between the DDPM model (MSE loss) and the other models

(NLL loss) may not be appropriate since they use different loss measures. We can still draw

insights based on the relative performance of the models in terms of FID scores and sampling

times.

Table 5.3: Model Comparison on CELEBA

Models Loss FID Sampling Time (secs)
DDPM 0.033 (MSE) 3.59 46.02
NSF 2.86 (NLL) 8.24 0.23

Diffused-Flows (our model) 0.58 (NLL) 6.94 22.6

For the CELEBA dataset, the DDPM model achieved a loss of 0.033 (measured in MSE),

an FID score of 3.59, and a sampling time of 46.02 seconds for generating 25 samples. On

the other hand, the NSF model exhibited a loss of 2.86 (measured in NLL), an FID score of

8.24, and a significantly shorter sampling time of 0.23 seconds. In comparison, our proposed

Diffused-Flows model showcased competitive performance with a loss of 0.58 (measured in

NLL), an FID score of 6.94, and a sampling time of 22.6 seconds. Check Figure 5.5 for
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Figure 5.5: Model Comparison: generated samples on CELEBA

generated samples.

Table 5.4: Model Comparison on MNIST

Models Loss FID Sampling Time (secs)
DDPM 0.029 (MSE) 1.05 28.97
NSF 1.03 (NLL) 2.58 0.21

Diffused-Flows (our model) 0.93 (NLL) 1.85 15.12

On the MNIST dataset, the DDPM model achieved a loss of 0.029 (measured in MSE),

an FID score of 1.05, and a sampling time of 28.97 seconds. Similarly, the NSF model

demonstrated a loss of 1.03 (measured in NLL), an FID score of 2.58, and a faster sampling

time of 0.21 seconds. In this scenario, our proposed Diffused-Flows model again displayed

competitive performance, achieving a loss of 0.93 (measured in NLL), an FID score of 1.85,

and a sampling time of 15.12 seconds. Check Figure 5.6 for generated samples.

Considering FID scores across both datasets, our Diffused-Flows model performed com-

petitively, exhibiting FID scores closer to those of the DDPM model and outperforming the

NSF model. These results imply that our model successfully captured the essential charac-

teristics of the datasets, generating samples with high fidelity. Sampling time is an important
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Figure 5.6: Model Comparison: generated samples on MNIST

factor to consider for practical applications. In this regard, our Diffused-Flows model struck

a balance between the DDPM and NSF models. It demonstrated faster sampling times

compared to DDPM, making it more suitable for generating samples within a reasonable

timeframe. While the NSF model had the fastest sampling time, it came at the expense of

slightly higher FID scores, indicating a potential trade-off between speed and sample quality.

To summarize, the results from our model comparison reveal that our proposed Diffused-

Flows model performed competitively with both DDPM and NSF models on the CELEBA

and MNIST datasets. It achieved comparable or lower FID scores while maintaining a favor-

able sampling time, thereby striking a balance between fidelity and efficiency. These findings

underscore the potential of our model as a promising generative model with the ability to

produce high-quality samples in a timely manner, making it suitable for various applications

in the field of generative modeling.
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Chapter 6

Conclusion

In this thesis, we proposed a novel generative model combining normalizing flows and diffu-

sion models, which mainly helped in overcoming the limitations of latent space mapping in

normalizing flows. The main contribution of this work is to allow the modeling of complex

data distributions by integrating normalizing flows and diffusion models, which helps to in-

corporate the advantages of both architectures, such as the invertibility and quick sampling

of normalizing flows and efficient mapping of complex distribution to known distribution like

standard normal diffusion models of diffusion models.

Our proposed method has the limitation of high model complexity. Since we use the U-

Net in the diffusion process as well as the convolutional neural network-based transformation

networks for creating flows in normalizing flows, the overall model complexity can pose

issues for computational resources. Further, this concept can be improved by coming up

with different ways of combining these two models, where we closely observe the limitations

available and find ways to overcome these limitations; for example, decreasing sampling time

in diffusion models by replacing or slimming down the existing U-Net network with another

network. Another future direction can be to use a pre-trained diffusion model, which can

help in reducing the overall model complexity.
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In conclusion, our proposed method provides a new direction in the future of generative

modeling, where the integration of various models can help achieve high-quality results in a

wide range of applications in the machine learning domain, such as computer vision, natural

language processing, etc.
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