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ABSTRACT

The navigation ability and the perception of the objects in the environment are the basis for the mo-

bile robots to explore an unknown environment. Understanding the surroundings and determining the

objects in the environment of one of the major tasks in this regard. For this purpose, we propose a method

with RGB-D sensor-based material mapping with simultaneous localization and mapping (SLAM) fusion.

This method integrates the material classification network and SLAM to obtain the semantic map. This

enables the robot to explore an unknown environment autonomously and identify the objects and materi-

als in the environment. The material recognition or classification is done based on the images taken from

the RGB-D camera, and SLAM is done using ORB_SLAM2. The RGB and Depth features are used for

material classification, and we also explored different fusion methods, late fusion, and complementarity-

aware (CA) fusion. Experiments are conducted to demonstrate this mechanism with a mobile robot,

and an RGB-D camera installed, exploring an unknown environment consisting of objects of different

material types. The results show that the mobile robot can successfully navigate the area by classifying

and creating the material map.

INDEX WORDS: [Material Classification, Mobile Robot, Deep Convolutional Neural Networks,
Simultaneous Localization and Mapping (SLAM), RGB and Depth features]
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CHAPTER 1

INTRODUCTION

We need robots to perform more advanced actions and exhibit human-like behaviors. To achieve this, we

need them to reason and understand the world in a human-like fashion. In general, robots do not show

autonomous intelligence. Except for basic control flow, they are mostly unaware of the environment

and only limited to sensory input information during their operations. This almost complete lack of

autonomy is one of the significant obstacles that must be overcome to allow robots to become mobile in

a priori unknown environments.

This thesis describes our research undertaken to help mobile robots conquer, understand, and navigate

indoor environments. When a robot is deployed in an environment such as a home or an office space,

it is usually not feasible to equip it with an accurate model of that environment a priori. Therefore, the

robot will first need to create a model of the world. A mobile robot, in general, needs to comprise a

map that allows it to localize and plan a collision-free path according to its assignment. Building such a

map from onboard sensors is a challenging problem, as the robot needs to be localized to create a map

and localize itself. Therefore, these tasks need to be done concurrently, and the problem is referred to

as simultaneous localization and mapping (SLAM). The SLAM problem has been subject to intensive

research, and feasible solutions have been developed for many scenarios. Various visual SLAM algorithms

have been developed and used for this purpose. However, these algorithms lack semantic information,

are less accurate, and are of low speed. We direct our work in this area and develop a material semantic

map of the environment by identifying the objects and determining their material type.

Material Recognition is a famous yet complex problem in computer vision. Everyday scenes contain

various visually similar yet structurally different materials that are useful to identify. For example, au-

tonomous robots and self-driving vehicles must be aware of whether they are driving on concrete, metal,
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pavement, or black ice. As further advances in robotics and human-computer interaction are made, the

need for more accurate material recognition will grow. People recognize and categorize objects based on

the visual information collected from the human vision system and prior knowledge of object classes.

Diverse objects in the real world can be effectively characterized by their shape, color, and material type.

However, most computer vision methods extract only color and shape information. Material recogni-

tion of an arbitrary object at a distance can improve the performance of conventional object recognition

and scene understanding tasks. Extended modality of the reconstructed 3D model with material type

information can augment touch-based interaction and realistic rendering in virtual and augmented reality

applications. The challenge is to use a depth map and retrieve features from it to predict the type of

material from a camera image.

In recent years, the usage of mobile or service robots in exploration and mapping applications has

gained great interest and advancements. Mobile robots can be used in a variety of situations such as

domestic aid, firefighting aids, service and logistics, and more. Nevertheless, various unsolved problems

remain when deploying robots in unknown environments. In particular, it is critical for the mobile

robot to perceive and learn the properties of the objects in an unknown environment to increase its

autonomy and effectively perform its tasks. For example, to explore and navigate in new surroundings, it

is essential to know the location of obstacles, doors, and other accessible areas to preplan the operation.

To address this problem, researchers performed studies using several sensing modalities and machine

learning algorithms to classify different objects and their material types. Of these modalities, computer

vision has been prominently used because of the recent advances in deep learning algorithms and the

availability of large datasets. There are several robots in use that depend on image processing and vision-

based techniques; however, they perform poorly when the lighting conditions are bad or the environment

is foggy which vastly reduces the visibility of the surroundings.

In addition, an ability to recognize different kinds of materials could play a significant role in robotics

navigating and exploring applications. Understanding material properties (e.g. type, surface roughness,

or deformability) of objects can be used to inform grasp planning and manipulation. Mobile robots

should understand their surrounding materials when planning movements through precarious rubble
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under a collapsed building. Understanding the type of materials that make up the surroundings in an

environment is a critical aspect of characterization and will help the robots in performing their actions

like exploring, manipulating, and clearing., in an unknown environment.

§ 1.1 Motivation

Utilizing RGB-D images and Visual SLAM to create a semantic material map is an important area of

research. It permits precise portrayal and comprehension of the materials and items in a scene. This

information can greatly help robots in navigation and object manipulation and aid them in improving

their performance. Applications, like augmented reality, may also benefit from this information.

The ability to precisely identify and classify the materials in a scene is one of the main benefits of

creating a semantic material map. The ability to accurately identify the materials of objects is essential

for safe and effective manipulation, and this semantic information can be used to improve performance

in tasks like object manipulation. Additionally, the robot’s ability to interact with its environment can

be enhanced by accurately classifying materials, which can improve its navigational performance. The

semantic material map can also be used by an augmented reality application to more accurately and

realistically overlay virtual objects onto the real world.

Figure 1 depicts the singular outcome of our framework. The ORB SLAM2 point cloud, the ob-

ject that was found, and their respective semantic material maps are all shown in the illustration. The

integration of our framework’s abilities to precisely identify objects and assign them relevant semantic

information is highlighted in this display. The outcome depicted in Figure 1 demonstrates the efficacy of

our framework in enhancing environmental perception through semantic mapping.

The capacity to produce a comprehensive point cloud map of the environment is yet another advan-

tage of creating a semantic material map. Using a set of points in space, point cloud mapping creates a

three-dimensional representation of the environment. The point cloud map can be utilized for a variety

of purposes, including object manipulation, localization, and navigation. Additionally, the point cloud

map has the ability to produce 3D models of the environment, which can be utilized in augmented reality

applications as well as floor plans and building plans.
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Figure 1.1: Example Semantic Material Labeling of the Point Cloud with Material Types indicated by
different colors

Creating a point cloud map with the ORB-SLAM2 algorithm is also advantageous. The cutting-

edge visual odometry and SLAM algorithm known as ORB-SLAM2 is highly accurate and effective. On

a standard computer, it creates a global, consistent map of the environment in real-time. This makes

it possible to create point cloud maps of high quality in real-time, which are necessary for numerous

applications like robot navigation and augmented reality.

Using RGB-D images to create a semantic material map has a number of other advantages in addition

to these. For instance, including depth information in RGB-D images enhances object detection and

localization accuracy and provides additional information regarding the scene’s objects’ shape and texture.

Using RGB-D images can also make the system more resistant to changes in lighting and give a more

accurate picture of the environment in low light.

In conclusion, using RGB-D images to create a semantic material map makes it possible to accurately

depict and comprehend the materials and objects in a scene. Various applications, including augmented
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reality, robot navigation, and object manipulation, may benefit from this information’s enhanced perfor-

mance. With RGB-D images, object detection and point cloud mapping can offer the following benefits:

• a detailed and rich depiction of the environment.

