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Abstract

Individual planning in open multiagent systems, which involve a large number of agents

and no communication medium among them, is a particularly difficult problem to solve

due to severe uncertainty and exponential computational complexity with each added agent.

Furthermore, the agent openness requires an agent to predict the presence of other agents as

each agent can leave or rejoin the environment during the operation, and wrongly predicting

an agent’s presence can add to a non-optimal behavior. For example, autonomous firefighting

robots having no communication medium among them, tasked with fighting wildfires, may

run out of suppressants and be temporarily unavailable to assist their peers. That requires

agents to predict not only the actions of all the firefighting agents yet their suppressants

levels as well, which becomes computationally intractable with the increase in the number

of agents. To solve such a complex problem, this research proposes a novel method in this

context that enables an agent to scalably and individually reason about others’ presence as

well as their actions in its shared environment. With effective use of well-established sampling

approaches in statistics, the method uses a principled approach to sample only a subset of

neighboring agents and extrapolate their models to the overall population and combines it

with an extension of Monte Carlo tree search to individual agent reasoning in multiagent



environments. Simulations of multiagent wildfire suppression experiments demonstrate the

potency of the new framework compared with alternative baseline methods and manifest the

new framework as a reliable methodology for individual planning in multiagent systems with

a large number of agents. The results exhibit the utility of the sampling methods in reducing

the effects of the agents facing the Volunteer’s dilemma and directionless mental models.

Index words: Individual Planning, Planning under Uncertainty, Multiagent Systems,
Monte Carlo Tree Search, I − POMDP , Agent Openness, Planning
under anonymity, I − POMCP
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Chapter 1

Introduction

Intelligent agents in real-world applications can be modeled cooperative or competitive

according to the requirements of their systems. Although an agent in a multiagent system

(MAS) incorporating many agents can choose its actions just by observing its surroundings,

it can be considerably be benefited by reasoning how the other agents would behave to

achieve its cooperative or self-interested goals.1 For example, a wildfire fighting robot needs

to know where the peers will spend their limited suppressant resources to determine how to

contribute to the shared goal of quickly putting out all the fires. Likewise, an autonomous

ride-sharing car needs to predict both where potential customers are located and the loca-

tions of its competitors, so that it can appropriately position itself to maximize its daily

revenue. Such a level of reasoning reflects the natural human behavior characteristics, specif-

ically when humans try to approximate the behavior of their peers while making a decision in

an environment involving many individuals. For example, a quarterback in a college football

game would throw the ball to a receiver, only if he observes the ground positions of the fellow

team members in a favorable condition to advance the ball, the receiver in a suitable position

to receive the ball, and his prediction of possible actions of the opposing team members do

not hinder the throw.

In individual planning frameworks, predicting other agents’ actions is an established way

of interaction amongst agents in the systems where a direct communication channel is not

a feasible way to interact. [2, 3] The assumption of not having a communication channel

1In this document, the ’other agents’ and the ’neighboring agents’ terms are used interchange-
ably. A neighboring agent can be defined as an agent connected with the subjective agent via a
shared action region in an interaction subgraph. [1]
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is realistic and can be applied to many real-world applications. For example, the agents

fighting the wildfire in the remote areas might be made up of collaborative teams who

do not share the communication protocol. Similarly, autonomous surveillance drones from

different organization might not share the same communication protocol or even do not have

any communication channel to collaborate in a rescue operation.

Modeling other agents for an autonomous agent is a quite challenging task in a system

with many agents and these challenges are contributed to primarily by two factors: (1) agent

openness, and (2) agents with different types. The agent openness occurs whenever any agent

either leaves the system temporarily or permanently. [4] In this research, the focus in agent

openness is limited by an added assumption that no new agent joins the system during

operation. For example, a firefighter fighting a wildfire might leave the environment due to

empty suppressants and rejoins after refilling them, though the number of active firefighters

in the system remains constant from the beginning to the end. Effectively, agent openness

requires an agent to model other agents’ presence in the system, in addition to their actions in

the given circumstances which largely increases the computational complexity. Inaccurately

predicting the presence of other agents can lead to suboptimal decisions and substantial

degradation in performance. For example, a ride-sharing car may leave the system due to

empty fuel or for maintenance reasons; if an autonomous car agent in such a system predicts

the presence of its competitors incorrectly, then it might lose customers and revenue. While

the agent openness remains a challenge, the diversity of the agents in an environment can

make its effects worse. For example, a firefighting agent fighting wildfires can be anyone

from a ground firefighting unit, a helicopter, or an airplane. All such firefighters have their

own effectiveness in operation and their individual properties, for which an agent needs to

predict the number of firefighters of each type in the system. With each newly added agent,

even approximating the presence of agents with different types becomes computationally

intractable which makes scaling the planning methods in such systems extremely challenging.
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1.1 Related Work

Decision planning in partially observable MAS has interested many artificial intelligence (AI)

researchers over several decades, while formalization of a single agent planning using the par-

tially observable Markov decision process (POMDP ) has paved a way for advancement in

this field. [5] Several frameworks have been introduced to solve MAS by using individual or

decentralized planning based on POMDP framework. Dec − POMDP , a popular frame-

work for decentralized planning, assumes that the agents are fully cooperative, and it has a

common reward function to represent this idea. [6] Furthermore, it considers communication

as an integral part of the framework and performs planning centrally for all the agents except

some local state factors. On the other hand, Interactive - POMDP (I−POMDP ), a decision-

making framework for individual planning, assumes no communication channel between the

agents and provides each individual autonomy in planning. [2] In the I − POMDP frame-

work, each agent performs planning using an interactive state, which incorporates the mental

models of other agents and planning agent’s state factors.

The I − POMDP framework does not scale well with the number of agents due to

an exponential increase in the state-space with each added agent. The I − POMDPLite

framework makes an improvement on this problem by making an assumption that while

planning individually, the other agents have full observability of the system, and it intro-

duces the Nested−MDP framework for assessing other agents’ policies prior to performing

the actual planning. [3] The inclusion of agent openness in individual planning has helped to

address the planning requirement of open agent systems [7]; to achieve this, Bayes adaptive

POMDP is used to convert the learning problem of predicting agents’ behavior of leaving

and reentering the system to a planning problem by creating an empirical distribution over

this behavior using Dirichlet process. [8, 9] All mentioned individual planning frameworks

focus on planning with a small number of agents hardly stretching to two digits and do not

work well with the systems involving many agents. The introduction of the idea of planning

under agent anonymity can be viewed as substantial progress in individual planning for the
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systems involving a large number of agents. [10] The agent anonymity framework generalizes

individual agents of the same type and doing the same action under frame-action configu-

rations and drastically reduces the possible number of joint actions. The experiments have

demonstrated that planning under agent anonymity can scale well in the systems involving

hundreds of agents. In the Dec− POMDP literature, several attempts have been made to

plan for a small number of agents as well as for a large number of agents, though none of

the investigations incorporates agent openness. [11, 12, 13]

In this investigation, to cope up with the computational complexity incurred by plan-

ning for many agents, a bandit-based Monte Carlo (MC) approximating technique is used.

Previously, several frameworks for single-agent planning in Markov decision process (MDP ),

known as MC tree search (MCTS) [14] and in POMDP , known as partially observable MC

planning (POMCP ) [15], have been introduced for online planning. Furthermore, several

research studies have revealed some interesting improvements and use cases of such planning

in practical applications. [16, 17, 18] MC frameworks employ a branch and bound method-

ology to create AND-OR trees and apply a bandit-based heuristic for tree exploration. One

previous investigation for incorporating the POMCP with the I − POMDP was focused

on just two agents, yet presented an interesting use case of individual planning in social

interaction. [19] Though it was a novel approach for MAS in individual planning, it did

not focus on scaling the solutions to many agents. Another such investigation in multiagent

POMDP s (MPOMDP ) for many agent MAS suggested using factored statistics and fac-

tored trees to obtain an optimal solution, however, the approach did not incorporate agent

openness. [20] An MPOMDP is a multi-agent planning model that unfolds over a number

of steps and receives individual observations at each step. However, in an MPOMDP , all

individual observations are shared via communication, allowing the team of agents to act in

a centralized manner. [21]
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1.2 Contributions

This research makes the following contributions. First, the research combines the prior

methods for modeling a few other agents in open agent systems, such as wildfire suppression,

and many agents in general settings using agent anonymity to account for both properties

simultaneously. Second, the research incorporates agent anonymity in nested modeling over

the random other agents and introduces a filtering approach to restrict the most unlikely com-

binations of the other agents’ actions to reduce the planning time. Third, to further improve

the scalability of agent reasoning, a sampling-based solution where agents intelligently select

a subset of peers to model and subsequently extrapolate their expected behaviors to the

larger set of all agents is introduced, which increases the efficiency of reasoning, made diffi-

cult by agent openness. Fourth, the presented method utilizes a generalization of MCTS in

multiagent planning, accounting for an agent’s predictions of others actions.