• resulting in improved performance across a variety of tasks, including localization.

• Navigation.

• manipulating objects

Unfortunately, most works have addressed the problems of detecting and classifying materials in a

single RGB image, and few others have used the Depth image, but do not use the combined and comple-

mentary information to perform material mapping in an environment.

In short, this article has done the main works as follows:

• We explore the usage of RGB and Depth data for material classification of objects and different

fusion techniques of these features.

• We use RGB-D data, Yolov5 for object detection, and ORB SLAM2 to build a point cloud map

directly, reducing the cost and complexity of the system.

• We propose to use RGB-D data, the point cloud, and the MSCC algorithm for material mapping

with SLAM for robot navigation.

• We generate a semantic map that allows for a more detailed understanding of the environment, as

it not only provides semantic material information but also the object information in the environ-

ment.

This paper is organized as follows. In Chapter 2, the related works about object detection, material

recognition, multimodal feature learning from RGB-D images, and point cloud segmentation are dis-

cussed. In Chapter 3, the methodology and fusion techniques explored are presented. In Chapter 4, the

experiments conducted are discussed and analyzed. More insights about this method are also presented

in this section. Lastly, in Chapter 5, the conclusion of this work is drawn.
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CHAPTER 2

RELATED WORK

In this section, we will review the previous works based on fives aspects: 2D Object detection, RGB-D

multi-modal feature learning, Material recognition, Visual SLAM, and 3D point cloud segmentation

and analysis methods. We firstly review 2D object dection in Section 1.1, RGB-D multi-modal feature

learning in Section 1.2, material recognition in Section 1.3, Visual SLAM in Section 1.4 and 3D point cloud

segmentation and analysis in Section 1.5. Finally, we will give a discussion in Section 1.6.

§ 2.1 2D Object Detection

This section discusses the progress made in 2D object detection by adopting deep learning based on mono-

lithic and two-stage architectures. The monolithic architectures are a single-stage object detection pipeline

and two-stage architectures comprised of region proposals followed by the classification, regression, and

other post-processing.

One of the earliest monolithic architectures that incorporated deep learning to predict the category

and precise location of objects within an image was the work on DetectorNet by Szegedy et al. Szegedy

et al., 2013. DetectorNet, built upon the AlexNet Krizhevsky et al., 2017 architecture, specializes in the

detection task and needs to be trained separately for every object category and mask type, thereby incur-

ring substantial computational complexity. Another famous work published was OverFeat, proposed by

Sermanet et al. Sermanet et al., 2013. This network is used to simultaneously learn the detection of objects,

classification, and localization and is much speedier than DetectorNet.

Liu et al. W. Liu et al., 2016 presented Single-shot Multibox Detector, which uses VGG-16 architec-

ture as a backbone as it performed the best in image classification and transfer learning tasks then. It

is a single-shot object detection model that uses multi-scale feature maps and convolutional kernels for
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detection. SSD obtained high accuracy with highly-improved computation speed. Later, researchers came

up with Feature Fusion SSD (FSSD) Z. Li and Zhou, 2017, an improvement on top of SSD to include a

lightweight add-on module for fusing features. This method increased accuracy but decreased detection

speed compared to SSD.

Another significant breakthrough in single-shot 2D object detection came through Redmon et al.

Redmon et al., 2016. This model, entitled You Only Look Once (YOLO), was not a classifier disguised

and modified for object detection tasks and could detect objects at real-time speed. But, YOLO could not

predict small objects in close proximity as each cell can only have two bounding box predictions of a single

class. Many improvements have been made in the subsequent years. One such approach was YOLOv2

Redmon and Farhadi, 2017, which made changes like introducing batch normalization, increasing input

resolution, predicting multiple objects per grid cell with anchors, etc. This architecture was further

improved upon in Fast YOLO Shafiee et al., 2017, where motion-adaptive inference was employed to

attain even faster detection with a more compact architecture. In YOLOv3 Redmon and Farhadi, 2018,

the objectness score for each bounding box by logistic regression is computed and used a relatively larger

architecture, DarkNet-19, with residual shortcut connections. Later, YOLOv4 Bochkovskiy et al., 2020

and YOLOv5, faster alternatives, weres introduced by incorporating bag-of-freebies and bag-of-freebies

techniques during the training phase.

In region proposal-based architectures, object detection is done in two stages. In the first stage, multi-

ple region proposals are generated from the image. After that, in the second stage, features are extracted

from these proposals using a ConvNet and, thereby, classify them into object categories. The Region-

based Convolutional Neural Networks (R-CNN), proposed by Girshick et al. Girshick et al., 2014, was a

notable work in the history of CNN-based object detection. However, one of its significant disadvantages

was its computation time complexity. Performing a selective search on each input image to generate 2̃000

region proposals and passing them through CNN to generate features is time-consuming. Later, Girshick

Girshick, 2015 improved upon R-CNN and proposed Fast R-CNN. Another subsequent improvement

by Ren et al. Ren et al., 2015 is through Faster R-CNN, where there was no separate selective search step

to generate object proposals. The weights of the CNN are shared between region proposal and object

7



detection tasks, and the process is even faster than earlier. An extension on top of Faster R-CNN, Mask

R-CNN, was introduced by He et al. He et al., 2017. In this, pixel-level segmentation of each region of

interest is done along with object detection.

§ 2.2 RGB-D multi-modal feature learning

Multi-modal feature learning has been investigated in various works, J. Yu et al., 2014 proposed a mul-

timodal hypergraph learning based sparse coding method for the click prediction. Multimodal distance

metric learning based method was proposed in J. Yu et al., 2016. A promising Multiview Hessian regulariza-

tion algorithm was proposed by W. Liu and Tao, 2013 to combine multi-modal features for semi-supervised

learning. Various strategies have been proposed to fuse the multi-modal features effectively in Q. Wang

et al., 2020. These fusion methods are divided into four categories. 1) Feature-level multi-modal combina-

tion. S. Song et al., 2015 concatenated the two-stream CNN features and fed them into fully connected

layer to fuse the multi-modal features. In X. Song et al., 2017, the authors exploited a three stream CNN

to combine RGB features and two branches of depth features with element-wise summation. 2) Image

level multi-modal fusion. In Couprie et al., 2013, the authors constructed the RGB-D Laplacian pyramid

with the RGB modality and depth modality. 3) Modal correlative feature fusion. Modal consistent fea-

tures are learnt in A. Wang et al., 2015 by enforcing the RGB features to be close to the depth features.

4) Modal correlative and distinctive features fusion. The authors of Y. Li, Zhang, et al., 2018 attempted

to learn the correlative and distinctive features simultaneously between the RGB and depth modality.

The multi-modal feature fusion methods ignore the flexible local features and nevertheless, enforcing the

consistency between multiple modalities obstructs the model from learning the modal complementary

features.

§ 2.3 Material Recognition

Materials recognition is a challenging task due to wide variation in appearance within categories. Previous

research work on material recognition predominantly focused on material classification based on 2D RGB

images, and minimal work based on depth features. Majority of the earlier works have concentrated on
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variance of oriented gradientsD. Hu et al., 2011, reflectance based edge featuresLee et al., 2022; Lee et al.,

2019; C. Liu et al., 2010, and pairwise local binary patternsX. Qi et al., 2014. In recent years, CNN features

Schwartz and Nishino, 2013Cimpoi et al., 2013Kalliatakis et al., 2017 have been employed to achieve the

state of the results in material classification on many public material datasets. In some works DeGol et

al., 2016, the 2D features such as texture and color are combined with 3D geometry features like surface

normal, camera intrinsic and extrinsic parameters to improve material classification. For pixel wise material

segmentation, Bell et al., 2014 convert patch based trained CNN classifiers into efficient fully convolutional

framework that is combined with a fully connected CRF for performing pixel wise material recognition.

Superior result are achieved Schwartz and Nishino, 2016 by combining local appearance with separately

recognized global context cues including objects and places. The authors employed fully convolutional

network (FCN) Long et al., 2014 followed by recurrent neural network(RNN) for dense pixelwise material

segmentation. A novel CNN architecture is proposed T. Wang et al., 2016 by training on 4D light-field

images and employing FCN for per-pixel material recognition. The work by Cheng Zhao et al, Zhao

et al., 2017 is interesting and close to our work but they used 2D images for material recognition. In Kim

et al., 2018, surface roughness is estimated from depth images for material classification, but this work did

not employ deep learning algorithms as large dataset is not available. However, none of these methods

use depth features of RGBD images combined with RGB features and employ CA fusion strategy for

material recognition.

§ 2.4 RGB-D SLAM and Semantic SLAM

Over the last few years, direct and indirect methods have been used extensively in visual SLAM and tra-

ditional simultaneous localization and mapping (SLAM) systems. Getting proper depth of features and

objects in the camera’s view can significantly help the SLAM systems’ performance. There are various

ways to obtain depth information, and it can mainly be obtained using three types of cameras, stereo

cameras, structured light cameras, and time of flight (ToF) cameras. Using the high-resolution depth map,

visual SLAM increased their performance, both in accuracy and computational load. Some notable works

on this front are RGBD SLAM v2 by F.Endres et al. Endres et al., 2014, ORB SLAM Mur-Artal et al.,
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2015 and its improved version ORB SLAM2 Mur-Artal and Tardós, 2017 and the latest ORB SLAM3

Campos et al., 2021. Other significant works in RGBD SLAM include Bundle Fusion Dai et al., 2017 and

BAD SLAM Schops et al., 2019

Also, the existing SLAM systems mainly focus on using low-level geometric features, such as points,

lines, and planes, which cannot provide semantic information. Semantic SLAM can give semantic details

on environments. This information help robots to understand surrounding scenes at both geometrical

and content level. SLAM++ Salas-Moreno et al., 2013, proposed by Salas-Moreno et al., performs object

detection in RGB-D tracking and mapping. The research work by John McCormac et al. on semantic

SLAM was SemanticFusion McCormac et al., 2017. The method comprises a convolution neural network

to produce class probability maps and fuse predictions into the 3D map. Keisuke Tateno et al. proposed

a real-time dense monocular CNN-SLAM Tateno et al., 2017. With the aid of CNN, this SLAM can

perform depth prediction and semantic segmentation. DA-RNN Xiang and Fox, 2017 introduced a new

recurrent neural network (RNN) architecture for semantic labeling on RGB-D videos, which utilizes

information from multiple viewpoints to improve segmentation performance. DS-SLAM C. Yu et al.,

2018 and SDF-SLAM Cui and Ma, 2020 are other interesting works done for indoor environments.

§ 2.5 3D Point Cloud Analysis and Segmentation

Point cloud segmentation divides point clouds into different segments, each of which has similar prop-

erties. This process is a fundamental step towards scene understanding from point clouds. Driven by

specific applications, 3D point cloud segmentation has become a very active research topic. Point Cloud

Library (PCL) Rusu and Cousins, 2011 is a popular library that provides open-source segmentation algo-

rithms. The early approach Schnabel et al., 2007 used RANSAC to detect planes from the point clouds,

and then it divides objects with Euclidean separation. Adams et al. Adams and Bischof, 1994 proposed

a region-growing algorithm in 2D image processing work. Later, this algorithm was used in the works

related to the 3D point cloud. Based on the smoothness feature, Rabbani et al. Rabbani et al., 2006

presented a method for segmenting point clouds that finds smoothly connected areas in point clouds.
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The Locally Convex Connected Patches (LCCP) algorithm by Stein et al. Stein et al., 2014 uses

a normal vector to judge local convexity, which can help divide the point cloud into some individual

segments. Later for both automatic and interactive segmentation, Golovinskiy et al. Golovinskiy and

Funkhouser, 2009 proposed a min-cut-based method of segmenting objects in point clouds. 3D point

clouds are irregular and unordered, unlike 2D images. Thus, the standard way in 2D image processing,

like convolution, cannot be used for 3D point clouds. Deep neural network-based methods have recently

been proposed for 3D point cloud classification and segmentation, such as PointNet C. R. Qi, Su, et al.,

2017 and PointNet++ C. R. Qi, Yi, et al., 2017. The PointNet was able to learn directly from unordered

point clouds, which combine local point features and global information to perform 3D segmentation.

Based on PointNet, PointNet++ introduced a hierarchical neural network to learn local features with

increasing contextual scales, which can learn deep point set features efficiently and robustly. DGCNN

Wu et al., 2018 uses an EdgeConv suitable for high-level tasks on the point cloud. PointCNN Y. Li, Bu,

et al., 2018 presents a novel X-transformation approach, which can take advantage of CNNs for point

cloud processing. Randla-net Q. Hu et al., 2020 introduced a lightweight neural architecture that can

process large-scale point clouds. This network is 200 times faster than other architectures like PointNet

and PointCNN. However, these methods only use point cloud information and are difficult to extend to

semantic labeling.

§ 2.6 Discussion

In summary, previous material recognition methods have focused on 2D RGB images and few have com-

bined depth features, and have not used complementary information. Also, the semantic slams concen-

trated their object detections in the environment. Predominantly, other multimodal learning used other

modalities, such as tactile and acoustic sensing, surface reflectance, and roughness, and has largely em-

ployed machine learning algorithms. To most of our knowledge, this work is the first for learning the

modal complementary information from RGB and depth features for material classification or recogni-

tion. Also, this work is one of a kind that allows for a more detailed understanding of the environment,

as it not only provides semantic information but also material information.
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CHAPTER 3

METHODOLOGY

§ 3.1 Approach

Our system architecture consists of 4 components: The object detection component, the RGB-D-based

material classification network, visual SLAM component, and the voxel-based matching component. The

overview of the system is shown in Figure 3.1

Object Detection: In this module, the objects are detected within the RGB images captured by the

camera using the state-of-the-art Yolov5 network. The network outputs a set of 2D bounding boxes, each

with a class label and a confidence score. The class label provides information on what objects are present

within the image, and the confidence score provides information on how confident the network is in its

prediction.

Figure 3.1: Overview of the system

Material Classification: Once the objects are detected, we use the detected object bounding boxes,

crop the RGB frames, and crop the corresponding bounding boxes from the Depth frames. The cropped
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RGB and Depth images are fed as input to the Material Classification Network module. This network

module predicts the object’s material, such as metal, plastic, etc.

Visual SLAM: We use ORB-SLAM2 Mur-Artal and Tardós, 2017 in this module. ORB-SLAM2 is a

visual odometry and SLAM system that can be used with monocular, stereo, and RGB-D cameras. It is

based on the ORB feature descriptor and uses bundle adjustment optimization to improve the accuracy

of the point cloud map. ORB-SLAM2 is a real-time system that can handle large-scale and dynamic

environments. It generates a sparse 3D point cloud map of the environment, which is used as a reference

for the 3D coordinates of the environment.