Finally, the research expands previous benchmark simulations of wildfire suppression

to include a larger number of agents and empirically demonstrate the benefits of the

new method over the standard baseline methods which include a no-operation baseline, a

heuristic baseline, and a nested-reasoning baseline. The results demonstrate that the new

framework fares better than the standard baseline methods in the majority of experimental

setups while produces statistically equivalent results in the remaining ones. Several inter-

esting phenomenons such as Volunteer’s dilemma has been observed in the agents’ behavior,

and more such effects have been reduced effective use of sampling errors. Overall, the new

methodology demonstrates itself as a reliable framework for individual decision planning in

many agent MAS.
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1.3 Document Structure

This document is organized in a standard thesis document format as follows. Chapter 2,

Background, introduces major frameworks and methodologies employed in this research and

changes incorporated in them to produce the novel framework. Chapter 3, Methodology,

provides details about the primary algorithm of this research and describes the methods

of sampling and extrapolation. Chapter 4, Experiments, reports the results and provides

analysis of the experiments conducted on the wildfire domain to demonstrate the potency of

the new framework over the standard baseline methods. Chapter 5, Conclusion and Future

Works, explains the takeaways from this research and the possible enhancements in the

current methodology to improve performance and usability. The Appendix sections provide

some quantitative analyses to enhance the reader’s understanding of the concepts.

6



Chapter 2

Background

This chapter describes several fundamental frameworks and concepts used in this research,

while it also establishes the base for the primary algorithm of this research, Interactive -

partially observable Monte Carlo planning (I − POMCP ). First, the chapter provides an

overview of POMDP , one of the core decision-theoretic frameworks; the POMDP section

also introduces the concepts of policy and value function. Next, the I−POMDPLite section

explains the traits of the I−POMDPLite framework and how the concept of agent anonymity

and configuration filtering is incorporated into it. In the end, the prerequisite for the I −

POMCP framework, the 2AND-OR tree and unique aspects of its design are established,

after a brief explanation of its single agent predecessors.

2.1 Partially Observable Markov Decision Process (POMDP )

Decision-theoretic planning in a single agent setting under partial observability is formal-

ized by the partially observable Markov decision process (POMDP ). POMDP is a well-

established framework based on Bayesian reasoning which provides a theoretical assurance

for finding optimal planning solutions under uncertain conditions. [5]

Mathematically, a POMDP can be defined as the following tuple:

POMDP = 〈S,A, T,Ω, O,R,OC, γ〉 (2.1)

where,

• S is the physical state space of the environment. Extending this definition for state factors,

a physical state might be factored into multiple variables called state-factors (F), which
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can be represented as S = F1×F2× . . .×Fk. For example, a state in a wildfire domain can

be made up of k state-factors representing the intensities of k fires in the environment;

• A is the set of Actions the agent can perform;

• T : S × A × S ′ → [0, 1], is a stochastic transition function which provides a distribution

over the next state (S ′) after performing an action (A) on the current state (S);

• Ω is the set of observations the agent receives;

• O : S ′ × A× Ω : [0, 1], is a stochastic observation function which provides the probability

with which the agent receives an observation (o) given the resulting state (S ′) and the

performed action (A);

• R : S×A→ R, is a reward function that provides the reward for the agent given its state

and the action from the state;

• OC is the optimality criteria to maximize a sum of the discounted rewards obtained over

a fixed number of steps H (horizon) or over an infinite number of steps;

• γ ∈ (0, 1] is a discounting factor used for weighting the reward values over a range of

future time steps.

Due to partial observability, the agent does not know its current state exactly, therefore it

maintains a probability distribution over possible current states, termed as an agent’s belief

or a belief state (b). The agent updates its belief at each time step using the Bayes filter,

and the belief update takes into account the previous belief over the possible states, b, the

agent’s action at the previous time step, a, and the received observation after the transition,

o. The new belief, b′ for a current possible state (s′) can be given as:

b′(s′) = βO(o, s′, a)
∑
s∈S

b(s)T (s, a, s′) (2.2)

where β = 1/O(o, b, a) is a normalization constant. Above equation can be summarized

for an entire belief as b′ = SE(b, a, o) .

The solution of a POMDP is a policy (π), which is a function that maps the agent’s

beliefs to a distribution over actions, π : B×A→ [0, 1]. Modestly, the policy is nothing other
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than a strategy for an agent to perform a possible best action in the given environmental

state. To obtain the utility of an action over a given belief, a value function in a form of a

Bellman equation is defined to provide the expected long-term reward as:

V h(b) = max
a∈A

∑
s∈S

b(s)

(
R(s, a) + γ

∑
s′

T (s, a, s′)
∑
o∈Ω

O(o, a, s′)V h−1(SE(b, o, a))

)
(2.3)

where h is the horizon.

This value function can be optimized by choosing the actions which can provide the

maximum utility in a given state, that in turn leads to an optimal policy (π∗). There are

many algorithms available in the POMDP literature which can be employed to needed

optimization of this function, and one of the most popular of these algorithms is Value

Iteration, which iteratively optimizes the value function to obtain an optimal policy. [22]

The policy can be a stochastic policy (a ∼ π(b)) which provides a distribution over action

against a belief state or a deterministic policy (a = π(a|b)) which provides a deterministic

action against a belief state.

When the agent has full observability in the environment, the POMDP structure

becomes an MDP , and since the agent precisely knows its current state, there remains no

need to maintain a belief over possible current states. In such conditions, the stochastic

policy (a ∼ π(s)) would return a distribution over action given a physical state (s) and a

deterministic action in case of a deterministic policy (a = π(s)).

2.2 I − POMDPLite framework

The I − POMDPLite framework should be considered as a state-of-the-art approach in

individual planning in MAS. [3] The framework improves over its predecessor I−POMDP by

introducing a nested reasoning approach to model the other agents having full observability

in the environment. Though the introduced approach is an approximation of the actual

behavior of the other agents, the framework performs as effective as its predecessor with

reduced computational costs.
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I − POMDPLite for a planning agent i at a reasoning level l can be mathematically be

represented as follows:

I − POMDPLite
i,l , 〈Ag, S,A, Ti,Ωi, Oi, Ri, γ, bi,0, {Mj,l−1,Mk,l−1, . . . ,Mz,l−1}〉 (2.4)

where,

• Ag is the set of agents, inclusive of the subject agent i and its neighboring agents j, k, .., z.

Here, an agent can be of any frame from the set of discrete frames in the environment,

Θ = {θ1, .., θ|Θ|} that represents its capabilities and type of reasoning process. For example,

protesters at a site might have different frames of peaceful and violent protesters based

on their behavior, while violent protesters can cause far more damage to properties than

peaceful protesters.

• S is the physical state space of the environment, which can be represented as S = F1 ×

F2 × . . .× Fk with the state factors;

• A: Ai ×Aj × . . .×Az is the set of possible joint actions performed by all the agents (Ag)

in an environment. Frequently, notation A−i is used to indicate the joint action performed

by the other agents’ for the subject agent i;

• Ti: S × A × S ′ : [0, 1] is the transition function for agent i which provides a distribution

over the next state (S ′) given the joint action of all the agents (A) and the current state

(S);

• Ωi is the set of observations received by the agent i;

• Oi : S ×A×Ωi : [0, 1] is a stochastic observation function for agent i, which provides the

probability with which the agent receives an observation (o) given the resulting state (S ′)

and the joint action (A);

• R : S × ai × a−i → R is the reward function of agent i that rewards (or penalizes) the

agent for its various actions dependent on the current state (S), the current agent’s action

(ai) and other agents’ joint action (a−i);
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• γ ∈ (0, 1] is a discounting factor used for weighting the reward values over a range of

future time steps;

• bi,0 represents the initial belief state of subject agent i;

• {Mj,l−1,Mk,l−1, . . . ,Mz,l−1} is the set of mental models for the other agents (Ag − {i})

at the reasoning level l − 1. Here, the planning agent’s reasoning level (l) represents that

all the neighboring agents reason at level l − 1 or lower. In a special case, the planning

agent reasoning at level 1 implies that all the neighbors choose actions randomly (or are

at level 0) or from a chosen distribution. Each mental model Mj,l−1 is a Nested−MDP

model represented as:

Mi,l , 〈S,A, Ti, Ri, {πj,d, πk,d, . . . , πz,d}l−1
d=0, γ〉

where {πj,d, πk,d, . . . , πz,d}l−1
d=0 is the set of policies of the other agents, obtained by solving

their reasoning processes as Nested−MDP s.