Voxel-based matching component: The Voxel Based Matching Component is a crucial part of the

pipeline. This component receives the point cloud map generated by ORB-SLAM2, the 2D bounding

boxes obtained from YOLOv5, and material labels from the Material classification component as input.

The voxel-based matching component uses depth information to map the 2D bounding boxes to 3D

bounding boxes in the same coordinate system as the point cloud. This component matches the 3D

bounding boxes obtained from object detection with the 3D coordinates of the point cloud. Later this

component propagates the material labels to the points in the point cloud.

In summary, the visual SLAM (ORB-SLAM2) component generates the point cloud map, and the

YOLOv5 component detects objects and locates the bounding boxes of the objects in the images. The

material classification component classifies the objects in the bounding boxes into different material classes.

The voxel-based matching component uses the point cloud map generated by ORB-SLAM2 and the

material labels obtained from the material classification component to match the 3D coordinates of the

bounding boxes with the 3D coordinates of the point cloud and propagate the material labels to the points

in the point cloud.

The final semantic map is represented as a 3D point cloud, where each point in the point cloud is

associated with both semantic and material labels.
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Figure 3.2: Flowchart of the system
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§ 3.2 Object Detection using YOLOv5

The task of identifying and locating objects in images or videos is known as object detection. Over the

course of time, a number of object detection models, such as R-CNN, Fast R-CNN, Faster R-CNN,

and YOLO (You Only Look Once), have been developed. In order to predict the bounding boxes and

class labels of the objects in the images and extract features from the input images, they make use of a

combination of machine learning algorithms and convolutional neural networks (CNNs).

Jocher et al., 2022 created the cutting-edge object detection model known as YOLOv5 (You Only

Look Once version 5). It is a system for detecting objects in real time that is quick, accurate, and adaptable.

On a variety of benchmarks, including the COCO object detection dataset, this model has produced

excellent results. YOLOv5 has consistently ranked among the best object detection models on this dataset,

frequently outperforming other SOTA models in terms of accuracy and speed. The capacity of YOLOv5

to make predictions at a variety of scales is one of its main advantages. The model can process inputs at

multiple scales and make predictions at multiple scales thanks to the use of a technique known as "feature

pyramid networks." This procedure makes it possible for the model to distinguish between small and large

objects in the same image—something that can be difficult for other object detection methods.

YOLOv5 is a newer version of YOLO (You Only Look Once) that is better at identifying objects in

two-dimensional images. A fully convolutional neural network (CNN) is used to predict object bounding

boxes and class probabilities directly from an input image in this anchor-based, single-stage object detector.

A series of convolutional and max pooling layers, followed by several fully connected layers, make up

YOLOv5’s network structure. The YOLOv5 network structure can be summarized as follows:

Input Layer: YOLOv5 takes any RGB image as its input. In order to extract features from the image,

it is processed through a series of convolutional and max pooling layers. The image is processed by the

model in a grid of cells, with each cell predicting the class probabilities and bounding boxes for a group of

nearby pixels. The size and shape of the objects in an image can be predicted using anchor boxes. Anchor

box sizes that are closest to the objects in the training data are chosen by the YOLOv5 model through the

use of k-means clustering.
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Max pooling and convolutional layers: A series of 3x3 convolutional filters make up the first layer,

which is followed by a 2x2 max pooling layer. The number of filters in this layer is followed by a succession

of similar layers, with each one reducing the output tensor’s size.

Connected Layers: The convolutional and max pooling layers of the network are followed by a series

of fully connected (FC) layers that predict the bounding boxes and class probabilities for each image object

by combining the extracted features. The shape of the final FC layer is (S, S, B*(5+C)), where S represents

the number of cells in the grid, B represents the number of anchor boxes per cell, and C represents the

number of object classes.

Output Layer: YOLOv5s produces a list of class probabilities and bounding boxes for each image

object that is detected. Non-maximal suppression (NMS) preserves only the most reliable predictions by

removing overlapping bounding boxes.

A number of models in YOLOv5 have been developed for a range of applications and trained on

various datasets. One or more of these models is:

• YOLOv5l model is the lightweight version of YOLOv5. This model was made to be speedy and

efficient. Because it contains fewer parameters and was trained on a smaller dataset, it can be used

on devices with constrained resources.

• YOLOv5x model is a bigger and more accurate variant of YOLOv5 for high-performance object

identification. Because it was trained on a larger dataset and contains more parameters, it is appro-

priate for situations where precision is more crucial.

• YOLOv5s model is comparable to YOLOv5l, despite being intended to be even faster and more

efficient. It can be applied to cellphones or low-power embedded systems.

• YOLOv5m model, which is a medium-sized version of YOLOv5, strives for both efficiency and

accuracy at the same time. Because it was trained on a medium-sized dataset and has a moderate

number of parameters, it can be used for a wide range of tasks.
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Each of these models can be optimized for different use cases, and in our application, we need a fast

and efficient model that can run on a resource-constrained device. So we preferred to use the YOLOv5s

model, which was trained on the COCO dataset.

§ 3.3 Material Classification Network

Many researchers have tried to recognize material types based on color features; however, the material type

of an object is not entirely correlated with its visual appearance. Hence we try to evaluate using the other

modalities to achieve better accuracy. Various works are available to incorporate different modalities; here,

we try to use depth information and extract these from the RGB-D images.

The current material recognition literature includes using RGB-D images for feature extraction and

classifying the material type. Varieties of strategies have been proposed to fuse the multi-modal features

effectively like image level multi modal fusion, feature level multi modal fusion and modal correlative

feature fusions. The complementarity-aware (CA) fusion module detects the objects available in the

images using complementary features. The proposed method’s novelty is extracting the distinctive and

correlative features and fusing these features, similar to the CA fusion module. Also, previously the CA

fusion module was used for salient object detection tasks.

Here, we explored two fusion techniques for material classification.

1. Late Fusion

2. Complemantarity-Aware (CA) Fusion

For RGB-D based material classification models, it is important to effectively fuse RGB images and

depth maps. In this paper, we explore two fusion strategies, late fusion, and complementarity-aware(CA)

multi-scale fusion.

§ 3.3.1 Late Fusion

Late fusion-based methods can be further divided into two categories: (i) two parallel networks adopted

to learn high-level features for RGB and depth data, respectively, which are concatenated and then used
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to generate the final prediction Desingh et al., 2013; Han et al., 2018; N. Wang and Gong, 2019. This is

called as later feature fusion. (ii) Two parallel networks are used to obtain independent classifications are

done for RGB images and depth cues, and then the two saliency maps are concatenated to obtain a final

prediction map Ding et al., 2019. This is called late result fusion.

In this method, the RGB image and the depth map are processed separately, i.e., to produce various

types of features using two different networks . These features are later fused together, either by concate-

nation or by further processing using convolutional networks. The two networks feature maps output

are then concatenated and presented to a final fusion network.

Figure 3.3: Architecture of Late Fusion CNN

§ 3.3.2 Complementarity-Aware(CA) Fusion

In this method, instead of using features learned separately from the color and depth modalities that yield

some specific patterns, we also try to use the shared common modal patterns. For this we draw inspiration

from the method proposed by Cheng et al. In the paper Chen and Li, 2018 the authors proposed a fusion

mechanism called complementarity-aware (CA) fusion. This meachanism encourages the determination

of complementary information from the different modalities at different abstraction levels. The authors

introduced a CAFuse module, which enables cross-modal, cross-level connections and modal/levelwise
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supervisions, thereby the complementary information from the counterpart is captured. This reduces

fusion ambiguity and increasing fusion efficiency.

Figure 3.4: Architecture of CA-Fusion CNN

To excavate the complementarity of two modalities and remain the discriminability of cross-modal

features, we use a Complementarity-aware Fusion Network (CAFN). We first model the usefulness of

information from two modalities, then select complementary information of two modality features in

spatial dimension with two symmetry gates, and finally a channel-wise weighting mechanism is conducted

to fuse them for capturing more discriminative cross-modal features. The fused features retain not only

information existing in both modalities, but also modality-specific information.

Because of the different image generation mechanisms between RGB and depth images, how to fuse

cross-modal features effectively is a key issue for RGB-D based material classification.

CA-Fusion network (CAFN) includes two symmetric backbones for RGB and depth feature extrac-

tion and five cascaded Complementarity-aware fusion modules (CAF). We use ResNet-101 as unimodal

symmetric backbones. We remove the average pooling and the fully connected layers of backbone and the

last two stages are modified with dilated convolution to maintain feature resolution for keeping more spa-

tial information. Then we use hierarchical features from RGB and depth branches respectively, i.e., {F i
rgb

| i=1,2,3,4,5} and {F i
d | i=1,2,3,4,5}. CAFN can select complementary information from two modalities
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and then fuse enhanced unimodal features for accurate cross-modal features with the help of CAF. Two

unimodal features F i
rgb ∈ RCi×Hi×Wi and F i

d ∈ RCi×Hi×Wi extracting from corresponding backbones

are sent to CAF, where Ci, Hi and Wi refer to the channel, height, and width number of the i-th layer

respectively.

§ 3.4 Visual SLAM

The point cloud map of the environment was obtained by employing a visual SLAM algorithm based on

RGB-D. A technique known as RGB-D SLAM (RGB-D Simultaneous Localization and Mapping) is

used to estimate a sensor’s pose—that is, its position and orientation within the environment—in real

time while simultaneously creating a 3D map of the environment. It is based on the idea of using an RGB

camera to take color images of the environment and a depth sensor, such as a structured light sensor or a

time-of-flight camera, to measure the distance to nearby surfaces.

Matching keypoints—distinct features—in the RGB images to keypoints in the depth images is how

the RGB-D SLAM algorithm works. This information is then used to estimate the sensor’s pose and

create a 3D map of the environment. The 3D map and sensor pose estimate are continuously updated by

means of a window of recent images that the algorithm employs using a sliding window approach.

Mur-Artal and Tardós, 2017 developed ORB-SLAM2, a tailored version of RGB-D SLAM. It uses a

combination of point features and line features for robust and accurate localization and mapping and is

based on the ORB (Oriented Fast and Rotated Brief) feature descriptor. ORB-SLAM2 is a SLAM (real-

time simultaneous localization and mapping) system that can simultaneously reconstruct the environment

and locate a monocular, stereo, or RGB-D camera in a 3D environment. The ORB-SLAM system, which

was initially developed for monocular cameras but has since been expanded to handle stereo and RGB-D

cameras as well, serves as the foundation for ORB-SLAM2.

We used the ORB-SLAM2 as it offers the following features:

• Real-time performance: ORB-SLAM2 runs in real-time, even on low-end hardware.

• Scalability: ORB-SLAM2 handles large-scale environments and can recover from long-term camera

drifts.
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• Robustness: ORB-SLAM2 handles dynamic scenes, scale and viewpoint changes, and can recover

from temporary tracking failures.

• Multi-Camera Support: ORB-SLAM2 works with monocular, stereo, or RGB-D cameras, as well

as multiple cameras at the same time.

• Portable: ORB-SLAM2 is written in C++ and has been tested on various platforms, such as

Ubuntu, Windows, and Android.

The following steps are required to obtain the point cloud map using ORB-SLAM2:

Data collection: Using a single camera or a collection of cameras, we begin by acquiring the visual

data—RGB, RGB-D, and stereo images—in the first step. The ORB-SLAM2 algorithm receives this data

as an input.

Extracting attributes: We then take the visual data and extract features from it. The ORB (Oriented

Fast and Rotated Brief) feature descriptor is used by the ORB-SLAM2 algorithm to extract features from

images. These features are used to create a map of the environment and track the motion of the camera.

Estimated camera position: The ORB-SLAM2 uses visual odometry to estimate the camera’s pose

using the extracted features. The camera’s movement in relation to the frame before it is estimated by

this. The motion of the camera is accumulated in this step at each frame to determine the camera’s precise

position and orientation.

Local cartography: The estimated camera pose is used by the ORB-SLAM2 algorithm to create a sparse

map of the environment. The algorithm optimizes the map by adjusting the positions of the features and

the camera pose as the camera moves across the screen.

Example screenshots of the ORB-SLAM2 done on our custom dataset are shown in Figure 3.4

Detection of loop closure: A loop closure detection module is used by ORB-SLAM2 to determine

when the camera revisits a previously visited area of the map. The algorithm performs a global bundle

adjustment to optimize the entire map and correct any errors that may have accumulated over time when

a loop closure is detected.
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Figure 3.5: Example screenshots of ORB SLAM2 on our custom dataset

Making point cloud maps: By triangulating the 2D feature coordinates in the images with their corre-

sponding 3D camera poses (derived from visual odometry and the bundle adjustment process), the point

cloud map is created. Structure from Motion (SfM) is another name for this procedure. The final point

cloud can be sparse or dense depending on the method used to generate it.

Post-processing: Outlier removal, noise reduction, and feature smoothing are just a few of the addi-

tional post-processing steps that are performed to enhance the image’s quality.

§ 3.5 Voxel Based Matching Component

In this section, we discuss the crucial component of the system, the Voxel-Based Matching Component.

Furthermore, using point cloud segmentation, the Multi-scale connected components algorithm in this

component improves the accuracy of the material label propagation.

The inputs to the voxel-based matching component are:

• Point cloud map generated by ORB-SLAM2 component.
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• 2D bounding boxes obtained from the YOLOv5 component.

• Material labels of the objects obtained from the material classification component.

• RGB-D sensor depth information.

The module incorporates depth information from the RGB-D sensor to calculate the 3D positioning

of bounding boxes in the camera coordinate system. The voxel-based matching component employs a

two-step process. Firstly, it utilizes 2D bounding boxes generated from YOLOv5 detections and the depth

of each pixel within the bounding box to determine the 3D coordinates. The resulting 3D bounding boxes

are in the same system as the point cloud created by ORB-SLAM2.

In order to match the 3D coordinates of the bounding boxes with the 3D coordinates of the point

cloud, the module first partitions the point cloud into smaller units called voxels through a process known

as voxelization. By associating each point in the point cloud with a voxel, the voxel-based matching com-

ponent can efficiently determine the closest bounding box for each voxel. This reduction in the number

of points being considered streamlines the processing of the point cloud for segmentation and material

label propagation.

Following the creation of the voxel grid, point cloud segmentation is applied to separate the voxel grid

into distinct clusters of points. In the subsequent section, the focus will shift to point cloud segmentation,

exploring the Multi-scale connected components (MSCC) algorithm and its usage in the module.