The belief update in I − POMDPLite for a next state (s′) in the next belief state (b′)

can be represented as:

b′i(s
′) = βOi(oi, s

′, ai)
∑
s∈S

bi(s)Ti(s, ai, a−i, s
′) (2.5)

where β = 1/O(oi, bi, ai, a−i) is a normalization constant. Above equation can be summarized

for an entire belief as b′i = SE(bi, ai, a−i, o) .

To solve an I − POMDPLite, an agent chooses actions that maximize the cumulative,

discounted reward function over a finite horizon H: r0 + γr1 + γ2r2 + . . . + γH−1rh−1, by

considering a set of Value functions for each belief:

V h
i,l(bi) = max

ai∈Ai

(
ρi(bi, ai) + γ

∑
s′∈S,oi∈Ωi

T ai,oii (s′, oi|bi, ai)× V h−1
i,l (SE(bi, ai, a−i, o))

)
(2.6)

where, ρi(bi, ai) =
∑
s∈S

∑
a−i∈A−i

∏
−i∈{j,k,...,z}

π−i,l−1(s, a−i)Ri(s, ai, a−i) × bi(s) , and policies

π−i,l−1(s, a−i), −i ∈ {j, k, . . . , z} are solutions of the other agents’ mental models M−i,l−1.

11



The I − POMDPLite provides a theoretical assurance of near optimal solution for indi-

vidual planning in MAS, which makes it an attractive choice for individual planning appli-

cations.

2.3 Introducing Agent Anonymity in I − POMDPLite

As described in the previous section, the I − POMDPLite provides a theoretical way for

individual planning in MAS in the light of the actual state and the prediction of the reasoning

of the other agents, however as the agent population grows larger, the planning becomes

computationally infeasible in such an identity-preserving framework. In many agent settings,

instead of focusing on individual agents, focusing on a group of agents sharing similar traits,

would provide huge computational benefits, and this property is termed as frame-action

anonymity. [10] The individual planning under anonymity provides an identity-independent

framework to group the agents by frames and the actions performed by them under these

frames in an environment involving many agents having different types or frames (θ).

Theoretically, the frame-action anonymity property in a many-agent environment is:

C =
〈
ca1,θ1 , . . . , ca|A|,θ1 , ca1,θ2 , . . . , ca|A|,θ|Θ|

〉
(2.7)

where,

• C is a frame-action configuration or modestly a configuration;

• cai,θj represents the count of agents having the type θj and performing the action ai.

Note that, the dynamic parameters of the environment T , O, and R depends only on

these counts c in an identity independent manner, such that two different joint actions (A)

producing the same frame-action configuration (C) would also produce the same transitions

and rewards. For example, in the wildfire environment, agents of a different type (e.g., ground

firefighters, helicopters, and airplanes) extinguish fires at different rates, while their location

would allow them to fight only certain surrounding fires. Such type and action properties

can create different frames for firefighting agents, yet each firefighting agent in the same
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frame contributes the same amount of fire suppression when fighting a particular fire. This

implies that the representation of T , O, and R can be greatly compacted since the number

of possible configurations
(|N |+ν+1

ν+1

)
is much fewer than the number of possible joint actions

ν |N |, where ν = max{|Ai|, |Aj|, . . . , |Az|} and N is the number of agents in the environment.

To incorporate agent anonymity in the I − POMDPLite, the joint actions of the other

agents can be converted into configurations of the other agent’s actions (C−i). Therefore,

while obtaining the other agents’ policies in the Nested−MDP , the framework can use C−i

to consider other agents’ actions and reduce the planning time significantly. For notational

convinience, C−i can be replaced with just C. After incorporating the configuration changes,

the value function for the Nested−MDP can be defined as:

V (s) = max
ai∈Ai

∑
C(ai)∈C(ai)

(
P (C(ai))

(
R(s, C(ai)) + γ

∑
s′∈S

T (s, C(ai), s
′)V (s′)

))
(2.8)

where,

• C(ai) is the set of all possible configurations where agent i chooses action ai;

• C(ai) is an arbitrary configuration where agent i chooses action ai.

• P (C(ai)) is the probability of a configuration C(ai), which can be calculated using

multinomial distribution, where the counts of each frame-action pair can serve as its

parameters.

Exploiting the idea of the frame-action anonymity further in many agent settings, the

agents with the same frame, sharing the same action-set and having the same environmental

constraints could be modeled as agents having the same reasoning process. Creating just one

Nested−MDP model for all such agents could reduce the number of Nested−MDP models

and computational cost drastically. For example, 30 ground firefighters in the wildfire domain

at the same location, surrounded by the same fires could follow the similar fire fighting policy

if modeled by the Nested−MDP framework. Therefore, creating just one Nested−MDP
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model for a ground firefighter from this group would be sufficient to represent all the ground

firefighters. Interestingly, even though the agents would follow the same Nested − MDP

policies in such a group, they would have a unique internal state at each time-step, and

therefore, they are still separate agents. For example, each ground firefighter in this group

of 30 has a unique suppressant level, and each would follow its own trajectory over the time

based on its individual suppressant transition.

2.4 Filtering Configurations in Nested−MDP

This section focuses on filtering the number of configurations in the Nested−MDP frame-

work after incorporating the agent anonymity as illustrated in equation (2.8). The part in

the inner paranthesis in equation (2.8) is a geometric series [23], and given the maximum

reward (Rmax),the reward upper bound (R̄) can be defined as:

R̄ = Rmax/(1− γ) (2.9)

The most that an arbitrary configuration C(ai) can contribute to V in equation (2.8) is

P (C(ai)) ∗ R̄ . Since P (C(ai)) is close to 0 for many configurations, the maximum possible

contribution P (C(ai))∗R̄ will be trivial for them. Leaving out such C(ai)’s will have minimal

impact on the overall estimate of V .

Let ε ∈ R+ be a small constant value, then the set of filtered configuration Ĉ(ai) can be

defined as:

Ĉ(ai) =
{
C(ai) ∈ C(ai)|P (C(ai)) ∗ R̄ >= ε

}
(2.10)

The Ĉ(ai) is the subset of possible configurations where agent i chooses action ai such that

each configuration contributes at least ε to the estimate of V .Changing the equation (2.8)

to use Ĉ(ai) will be a close approximation of the true V with a significant reduction in

the computation time. Choosing a smaller ε will increase the size of Ĉ(ai), yielding a closer

approximation to V in equation (2.8), however with a drawback of higher computation time.
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Appendix A provides a chart that plots the number of configurations in Ĉ(ai) after filtering

the configurations against different ε values using wildfire domain setups.

2.5 Monte Carlo tree for many agents

Monte Carlo tree search (MCTS) is a popular online decision planning framework for solving

MASs. The framework uses the MC sampling to approximate the actual solution and saves

valuable time compared to computationally expensive offline planning methods, while it

scales well with state-action-reward trajectories. In the single-agent MCTS planning, the

planning agent iteratively constructs an AND-OR tree representing the state - action tra-

jectories up to a predetermined maximum level and computes expected discounted utility

for each action. Of note, in the MCTS tree, the AND nodes represent the selection or

environmental output, and the OR nodes represent the sampling process.

In the case of the fully observable MCTS planning, the root OR nodes represent a

physical state, while action AND nodes represent possible actions an agent can take. The

edge between the state nodes and the action nodes are annotated by the utility of the action

and the number of visits to those nodes. The action nodes further lead to the next possible

states after the transition. With each pass through the tree, the environment is simulated

until the maximum horizon, and the utility of each action taken at each horizon is calculated

in a bottom-up manner, such that the action nodes connected to the root node receives a

cumulative discounted utility of all the action nodes in the sampled trajectory. It is important

for an MCTS tree to have enough explored trajectories for choosing the possible best action

and to ensure a near-optimal solution.