§ 3.5.1 Point Cloud Segmentation

Point cloud segmentation is the process of dividing a 3D point cloud into smaller, semantically meaningful

clusters. This enables the separate analysis and understanding of each object or surface within the point

cloud. It is a helpful tool for tasks such as object recognition, scene understanding, and robot navigation,

where it is essential to identify and classify different parts of a 3D scene.

There are many different techniques for point cloud segmentation, each with their own advantages

and disadvantages. Some popular methods include region growing, region splitting, and graph-based

methods. Region-growing methods start with an initial seed point and add neighboring points to the
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same cluster if they satisfy certain criteria, such as being within a certain distance of the seed point. Region-

splitting methods divide the point cloud into multiple regions by iteratively splitting larger regions into

smaller ones based on certain criteria, such as the variance of the points within the region. Graph-based

methods construct a graph of the point cloud, where each point is represented by a node and edges connect

neighboring points. The segmentation is then found by partitioning the graph into multiple connected

components.

§ 3.5.2 Multi-scale connected components (MSCC) Algorithm

One of the most commonly used algorithms for point cloud segmentation is the Multi-Scale Connected

Components algorithm. This algorithm is based on the work done by the authors Trevor et al., 2013 and

Huang et al., 2022

This algorithm is a powerful method for segmenting point clouds by grouping points that are spatially

close and similar to one another. The MSCC algorithm extends the mechanism of the classic connected

component labeling algorithm, which is used to identify connected regions of pixels or voxels in a 3D

image.

The Multi-Scale Connected Components (MSCC) algorithm segments the point cloud based on

a multi-resolution approach. First, a voxel grid is created from the point cloud, where each voxel repre-

sents a small cube of space. Then, the algorithm looks for components that are connected. Connected

components are groups of voxels that are connected to each other.

The MSCC algorithm separates objects or surfaces better than other segmentation techniques as it

uses a multi-resolution approach. This means it can separate a point cloud at different scales, which can

be useful for identifying difficult-to-distinguish objects or surfaces. Additionally, the MSCC algorithm

extracts the shape of an object at different levels of detail.

The steps involved in Multi-Scale Connected Components (MSCC) algorithm are:

• Initialization: Set the scale parameter to the maximum scale and the minimum scale.

• Voxelization: Divide the point cloud into voxels based on the current scale.
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• Connected Component Labeling: Apply connected component labeling on the point cloud to

group points that are spatially close and similar to one another. This step is done using a breadth-

first search or depth-first search algorithm, which starts from an arbitrary point in the point cloud

and visits all of its neighboring points that belong to the same cluster.

• Labeling: Assign a unique label to each cluster obtained from the connected component labeling.

• Scale Reduction: Check if the current scale is equal to the minimum scale. If not, reduce the scale

parameter by a predefined factor and go back to step 2.

• Output: If the current scale is equal to the minimum scale, the MSCC algorithm is done, and the

output is a set of clusters, each of which represents a connected component of points at a particular

scale.

In summary, MSCC is a powerful method for segmenting point clouds by iteratively applying a

connected component labeling algorithm at multiple scales, it can handle noise and partial occlusions,

and it allows for capturing multi-scale features. However, the choice of scale parameter is crucial and

should be chosen based on the resolution and density of the point cloud, as well as the size and shape of

the objects of interest.

Additionally, the MSCC algorithm has several advantages.

§ 3.5.3 Advantages of MSCC Algorithm

The MSCC algorithm provides a number of benefits, some of which are as follows:

• MSCC is a multi-scale method, it may divide a point cloud into sections of various resolutions. As

a result, it can handle a variety of point cloud datasets and adjust to varying granularities of the

data.

• By utilizing the voxelization step and linked component labeling technique, MSCC can segment

enormous point cloud datasets in a reasonable amount of time, making it appropriate for real-time

applications.
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Figure 3.6: Flowchart of Voxel-Based Matching Component
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• MSCC doesn’t require as many user-defined parameters as some other algorithms. As a result,

it is simpler to use and less prone to mistakes than other algorithms that call for a lot of human

parameter setting.

• MSCC can handle unorganized data and preserve regions of interest by preserving the structure of

the input data. It is also resistant to noise, outliers, and various densities.

• MSCC is a general algorithm that can be applied to a wide range of point clouds and is not restricted

to any one kind. It is also independent of the point cloud data-generating sensor.

• Object recognition, scene understanding, and change detection in 3D point cloud data are just a

few of the many uses for MSCC.

After matching the 3D coordinates of the point cloud with the 3D bounding boxes obtained from

the object detection using the voxel-based matching component, the MSCC algorithm is applied to the

voxel grid. The algorithm is applied at multiple scales, starting from a large scale and gradually reducing

it to capture more fine-grained details in the point cloud. At each scale, the algorithm applies connected

component labeling to group points that are spatially close and similar to one another. These groups of

points are then assigned a unique label, and the scale is reduced until the minimum scale is reached.

In the next step, the material labels obtained from object detection (Yolov5) are propagated to each

cluster obtained from the MSCC algorithm. This is done by finding the closest bounding box for each

cluster and assigning the material label of that bounding box to the cluster. This step is important as it

enables the creation of a point cloud map with material labels, which can be used for various applications

such as robot navigation, object recognition, and scene understanding.

The process of material label propagation is broken down into the following steps:

• For each segment in the point cloud, compute the centroid of the segment.

• For each 3D bounding box obtained from object detection, compute the centroid of the bounding

box.

• For each segment, find the closest bounding box centroid.
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• Assign the material label of the closest bounding box to the segment.

This process can be repeated for all segments in the point cloud, resulting in the accurate propagation

of material labels to the corresponding segments in the point cloud. The output of the voxel-based match-

ing component is a point cloud map with material labels, which can be used for various applications. The

MSCC algorithm can be used in the pipeline for point cloud segmentation and thus the material labels

can be propagated on the point cloud.
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CHAPTER 4

EXPERIMENTS AND RESULTS

The research involved conducting experiments on both standard publicly available RGB-D datasets and

custom lab RGB-D datasets. The custom lab RGB-D experiments were carried out using a mobile robot

navigating indoor scenes, while the standard RGB-D based experiments utilized previously acquired in-

door dataset sequences. In addition to these results, the study also includes qualitative results obtained

from a publicly available RGB-D dataset. The experiment starts with comprehensive details of the experi-

mental configuration, which was considered crucial for the success of the experiments.

Table 4.1: Experimental Settings

A list of these settings is shown in Table 4.1. After the parameters were established, the study presented

the experimental setup, various datasets used at each component level, and then presented extended map-

ping results, which were the main focus of the research. The Rover Robotics Platform used for dataset

creation is shown in Figure 4.1.

29



Figure 4.1: Rover Robotics Platform

§ 4.1 Experimental setup

Our method employed a robotic platform with a 4WD Rover base, equipped with a D435 RGB-D camera

and LiDAR sensors. The experiments were conducted integrated with ORB SLAM2 framework for the

map generation ran on a laptop with Ubuntu 18.04, Intel Core i7, and Nvidia GeForce GTX 1050 Ti.

The goal was to enhance maps with object material information that doesn’t change over time, such as

doors, desks, chairs, and a few other objects.

§ 4.2 Datasets

§ 4.2.1 Object Detection dataset and Yolov5 Pre-trained Model

In this section, we present the object detection module, the Yolov5 model, and the dataset on which the

model is trained.