On the other hand, in MCTS planning for partially observable environments, known

as partially observable MC planning (POMCP ), the root OR node is a representation of

a belief state (bφ) in the form of a set of state particles. Similar to the root node, all the

other OR nodes are belief nodes (bh) in the form of a set of state particles and represent the

updated belief state at each level in the tree after the transition. An edge between the belief
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OR node and the action AND node in POMCP is represented by the estimated Q-value

(Q(bh, ah)) and the number of visits to that action node (N(bh, ah)) in the context of belief.

For sampling an action from a belief node, the POMCP uses UCT, a popular bandit-based

heuristic, which allows fair exploration of all the action nodes with a fair selection of the

bandit constant (c). From an action AND node, an observation (oh+1) leads to the next

belief OR node (bh+1), and the edge between an action AND node and a belief OR node is

annotated with the probability of receiving this observation (oh+1) given by the observation

function O(bh+1, ah, oh+1). After each pass, the maximum of one belief node is added to the

tree and the annotated Q-values and N -values of the visited trajectories are revised. The

algorithm continues execution until the time budget runs out and subsequently it selects the

action having the optimal Q-value from the root node.

In this research, the AND-OR tree used in POMCP is augmented to suit the require-

ments of many agents settings in the context of I − POMDPLite framework updated with

agent anonymity changes. The newly created many-agent tree adds a layer of frame-action

configurations between the layers of belief nodes and action nodes, representing incorporation

of other agents’ actions. Contrary to the POMCP tree, belief nodes in the many-agent tree

are AND nodes instead of OR nodes, as the configurations are results of action-selection from

the other agents’ policies. In general, the many-agent tree contains the belief AND nodes,

configuration OR nodes and the action AND nodes, and as the tree trajectories contain two

consecutive AND nodes, action and belief nodes, followed by a configuration OR node, it

can be said a 2AND-OR tree.

Figure 2.1 illustrates the many-agent 2AND-OR tree with a representation of trajectory

paths (p) in the left; for notational convenience, the visit counts at action nodes (N) use

the trajectory paths. In the many-agent MCTS tree, all the configuration nodes are fully

connected to their immediate action nodes, representing the planning agent’s action selection

over all possible actions of the other agents, and this context is represented in all notations

with a generalization of the configuration nodes in a layer as C. The double line in the
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Figure 2.1: The Monte Carlo tree for many agents setting consists of an additional config-
uration layer compared to the traditional MC tree. All the configuration nodes are fully
connected to the action nodes in the tree.

belief nodes and the action nodes represents the probability distribution over the respective

configurations and observations.

In case, to augment the POMCP tree for the I − POMDP framework, the configu-

ration nodes would be replaced by the other agents’ joint actions nodes. Due to the enor-

mous number of joint actions compared to configurations for the same number of agents,

the resulting tree would produce sparse trajectories and due to that, it would result into
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worse performance than the tree with configurations in the same time bound in online plan-

ning. Next chapter, Methodology, explains the algorithm to create this many-agent tree and

improve its scalability using sampling and extrapolation strategies.
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Chapter 3

Methodology

This chapter drafts the central methodology of this research, created from the components

mentioned in the Background chapter. The chapter begins with explaining the interactive -

partially observable MC planning (I − POMCP ) algorithm, the primary algorithm of this

research to build 2AND-OR trees, and subsequently, it advances to explain the handling of

agent openness in the context of the algorithm. Later in the chapter, the sampling process

of other agents and extrapolation of the behavior of sampled agents to the entire population

are described.

3.1 I − POMCP Algorithm

The Algorithm-1 exhibits the primary I − POMCP algorithm of this research for many-

agent MAS. In the algorithm, the IPOMCP procedure iteratively construct the 2AND-OR

tree (T ) using the UpdateTree procedure until the time budget (τ) runs out. In each of these

iterations, a particle is sampled from the initial belief (bφ) as illustrated in line 4 and is

propagated in the tree up to the maximum horizon (H). As already mentioned, with each

iteration, the maximum of one node is added to the tree (T ). After the time budget (τ)

runs out, the algorithm returns the action having the optimal Q-value at the root node as

illustrated in line 7.

Each time a particle passes through the UpdateTree procedure, it is being added to the

belief node bp at particle’s trajectory p as illustrated in line 11. If a trajectory (p) is already

a part of the tree (T ), then first, a configuration is sampled using the mental models and

Nested − MDP policies of the other agents, and an action is being chosen using UCT
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Algorithm 1 I − POMCP algorithm
Note: T is the tree (initially empty), p is a path from the root of the tree (with p = ∅ is the root

of the tree), bp is the set of particles representing a belief at the node at p in the tree and b∅
indicates initial belief, N is the number of visits to each node initialized to some constant ν ≥ 0,
Q is the Q function initialized to R value, c is the bandit constant, and τ is the time budget.

1: procedure IPOMCP (b∅, τ)
2: time← 0
3: while time < τ do
4: s0,M0 ← SampleParticle (b∅) . Sample a particle from the initial belief
5: UpdateTree

(
s0,M0, 0, ∅

)
6: Increment time
7: return argmax

a∈Ai
Q(∅, a)

8: procedure UpdateTree(sh,Mh, h, p)
9: if h >= H then

10: return 0
11: bp ← bp ∪ {

(
sh,Mh

)
}

12: if p /∈ T then
13: T ← T + leafnode(p) . Add explored trajectory at p to the tree
14: return Rollout

(
sh,Mh, h

)
15: else
16: Ch ← SampleConfiguration

(
sh,Mh

)
17: ahi ← ChooseAction

(
p, Ch

)
18:

(
sh+1,Mh+1, ohi , r

h
i

)
← Simulate

(
sh,Mh, ahi , C

h
)

19: Np ← 1 +Np, Np 7→Ch 7→ahi
← 1 +Np 7→Ch 7→ahi

20: p′ ← p+
(
ahi , C

h, ohi
)

21: R← rhi + γ · UpdateTree
(
sh+1,Mh+1, h+ 1, p′

)
22: Q(p, ahi )← Q(p, ahi ) +

R−Q(p,ahi )
N
p 7→Ch 7→ah

i

23: return R
24: procedure Rollout(sh,Mh, h)
25: R← 0, h′ ← h
26: while h < H do
27: Ch ← SampleConfiguration(sh,Mh)
28: ahi ← SampleAction(Ai) . Sample an action from the chosen distribution
29: (sh+1,Mh+1, ohi , r

h
i )← Simulate(sh,Mh, ahi , C

h)
30: R← R+ γh−h

′ · rhi , h← h+ 1

31: return R
32: procedure ChooseAction(p, Ch)

33: return argmax
a∈Ai

Q (p, a) + c
√

logNp
N
p 7→Ch 7→ah

i

. UCT Heuristic

20



heuristic as illustrated in lines 16 and 17. The ChooseAction procedure provides the UCT

heuristic for the action selection. Second, the N -values are being updated after the simulation

as illustrated in line 19. Finally, the Q-values are updated in a recursive manner representing

a bottom-up update as illustrated in lines 20-22. On the other hand, if the trajectory p is

not part of the tree (T ), then the particle is rolled out using the Rollout procedure up to the

maximum horizon (H). The Rollout procedure simulates the environment using a sampled

configuration as well as a sampled action, and same as the UpdateTree procedure, it calculates

R values in a bottom-up manner, as illustrated in lines 26-30.

Compared to its single agent predecessor POMCP , the I−POMCP algorithm illustrates

some fundamental differences in characteristics to incorporate other agents’ reasoning. First,

a particle in I − POMCP includes the mental models (Mh) of the other agents, apart

from the environmental state (sh). Effectively, while sampling, the I − POMCP algorithm

not only samples sh, however Mh of the other agents as well. Here, a mental model (Mh)

is an approximation of the hidden factor of a neighboring agent’s state. For example, the

suppressant level of the neighboring agent in the wildfire domain, which is hidden from

the planning agent. Tracking mental models of the other agents helps the subject agent to

predict the other agents’ actions accurately and provides a correct estimate of the likelihood

of sampling configurations (Ch) before the agent chooses its own action (ah).