For object detection, we have used the Yolov5 model pre-trained on the standard COCO dataset.

The Common Objects in Context (COCO) dataset is a large-scale object recognition, segmentation, and
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captioning dataset. It was created to support research in computer vision and related fields, and has been

widely used for training and evaluating object detection models. The COCO dataset contains over 330K

images with 2.5 million object instances, annotated with 80 object categories, including everyday objects

such as cars, animals, furniture, and sports equipment. The annotations in the COCO dataset also include

image-level captions, object segmentations, and keypoint annotations, which provide rich information

for various computer vision tasks.

Some sample Yolov5 object detection results are shown in Figure 4.2.

The large scale, high resolution, and diverse categories of the COCO dataset are used to train a

YOLOv5 model to detect a wide range of objects with high accuracy. Using this dataset to train a YOLOv5

model helps the model’s performance on real-world object detection tasks, such as self-driving cars, surveil-

lance systems, and robotics. Furthermore, by using a high-quality and diverse dataset like COCO, the

model may learn to generalize better, so it performs well on unseen data as well.

Semantic indoor sequences can often be of the office and household objects in indoor environments.

However, accurately mapping and locating these objects can be difficult due to occlusions and large

distances between objects. To overcome these challenges, our method employs the YOLOv5 network

Jocher et al., 2022 for semantic object detection in every frame. The network has been trained on the

COCO dataset Lin et al., 2014 and can distinguish between 80 different classes of objects.

We created a custom YOLOv5 model based on the pre-trained YOLOv5s model on the COCO dataset

and with additional classes, such as board, door, mat, robot, and trash bin. We collected a set of 500 images

from the custom dataset and labeled the objects in these images using a LabelImg annotation tool. We

augmented these data using rotating and flip techniques and obtained a dataset of 1500 images. The

training results for the additional classes are shown in Table 4.2 and the comparison of yolov5 detections

with the pre-trained COCO model and the model fine-tuned with additional classes on conference room

data sequence is shown in Table 4.3.
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Table 4.2: Yolov5 Training Results - Additional Classes

Table 4.3: Yolov5 - Model Comparison of Object Detections in Conference Room

Yolov5 Object Detections

Object Pre-trained COCO Model Model with Additional Classes

cloth sheet 40 52

cardboard boxes 128 203

chair 132 118

door 0 72

desks 247 337

mat 0 155

plastic board 1 123

screen 65 107

posters 72 145

robots 0 65

The bounding boxes of the detected objects from the RGB images are used to extract the correspond-

ing cropped images of the depth images. Some examples of cropped RGB and Depth images are shown

in Figure 4.3. Normalized depth images are shown in Figure 4.3 for visualization.

The cropped RGB and Depth images are used as the input to the Material Classification Network

and the material labels corresponding material types are returned as the output of the network.
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Figure 4.2: Example Yolo Detections of the Custom RGB-D Dataset

Figure 4.3: Example Yolo Detection and its corresponding cropped RGB and Depth Images
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§ 4.2.2 RGB-D Object dataset

We performed our material classification experiments on the Washington RGB-D dataset Lai et al., 2011

captured by Microsoft Kinect. The dataset consists of 300 household objects, grouped into 51 categories.

Each object is imaged from 3 vertical angles as well as multiple horizontal angles, resulting in roughly 600

images per object.

However, in our experiments, we grouped the objects together based on their material type. The

dataset is categorized into 10 material types. They are categorized as follows: Cardboard, Ceramic, Cloth,

Glass, Metal, Paper, Plastic, Rubber, Sponge, Wood. For Wood class, we extracted the RGB and Depth

images from the RGB-D Scenes V2 dataset. We created a balanced dataset with each class consisting of

2500 RGB images and 2500 depth images. We evaluate our method on the material category recognition

task, using five cross-validation splits. Each split consists of roughly 4,250 training images and 750 images

for testing. During the test time, the task of the model is to assign the correct class label to a previously

unseen object instance. Table 4.3 shows the average accuracy of multi-modal CNN in comparison to the

two fusion techniques employed for the RGB and Depth networks.

§ 4.2.3 TUM RGB-D and Custom RGB-D datasets

The TUM RGB-D dataset is a comprehensive collection of 39 real-world indoor sequences, categorized

into Handheld SLAM, Robot SLAM, and Dynamic Objects. These sequences were captured using an

RGB-D Kinect camera in diverse office environments, providing a robust test bed for a wide range of

challenges in image processing and computer vision. The dataset features varying camera motion, and

environmental conditions such as illumination changes, and includes issues such as image noise, motion

blur, occlusion, and more, making it an ideal resource for examining the performance of algorithms and

techniques in realistic scenarios.

To rigorously test the efficacy of our proposed method, we have compiled a dataset of five distinct

indoor environments. This dataset was generated through the teleoperation of a robot, capturing raw

sensor information from two RGB-D cameras, LiDAR, and odometry, using the rosbag toolkit. The

dataset encompasses a diverse range of objects commonly found in indoor spaces, such as chairs, doors,
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Table 4.4: Comparison of Late Fusion vs CA Fusion

desks, and trash bins, as illustrated in Figures 4.2 and 4.3. By utilizing multiple sensor inputs and covering

a range of indoor settings, our dataset provides a robust evaluation of the proposed method’s performance

in real-world scenarios.

§ 4.3 Material Classification

The RGB and Depth networks consist of five convolutional layers followed by two fully connected layers.

Later these networks are fused together using different techniques and finally, a softmax layer is used

for classification. Rectified linear units(ReLUs) are used as the activation functions in all but the final

classification layer. We implement our experiments using the ResNet50 as the backbone, on a PC with 3

NVIDIA GeForce GPUs. The learning rate, weight decay and mini-batch size are set as 1e-5, 0.0005 and

4 respectively. 350 epochs are used for training, with training time of approximately 16.5 hours.

Firstly, we conducted experiments to train the RGB and Depth networks separately and combine the

networks to make joint predictions. This is termed the late fusion technique. From the results shown in

Table it can be seen that with late fusion, the model achieves an overall accuracy of 82.6 ± 1.6%.
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Later we conducted experiments for material classification using CA Fusion modules. Cascading of

multi-level features successively without intermediate level-wise supervision results in ambiguous multi-

level combinations. The high-level contexts are not well incorporated into shallow layers. Adding interme-

diate supervision, the multi-modal fusion network can learn level-specific predictions. Visually, the shal-

low layers are able to identify edge information and the deep layers can learn global contexts to detect the

object accurately. The CA-Fuse module involves cross-modal residual connections and complementarity-

aware supervisions, captures the cooperated information, and boosts better cross-modal combination,

thus generating more accurate object detection and classification. The material classification results indi-

cate that the model benefits from a more sufficient fusion of multi-modal and multi-level features, and

hence CA fusion models achieve much better performance than the late fusion models.

Table 4.5: CA Fusion - Material Classification Training Results

The multi-modal CNN, using the complementarity-aware fusion, (CA Fus-CNN) yields an overall

accuracy of 91.5 ± 1.6% when using RGB and depth (83.1 ± 2.6% and 81.8 ± 2.3% when used only the

RGB or depth modality respectively), which – to the best of our knowledge – is the highest accuracy

reported for this dataset to date. We also report results for combining the RGB and Depth networks with

a late fusion (Late Fus-CNN). It can be seen in the table, this technique yielded a decreased performance.