Second, the Q-value at each action node is an approximate result of the planning agent’s

action over possible frame-action configurations of the other agent’s actions (Ch), which are

sampled from their precalculated Nested−MDP policies. In an ideal case, the Q-value at

an action node representing an action (ahi ) under a belief node (bp) is a weighted sum of all

Q-values for the action (ahi ) and an arbitrary configuration (C) given bp. Mathematically,

this idea can be represented as:

Q(bp, a
h
i ) =

∑
Ch∈Chbp

P (Ch|bp) ∗Q(bp, C
h, ahi ) (3.1)
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Finally, the belief update in I−POMCP algorithm involves the mental-model particles,

in addition to the state particles to create the new belief state as illustrated in Algorithm-2.

After performing the actual action ar, the planning agent receives an actual observation or

from the environment. To update the belief, the agent collects the previous tree particles

from the actual next belief node at the ∅ 7→ C 7→ ar 7→ or trajectory, as illustrated in line

2 of BeliefUpdate procedure. The new belief state (bnew) for the next time-step is created

by sampling maximum allowed (maxp) particles from these collected particles (bnext), as

illustrated in lines 3-6. In this research, the wildfire domain is designed to have a Mixed

Observability MDP (MOMDP ) [24] state, where the actual state particle consists of fire-

intensity and planning agent’s suppressant level is fully-observable and is provided by the

environment at each time-step, while the mental models of the other agents are needed to

be maintained as a belief. For this specific case, the belief update method receives the next

state (s’) as a parameter, and line 5 in the Algorithm-2 can be updated to represent these

changes as follows: snew,Mnew ← s′, SampleParticle(bnext) 7→M .

Algorithm 2 Belief Update in I − POMCP
Note: ar is the real action performed by the agent, or is the real observation received from the

environment, T is the current I −POMCP tree for the agent, and maxp is the maximum number
of particle allowed in the root belief node.

1: procedure BeliefUpdate(ar, or, T,maxp)
2: bnext ← getParticles(T, ∅ 7→ C 7→ ar 7→ or) . Receive particles from actual next belief node
3: bnew ← ∅
4: while sizeOf(bnew) < maxp do . Create a belief state with maximum particles
5: snew,Mnew ← SampleParticle(bnext)
6: bnew ← bnew + (snew,Mnew)

7: return bnew

3.2 Handling Agent Openness

As already mentioned in the Introduction chapter, in this research, the definition of agent

openness is being restricted to the environments, where agents may leave or re-enter anytime,

yet no new agent joins during the operation. Keeping track of the agents in a multiagent
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system is important to predict the actions of the other agents. For example, in the wildfire

domain keeping track of the suppressants of the neighboring agents in the system would

guide the agent in predicting the number of agents who are out of the environment refilling,

which would, in turn, improve subjective agent’s decision-making accuracy.

A naive way of tracking the presence of neighboring agents in open environments involves

each agent i maintaining an additional state variable Pj for each other agent j ∈ N(i), where

Pj ∈ {present, absent} and N(i) is the set of neighboring agents of the planning agent i. The

resulting state space increases by at least a factor of 2|N(i)| due to the addition of Pj, which

is an exponential increase in the size of the agent’s state space. For example, modeling 40

neighbors’ presence increases the state space by a factor of at least 240 � 100 billion states.

To mitigate the intractability, the Pj variable can be placed as an internal state variable

within a mental model Mj,l−1 attributed by agent i to a neighboring agent j. Consequently,

the overall increase in the size of the problem model is restricted to being linear in the

number of agents, which promotes scalability. For example, in the wildfire domain, instead

of keeping track of each neighboring agent’s presence as a state factor, an agent’s suppressant

level ’Empty’ in the mental model would represent its absence, and its presence otherwise.

However, even a linear increase in the size of the problem still poses an important chal-

lenge for I − POMCP . In both the UpdateTree and Rollout procedures of Algorithm 1, the

Simulate step must simulate transitions for each Pj variable as part of calculating the next

set of mental models Mh+1 based on Mh, sh, and ah. An increase in the time complexity of

sampling a path through the tree directly reduces the number of paths that can be sampled

within a fixed amount of time budget τ . Increasing the number of visits to a sampled con-

figuration would increase its accuracy and would provide assurance of reliable Q-values for

each action.
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3.3 Selectively Modeling Neighbors

To resolve the issue of maintaining the transition of many mental models, this research

proposes a sampling-based solution, which would approximate the behavior of all neighboring

agents in the system by tracking only some of them. In the field of surveying, the measurers

choose a small set of people to represent the opinion of the entire population. For example,

in the election exit polls, the surveyors choose several thousand voters randomly to conduct

their surveys, while they maintain that the sample contains representation from each section

of the society. Ordinarily, this sample-based analysis is extrapolated to the entire population,

which approximately represents the opinion of the population. By following the standard

statistical procedures, some reliable theoretical bounds can be achieved. [25, 26, 27]

Adapting this sampling approach to the I − POMCP makes the algorithm run faster,

as the agent maintains a small subset of mental models of its neighbors in the particle filter

instead of maintaining all of them. For example, in the wildfire domain, each firefighter

maintains only a subset of its neighboring agents’ suppressant levels and track them over

time, in-turn extrapolating the behavior of this small set of agents to the entire neighborhood.

This kind of design also provides the solution to agent openness by extrapolation of the

recharging agents from the sampled agents to the entire population. Also, the sampling

action is not computationally costly, as it is performed just once at the beginning of each

experimental trial.

3.3.1 Sampling Configurations

Refering back the equation 2.7, the configuration (C) can be considered as a random variable

composed of counts of agents performing the same action under the same frame, and which

implies that the distribution over C is a multinomial distribution . Mathematically, the

distribution over a configuration random variable C can be parameterized as:

P (C|sh,Mh) = Multi(|N(i)|, {pa1,θ1,N(i), . . . , pa|A|,θ|Θ|,N(i)}) (3.2)
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where,

• N(i) is agent i’s neighbouring agents;

• pa,θ,N(i) is the likelihood that neighbors in N(i) of type θ will perform action a.

The configuration (C) can be considered as a concatenation of several multinomial vari-

ables of each type (θ ∈ Θ), and a configuration for a type (Cθ) can be defined as a tuple of

the counts of agents of the same type performing a range of actions. Mathematically, the Cθ

is:

Cθ =
〈
na1,θ, na2,θ, . . . , na|A|,θ

〉
(3.3)

Using the equations 3.2 and 3.3, the probability of a configuration of a type (Cθ) can be

defined using the multinomial distribution as:

P (Cθ|sh,Mh) = Multi(|Nθ(i)|, {pa1,θ,Nθ(i), . . . , pa|A|,θ,Nθ(i)}) (3.4)

where

• Nθ(i) ⊆ N(i) is the subset of agent i’s neighbors each with type θ.

If an agent chooses to model a subset of its neighbors, N̂(i) ⊂ N(i), it can still estimate

pa,θ,Nθ(i) for various actions that parameterize the multinomial distribution P (Cθ|sh,Mh)

for each type. Let N̂θ(i) be the subset of N̂(i) with type θ and n̂a,θ,N̂θ(i) be the number of

agents in N̂θ(i) predicted to perform action a based on the current state sh, their presence

Pj ∈ mj,l−1 and their policies derived from their Nested−MDP models. Subsequently the

likelihood that an arbitrary modeled neighbor of type θ will perform action a can be given

as:

p̂a,θ,N̂θ(i) =
n̂a,θ,N̂θ(i)

|N̂θ(i)|
(3.5)

Using the estimated proportion in the equation 3.5, the SampleConfiguration function is

established as given in the Algorithm 3. The SampleConfiguration function is called from

two different procedures UpdateTree and Rollout in the Algorithm 1 to sample the configura-

tions. This procedure samples a full configuration C for all agents in a neighborhood using
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Algorithm 3 Sampling Configurations from Modeling N̂(i)

1: function SampleConfiguration(sh,Mh)
2: C(a, θ)← 0 ∀a, θ
3: n̂a,θ,N̂θ(i) ← 0 ∀a, θ
4: forMj,l−1 ∈Mh do
5: a ∼ πj,l−1(sh)
6: n̂a,θj ,N̂θj (i) ← n̂a,θj ,N̂θj (i) + 1

7: for θ ∈ Θ do
8: for a ∈ A do

9: p̂a,θ,N̂θ(i) ←
n̂a,θ,N̂θ(i)∑

a′∈A n̂a′,θ,N̂θ(i)

10: for j ∈ Nθ(i) do
11: a ∼ Cat(p̂a1,θ,N̂θ

, p̂a2,θ,N̂θ
, . . . , p̂a|A|,θ,N̂θ)

12: C(a, θ)← C(a, θ) + 1

13: return C

only the mental models maintained for a subset of the neighborhood. First, all the values

of n̂a,θ,Nθ(i) from the modeled neighbor’s mental models Mj,l−1 ∈ Mh, including their poli-

cies πj,l−1 are calculated, on lines 3-6. Subsequently these counts are used to calculate the

likelihoods p̂a,θ,Nθ(i) using the equation 3.5, on lines 8-9. Finally, the calculated likelihoods

are used to sample the actions for every neighbor (modeled or otherwise) and add it to the

configuration counts, on lines 10-12. Note that here Cat(p̂a1,θ,N̂θ
, p̂a2,θ,N̂θ

, . . . , p̂a|A|,θ,N̂θ) is a

categorical distribution, where a single action is chosen from each of their likelihoods (just

as actions can be chosen from stochastic policies, which are also categorical distributions).

3.3.2 Number of Agents to Sample

The error of the approximation of P (C|sh,Mh) using the likelihoods p̂a,θ,N̂θ(i) is calculated

utilizing the equation 3.5, decreases as the number of neighbors that the agent models (i.e.,

|N̂(i)|) increases, giving an agent control in balancing the trade-off between the quality of
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planning and the size of its model by selecting the number of agents it chooses to model in

N̂(i) ⊂ N(i).

Specifically, the approximation error of each p̂a,θ,N̂θ(i) can be bounded as follows. For

notational convenience and without loss of generality, let p̂ = p̂a,θ,N̂θ(i) and n = |N̂θ(i)|. With

1 − α confidence, it can be said that the true proportion of neighbors of type θ who will

choose action a will lie within the range:

p̂± tn−1,α
2

√
p̂(1− p̂)

n
(3.6)

Hence with 1− α confidence, the error ep̂ of p̂ is:

ep̂ ≤ tn−1,α
2

√
p̂(1− p̂)

n
≤ tn−1,α

2

√
0.52

n
(3.7)

because the range in equation 3.6 has maximal width whenever p̂ = 0.5. For reorganize this

inequality, an appropriate number of neighbors is selected to model such that the agent’s

estimations of p̂ are within some desired error bound:

n ≥
(
tn−1,α

2

2ep̂

)2

(3.8)

However, the range given in equation 3.6 is rather loose as it makes the assumption

of infinitely sized neighborhood Nθ(i). For smaller neighborhoods, this error bound can be

tightened using the finite population correction. [26] Let N = |Nθ(i)| be the size of the finite

neighborhood. Subsequently the error bound is given by:

p̂± tn−1,α
2

√
p̂(1− p̂)

n

√
N − n
N − 1

(3.9)

so that

ep̂ ≤ tn−1,α
2

√
p̂(1− p̂)

n

√
N − n
N − 1

≤ tn−1,α
2

√
0.52

n

√
N − n
N − 1

(3.10)

and that provides

n ≥
N
(
tn−1, α2

2ep̂

)2

N − 1 +
(
tn−1, α2

2ep̂

)2 (3.11)

.
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For instance, consider an example environment where N = 50. To make sure the agents

estimation p̂a,θ,n is within ep̂ = 0.1 of the true proportion for the entire neighborhood (with

95% confidence), the number of agents needed to model are n ≥ 34 , whereas only n ≥ 18

agents are needed to be modeled if ep̂ = 0.2 is acceptable instead. Figure B.1 in Appendix

- B illustrates the change in the value of n for different values of N with ep̂ and α.

3.3.3 Choosing the Neighbors to Model

Once the number of agents to model for each action a and agent type θ pair is determined,

random sampling can be performed to ultimately determine which corresponding neighbors

will be modeled by the agent to form N̂θ(i) for each frame. As previously mentioned, this

process is executed only once when the agent joins the environment, and thus does not add

much to the computational complexity of the I − POMCP planning. Algorithm 4 provides

a roadmap for how to sample the agents in the I−POMCP algorithm, which incrementally

constructs a set of neighbors chosen, so that the total number of modeled agents for each

θ, a frame-action pair is equal to (or greater than) n, where n = |N̂θ(i)|.

To understand the process of agent selection, there are several theoretical aspects needed

to be understood. First, a subset of the subjective agent’s neighborhood Nθ(i) based on

what actions the neighbors can perform Nθ,a(i) = {j ∈ Nθ(i)|j can perform action a} pro-

vides a sample set for selecting neighbours in order to estimate p̂a,θ,N̂θ(i), and construct N̂θ(i).

Second, as the agents can perform more than one action, they can be part of several inter-

action subgraphs. [1] As it is important not to duplicate the selection of the agent, once an

agent is chosen from one interaction subgraph, it would be considered as selected from all

other subgraphs containing that agent. Duplicating the selection of agents would reduce the

accuracy of the I − POMCP as the algorithm would not be able to model enough agents

to build a reliable prediction. modeled set in the Select function keeps track of the modeled

agents, and provision on line 5 takes care of avoiding duplication.
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Algorithm 4 Choose Neighbors for Modeling in I − POMCP

1: function ChooseNeighbors(I − POMDPLite
i,l , ep̂, α)

2: subsets← {Nθ1,a1(i), . . . , Nθ|Θ|,a|A|(i)}
3: sorted← SortAscendingSize(subsets)
4: chosen← ∅
5: for Nθ,a(i) ∈ sorted do
6: N ← |Nθ,a|

7: n← d
N ·
(
tn−1,1−α2

2∗ep̂

)2

N−1+

(
tn−1,1−α2

2∗ep̂

)2 e

8: chosen← chosen ∪ Select(Nθ,a(i), n, chosen)

9: return chosen

1: function Select(Nθ,a(i), n, chosen)
2: selected← ∅
3: modeled← chosen ∩Nθ,a(i)
4: while |modeled| < n do
5: j ← RandomlyPick(Nθ,a(i) \modeled)
6: modeled← modeled ∪ {j}
7: selected← selected ∪ {j}
8: return selected

The agents who can perform more actions have more chances of being modeled in this

algorithm because they are in the greatest number of subsets Nθ,a(i) of the subjective agent’s

neighborhood. This property is beneficial as these neighbors that can perform the most

actions might be both (1) the most influential agents within the system, and (2) the most

necessary to model, as their reasoning will be more complex than other agents, and thus are

less predictable from the rest of the sample. Thus, the algorithm biases the selection process

to pick such agents to best inform the estimates of the overall neighborhood behavior.

Above that, this algorithm also has the possibility of oversampling agents for some sub-

sets Nθ,a(i). That is after n agents are selected from a particular Nθ,a(i), the remaining agents

might later be selected from another Nθ,a(i) to which they belong. Thus, subsets Nθ,a(i) con-

sidered early in the algorithm might end up with more than the necessary n agents selected

for modeling. This property is the motivation for starting with the interaction subgraphs
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with the smallest numbers of agents in the algorithm because these are actually the most

difficult sub-neighborhoods to model. The error in an agent’s estimate is inversely propor-

tional to n, hence the fewer neighbors that the agent models, the more inherent error in its

estimates. Thus, each additional modeled neighbor provides more marginal benefit to the

estimates in these small subsets than in the larger subsets. The algorithm implements this

idea by sorting the subsets by the number of agents at line 3 in ChooseNeighbors.

3.4 Summary of methodology

As the methodology of this research is extensive and divided into many chunks, it is better

to put it in a single chart to avoid any confusion. Figure 3.1 puts the entire methodology in a

chart by providing the sequence of operations to utilize this individual planning framework.

In the first step of generating Nested−MDP policies, the agents who represent the entire

population are selected based on frames and constraints. After selecting the ε value for

filtering configurations, the Nested −MDP policies are generated for each selected agent

as mentioned in the Background chapter. The Nested −MDP policies can be calculated

prior to the actual online planning and could be shared with all the agents to reduce the

online planning time and the use of computational resources. Next, for choosing the agents

to model in I−POMCP at the beginning of a trial, Algorithm 4 is employed. Subsequently,

for each time-step in operation, the I − POMCP framework is utilized as illustrated in

Algorithm 1 given the initial belief state. On the other hand, at the end of each time-step,

Algorithm 2 is used for belief update after observing the effect of joint-action of the agents

on the environment.
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Figure 3.1: Methodology sequence in a flowchart.

31



Chapter 4

Experiments

Even though modeling other agents in a many-agent environment provides the acting agent

a fair sense of the current state as a whole, it is also important to maintain a belief accurately

over time to generate optimal actions. An empirical evaluation of the presented approach

on multiple setups of different complexity levels is needed to demonstrate the algorithm’s

efficiency over time.

4.1 Experimental Setup

This section illustrates the empirical evaluation of the I − POMCP algorithm using a

realistic wildfire domain with many agents. The domain has been created after scaling the

wildfire domain designed for a small group of agents in [7]. In the wildfire simulation, each

agent in a setup obtains a joint reward of 40 for extinguishing a big fire and 20 for a small

fire, while it obtains a penalty of 1 for each location that burns out. An agent receives an

individual penalty of 100 for doing anything other than a no-operation action (NOOP) while

recharging suppressants or trying to fight a nonexistent fire. Agents have three suppressant

levels: empty and recharging, half full, and full with a stochastic transition between the

levels. The intensity of a fire at a location ranges from 0 for an extinguished or no fire to 4

for a burnt out location, which is an irreducible intensity level; an extinguished location can

catch fire if any of its neighborhood locations is on fire. Also, the extinguishing power of the

agents must match a specific level to make an impact on the fire, while adding extinguishing

power above that level would increase the chances of impact.
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The performance of each methodology is assessed in four ways: (1) the average cumulative

rewards obtained, (2) the average intensities of fires, (3) number of fires put out, and (4)

the average suppressants used. The first evaluates the agent’s ability to maximize rewards,

the second and third evaluate the agents’ approach to achieve the overall objective, and the

final way evaluates the efficiency in achieving that objective. For a logical evaluation, the

I − POMCP ’s performance is compared with the performance of baseline methods that

represent what would happen to the forest,

1. If no agents were present (called NOOP as this situation is equivalent to all agents

always taking NOOP actions labeled as NOOP);

2. If each agent follows a heuristic (labeled as Heuristic) - fight an existing fire at random

only if the agent has available suppressants, else take a NOOP, representing a scenario

where agents do not plan on how or when to interact with their peers;

3. If each agent follows a level-1 Nested −MDP policy, where the policy is generated

by assuming that all the other agents’ actions follow a uniform random distribution,

representing a scenario where agents follow a calculated policy however do not maintain

a belief over other agents’ states.

To elicit different interaction between agents, seven setups are used, as illustrated in

figure 4.1. 1 In Setup 1, 20 ground firefighters are given the responsibility of protecting the

forest from four fires. In a 3 x 3 grid, A1 (a ground firefighter unit of ten agents) at one

location has one big shared fire (F1) with A2 (a ground firefighter unit of ten agents) and

one individual small fire (F0) to take care, while A2 has two individual small fires (F2, F3)

apart from the shared fire with A1 (F1). In Setup 2, each A1 and A2 has two shared fires and

one individual fire, which makes coordination more challenging. Setups 3-6 are the scalable

versions of setups 1 and 2, scaling the firepower by 2 times in setups 3 and 4, and 3 times

in setups 5 and 6 respectively; the setups are also scaled in terms of extinguishing power by

1Use of icons made by Twitter from www.flaticon.com is licensed by CC 3.0 BY.
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Figure 4.1: Experimental setups: The wildfire experimental setups test the capability of the
new framework compared to standard baselines. Setup 1 has just one big shared fire, while
the Setup 2 has one big and one small shared fires. Setups 3 and 5 are the scaled versions
of Setup 1 while Setup 4 and 6 are the scaled version of Setup 2. Setup 7 is a special setup
where all the agents share two fires.

having more agents of diverse types, such as helicopters and airplanes. Setup 7 illustrates

the reasoning of the agents in a setup having 3 agent units, each sharing a fire with every

other unit in the setup.
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In the wildfire setups, an agent can only fight a fire that is immediately adjacent to its

south, north, east, or west, or is diagonal to it. A ground firefighter has an extinguishing

power of 0.1, while a helicopter has one of 0.2, and an airplane has one of 0.3. To reduce

the intensity of a big fire by one with a probability of 0.75, the extinguishing power of the

agents must sum up to 1.0. For example, at least ten ground firefighters are needed to reduce

the intensity by one for a big fire. For the small fire, a minimum extinguishing power of 0.5

is needed to reduce its intensity. Each added extinguishing power of 0.1 would increase the

chances of the fire intensity reduction with a probability value of 0.05 summing maximum up

to 1.0. One more interesting constraint in intensity reduction is that a fire can not be reduced

by more than one intensity level in a time-step, hence the use of excessive suppressant is

wasteful. For the setups having firepower 2 times and 3 times, the number of minimum agents

needed to extinguish those fires is multiplied by their fire-multipliers and the probability of

the added extinguishing power is divided by the same factor, though the rewards do not

change. For example, in Setup 3, at least 20 ground firefighters or 10 helicopters would be

required to reduce the intensity of a big fire by 1 level, and the added extinguishing power

of 0.1 would increase the fire reduction probability by 0.025.

All the setups here are designed to be over-constrained, that is the agents in any setup

cannot reduce the intensity of all the fires in a single time-step. This setting helps to iden-

tify the cooperation between agents and their ability to earn rewards by keeping a balance

between fighting the shared and the individual fires. As each agent makes its decision indi-

vidually, and as a substantial number of agents are needed to reduce the intensity of any fire,

each agent is required to perform a complex decision-making process for in-unit coordination

as well as cross-unit coordination.

For each setup, 50 trials of 15 time-steps were conducted to assess the efficiency and

effectiveness of each method. The methodology has been programmed in Java and BURLAP

3.0, a popular programming framework in the decision planning area. [28] Both the I −

POMCP and the Nested −MDP were parameterized with a maximum horizon of 10. In
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configuration filtering, ε values for generating Nested−MDP policies were adjusted between

0.01 and 0.005, such that each planning agent received enough number of configurations to

generate reliable policies in limited planning time. For example, ε value for a large setup

such as Setup-6 was chosen as 0.005, which took approximately 20 hours of Nested−MDP

planning time to generate reliable policies on an advanced configured lab machine, on the

other hand, ε value of 0.01 was enough for Setup-1 which took approximately 3 hours to

generate policies.2 Exploiting the anonymity assumption, the number of Nested − MDP

policies created for each setup was constrained by the firefighter type and location. For

example, setup 5 had 4 policies, 1 policy for ground firefighters and 1 for airplanes in A1,

and 1 policy for airplanes and 1 for helicopters in A2. The I − POMCP experiments were

conducted for different planning times (τ) of 1,5 and 10 seconds for a maximum allowed

sampling error (ep̂) of 0 and 0.2. The alpha value was kept 0.05 for all the setups, and the

bandit constant, c was chosen as 80 after empirical evaluation.

4.2 Results and Discussion

This section presents an empirical analysis of the experimental results conducted using the

wildfire domain. Figures 4.2, 4.3, 4.4, and 4.5 provide the mean and standard errors of

the values of rewards, fire intensities, the number of fires put out, and suppressants usage

respectively for all the setups against used methods. Generating the I−POMCP results over

different values of sampling error (ep̂) and planning time (τ) has provided a deep insight into

the behavior of the algorithm and has addressed the concern for how to use the algorithm

in an efficient manner for a many-agent MAS.

In the experiments, the NOOP baseline produced the worst performance benchmark for

comparison with the other methods. The Heuristic approach can be considered as a standard

way of coping with many agent MAS without any prior planning. Contrary to the human

2Planning time for each run may differ based on experimenting machine’s computational
capability.
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perception of the Heuristic method as an effective strategy, the method did not work well in

many agent settings compared to any other planning approach. In the wildfire experiments,

the Heuristic baseline manifested itself to be the least efficient strategy by spending the most

number suppressant units while extinguishing only a few numbers of fires. These results

provide a gist to how important decision planning can be in the real world applications.

In Nested −MDP methodology, as all the agents, sharing the same frames, locations,

and suppressants, followed the same level-1 policy, they were able to create virtual ad-hoc

teams which followed the same instructions, though fluctuations were seen due to different

internal states of the agents. Having such a formation allowed the Nested −MDP agents

not only concentrating on a single fire in a timestep yet eventually extinguishing multiple

fires in a trial. For the I − POMCP , challenging such a powerful methodology was a tough

task, however, it outperformed the Nested−MDP in Setups 1,2,3,5, and 7, outperforming

in a majority of criteria, while it produced statistically equivalent results to Nested−MDP

in Setups 4 and 6. The Nested−MDP agents focused typically on the shared small fire in

Setup 4 and 6, and as the fire reignited due to the active neighboring fires, the agents were

able to extinguish it multiple times and to grow the result bars significantly. Observing the

results, the use of suppressants seems directly proportional to the number of fires put out in

any baseline and thus does not provide a comprehensive comparison.

In Setup 1 and 2, the I−POMCP outperformed the Nested−MDP with even 1 second

of planning time (τ). It implies that in the small setups, the I − POMCP does not require

enormous planning time to match the Nested − MDP performance. With the scaling in

the number of agents and types, the planning time became larger for the I − POMCP to

outperform Nested −MDP or even to produce comparable results. One more interesting

phenomenon seen in I − POMCP was, in general, with the increase in planning time to 10

seconds, the suppressants use declined, and agents leaned towards a more efficient approach

with a small dip in effectiveness in extinguishing fires. Though this statement may not be

true for all the setups, as planning in large setups takes more time to become effective,
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(a)

(b)

Figure 4.2: Results of Setup 1 and 2: The I−POMCP perform significantly better than the
other baseline methods in Setup 1, while in Setup 2, the difference is not that big. As Setup
2 is more complex than Setup 1, the I − POMCP algorithm takes more time in delivering
sizable results. Here, ep̂ is noted as e, and τ is noted as t for notation convenience.
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(a)

(b)

Figure 4.3: Results of Setup 3 and 4: The I − POMCP perform significantly better than
the other baseline methods in Setup 3, while in Setup 4, it delivers statistically equivalent
results compared to Nested −MDP . In Setup 4, the I − POMCP agent face Volunteer’s
dilemma as the background Nested−MDP reasons to focus on just small shared fire, and
sampling error helps I − POMCP to overcome this issue partially. Here, ep̂ is noted as e,
and τ is noted as t for notation convenience.
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(a)

(b)

Figure 4.4: Results of Setup 5 and 6: The I − POMCP perform significantly better than
the other baseline methods in Setup 5, while in Setup 6, it delivers statistically equivalent
results compared to Nested −MDP . In Setup 6, the I − POMCP agent face Volunteer’s
dilemma as the background Nested−MDP reasons to focus on just small shared fire, and
sampling error helps I − POMCP to overcome this issue partially. Here, ep̂ is noted as e,
and τ is noted as t for notation convenience.
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Figure 4.5: Results of Setup 7: The Nested−MDP has a directionless random policy in this
setup, and the I − POMCP agents overcome this problem with the help of sampling error.
Here, ep̂ is noted as e, and τ is noted as t for notation convenience.

allowing more time in such conditions might produce the same behavior. Conclusively, the

I − POMCP methodology starts exploring efficiency in operations, after it reaches to a

threshold of effectiveness.

In Setups 4 and 6, the Nested−MDP agents were commonly focused only on one shared

small fire, and that allowed them to extinguish the fire and to earn a reward in the early

stages of a trial. In such cases, as the I−POMCP agents relied on the level-1 Nested−MDP

policies to build their own reasoning to perform actions, they faced Volunteer’s dilemma in

choosing actions. [29] Their reasoning about other agents at that stage, (1) all the agents

would be fighting the same fire, and (2) no other agents would fight any other fire, tricked

several of them in believing that their use of suppressants would be wasteful in fighting any

of these fires. Such reasoning also happened in all setups at different points in a trial and
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produced inefficient behavior in agents. Exploring more trajectories and larger error rates in

these cases helped to reduce inefficiency, though not a complete removal of it.

The symmetrical Setup 7 produced a glitch in Nested − MDP reasoning and made

it produce directionless random actions. While, as discussed already, the Nested −MDP

policies made the agents focus on just one fire in Setup 4 and 6. In such scaled setups, the

sampling error (ep̂) of 0.2 produced better results than the value 0 in the I − POMCP .

Having a reduced number of sampled agents allowed an I−POMCP agent to explore more

trajectories in the tree and produced a better estimate of the effect of its actions while

reducing the underlying inefficiencies. Unambiguously, with the more complex reasoning in

the Nested−MDP , it becomes evident that sampling fewer agents within a bound produces

better results for the I − POMCP .

Apart from the performance comparison of the I−POMCP method with other baseline

methods, this research tried to verify if the I − POMCP framework reasons appropriately

with different types of agents. To achieve such verification, experiments were conducted on

Setup 1 by changing the A2 agents in the setup from ground firefighters to helicopters. The

I−POMCP agents behaved in accordance with such over-resourced conditions by spreading

their resources to different fires at the beginning of a trial compared to just focusing on

the shared fire as the I − POMCP agents acted in the original Setup 1. Although the

results are not included in the charts explicitly for comparison, they have illustrated that

the I − POMCP framework correctly reasons about the environments with different types

of agents.

The wildfire domain experimental results demonstrate that the I−POMCP methodology

produces better coordination among the agents and justifies itself better than the other

baseline approaches. Overall, the I−POMCP methodology presents a reliable approach for

achieving the objectives of individual planning in a limited time period.
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Chapter 5

Conclusion and Future Works

In real-world applications involving many agents of different types, decision planning remains

an immense challenge. Above that, many-agent systems may exhibit agent openness, where

agents may leave and rejoin the environment at any point in time during the operation. The

introduced novel method I − POMCP generalizes the MCTS algorithm for many-agent

MAS by incorporating planning under agent anonymity. Extrapolation of the behavior of

selectively modeled agents and tracking agent openness in the models of other agents offer

an effective approach to handle scalability in a principled way. The changes proposed to

modify Nested−MDP by incorporating planning under agent anonymity and configuration

filtering reduces the Nested−MDP planning time to a realistic limit. As demonstrated in

the experimental results using the wildfire domain, this new methodology improves over its

competitive baselines.

Several ideas and direction for future works are as follows. First, in the introduced

approach, the Nested −MDP reasoning is always at level-1 while the I − POMCP rea-

sons at level-2. Even though the reasoning at a higher level is possible in I − POMCP ,

reliable planning for such would be a profoundly complex task and would not be achieved in

a realistic time limit. In the future, more interesting ways could be explored to achieve plan-

ning at higher levels with the use of agent anonymity and extrapolation of agent behaviors.

Second, the I − POMCP approach is designed to produce deterministic actions with the

underlying use of deterministic Nested −MDP policies. Using stochastic policies in both

frameworks may reduce the effects of Volunteer’s dilemma and would allow I − POMCP

to explore more trajectories to make better decisions. Apparently, this change would come
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with a challenge of handling a drastic rise in the fanout of the configurations at belief nodes

in I−POMCP . Finally, both I−POMCP and Nested−MDP methods have an immense

potential to be parallelized. Planning for several states in parallel for each loop of value

iteration in Nested−MDP would allow efficient planning on large distributed clusters and

would significantly reduce the planning time. On the other hand, several already explored

parallel planning approaches in MCTS [30, 31] may be incorporated into I − POMCP to

explore significantly more trajectories in the same planning time.
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Appendix A

Filtering Configurations

Figure A.1 illustrates the effect of configuration filtering using a small constant value ε. The

reduced number of frame-action configurations (Ĉ) represents the set of configurations which

can at least contribute ε value to the Q-value of a Nested−MDP state.

Figure A.1: Log values of filtered configurations for ground-firefighters from unit A1 in the
experimental setups as illustrated in figure 4.1 against the desired values of ε.
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Appendix B

Minimum Sample Size

Figure B.1 illustrates how the number of neighbors that an agent needs to model depends

on the desired error bound of the estimation of the likelihood parameters to the multinomial

distribution P (Cθ|sh,Mh) for various neighborhood sizes N (with 95% confidence, that is

α= 0.05).

Figure B.1: Number of agents to model for desired sampling error (ep̂) and confidence (1−α)
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