Overall our experiments show that the CA Fusion model performs significantly better than the late fusion

model for material classification.
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Table 4.6: Material types and their color representation

§ 4.4 Material Mapping Results

The experiments are conducted to evaluate the performance of the proposed method for semantic map-

ping in controlled conditions. To do so, we collected a dataset consisting of six indoor sequences captured

while a robot was being teleoperated. Each sequence included raw data from multiple sources including

two RGB-D cameras, LiDAR, and odometry.

The sequences contained different types of objects, including doors, desks, boards, mat, trash bins,

posters, and a few other objects, as shown in the accompanying images. The static objects (all except

people and chairs) had their location specified in a ground truth map provided by the authors.

The Intel Real sense D435 RGB-D camera is used to capture the sequences. The dataset was created

as the majority of existing datasets for semantic mapping and 3D object detection did not include doors

and other objects of interest for navigation in indoor environments.

The following are some qualitative results of our proposed method, based on sequences from the

datasets we introduced.

RGB-D TUM:

Multiple objects are successfully detected and represented as semantic labels on the map with their cor-

responding material type. The colors used to represent each material type is shown in Table 4.4. The

material type predictions with max probability less than 0.5 are considered as other category class. We were
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also able to accurately estimate the size of objects by their point clouds, which gives an idea of their gen-

eral dimensions. For example, the phone and book objects are depicted correctly with their sizes and the

material labels are projected onto the point cloud, with the help of the connected components algorithm.

Table 4.7: List of Objects and their Material Type in Conference Room

Conference Room

Object Material Type Count

cloth sheet cloth 1

cardboard boxes cardboard 8

chair fiber 3

door wood 2

desks wood 3

mat rubber 1

plastic board plastic 1

screen polyester 1

posters paper 3

robots metal 2

The objects available in the Conference room, their actual material type, and the number of objects

in each class are listed in Table 4.7.
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Table 4.8: Conference Room - Object Detections and Material Classification

Conference Room

Object Detections Material Prediction IoU mAP TP FP

cloth sheet 52 cloth 0.67 0.643 33 19

cardboard boxes 203 cardboard 0.784 0.622 126 77

chair 118 other 0.823 0.613 72 46

door 72 wood 0.841 0.648 47 25

desks 337 wood 0.82 0.673 226 111

mat 155 rubber 0.776 0.631 98 57

plastic board 123 plastic 0.872 0.646 79 44

screen 107 other 0.864 0.672 72 35

posters 145 paper 0.88 0.593 86 59

robots 65 metal 0.732 0.66 43 22

The Yolov5 detections of the objects in the Conference Room and their material predictions are

shown in Table 4.8. The average IoU and mAP across various objects are 0.806 and 0.64 respectively. The

number of keyframes from the Conference Room dataset sequence used by ORB-SLAM2 for creating

point clouds is 323.
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Table 4.9: List of Objects and their Material Type in Kitchen Room

Kitchen Room

Object Material Type Count

bottles plastic 2

cardboard boxes cardboard 4

coffee machine metal 1

cupboard wood 3

door wood 2

desks wood 1

microwave metal 1

printer metal 1

plastic board plastic 1

refrigerator metal 1

trash bin plastic 2

posters paper 3

The objects available in the Kitchen room, their actual material type, and the number of objects in

each class are listed in Table 4.9.
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Table 4.10: Kitchen Room - Object Detections and Material Classification

Kitchen Room

Object Detections Material Prediction IoU mAP TP FP

cardboard boxes 120 cardboard 0.674 0.652 78 42

cupboard 220 wood 0.838 0.646 142 78

door 52 wood 0.824 0.692 36 16

desks 43 wood 0.856 0.66 29 14

mat 4 rubber 0.74 0.75 3 1

microwave 42 metal 0.82 0.644 27 15

printer 8 metal 0.746 0.622 5 3

plastic board 30 plastic 0.822 0.632 19 11

refrigerator 26 metal 0.8 0.572 15 11

trash bin 24 plastic 0.876 0.658 16 8

posters 62 paper 0.852 0.632 39 23

The Yolov5 detections of the objects in the Kitchen room and their material predictions are shown in

Table 4.10. The average IoU and mAP across various objects are 0.804 and 0.651 respectively. The number

of keyframes from the Kitchen Room dataset sequence used by ORB-SLAM2 for creating point clouds

is 367. It is observed that the Yolov5 model is not able to detect objects like the coffee machine and bottles

available in the Kitchen Room.
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Table 4.11: List of Objects and their Material Type in Office Room

Office Room

Object Material Type Count

cardboard boxes cardboard 5

chair metal 3

door wood 2

desks wood 5

monitor glass 1

robot metal 6

posters paper 2

The objects available in the Kitchen room, their actual material type, and the number of objects in

each class are listed in Table 4.11.

Table 4.12: Office Room - Object Detections and Material Classification

Office Room

Object Detections Material Prediction IoU mAP TP FP

cardboard boxes 118 cardboard 0.782 0.626 74 44

chair 26 metal 0.867 0.532 14 12

door 128 wood 0.723 0.672 86 42

desks 134 wood 0.833 0.658 88 46

monitor 43 glass 0.672 0.654 28 15

posters 28 paper 0.84 0.72 20 8

robot 14 metal 0.765 0.64 9 5

The Yolov5 detections of the objects in the Office Room and their material predictions are shown in

Table 4.12. The average IoU and mAP across various objects are 0.783 and 0.643 respectively. The number

of keyframes from the Office Room dataset sequence used by ORB-SLAM2 for creating point clouds is

442.
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Table 4.13: List of Objects and their Material Type in Experiments Station Room

Experiments Station Room

Object Material Type Count

cardboard boxes cardboard 4

cloth sheet cloth 1

chair fiber 4

door wood 3

desks wood 4

keyboard plastic 1

mat rubber 1

metal desk metal 1

metal plate metal 1

monitor glass 2

plastic board plastic 1

white board wood 1

posters paper 1

robot metal 1

The objects available in the Kitchen room, their actual material type, and the number of objects in

each class are listed in Table 4.13.
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Table 4.14: Experiments Station Room - Object Detections and Material Classification

Experiments Station Room

Object Detections Material Prediction IoU mAP TP FP

cardboard boxes 152 cardboard 0.768 0.61 93 59

cloth sheet 24 cloth 0.712 0.666 16 8

chair 206 other 0.816 0.586 121 85

door 154 wood 0.853 0.626 97 57

desks 208 wood 0.81 0.674 140 68

keyboard 98 plastic 0.832 0.666 65 33

mat 156 rubber 0.768 0.638 99 57

metal desk 72 metal 0.845 0.62 45 27

metal plate 88 metal 0.887 0.615 54 34

monitor 29 glass 0.715 0.623 18 11

plastic board 70 plastic 0.834 0.652 46 24

white board 68 other 0.857 0.533 36 32

posters 20 paper 0.813 0.668 13 7

robot 57 metal 0.817 0.657 38 19

The Yolov5 detections of the objects in the Experiments Station room and their material predictions

are shown in Table 4.14. The average IoU and mAP across various objects are 0.809 and 0.631 respectively.

The number of keyframes from the Experiments Station Room dataset sequence used by ORB-SLAM2

for creating point clouds is 318. In this sequence, our model failed to predict the whiteboard material

correctly. The model predicted it as other category.
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Table 4.15: List of Objects and their Material Type in Swarm Robots Room

Swarm Robots Room

Object Material Type Count

cardboard box cardboard 1

chair fiber 3

cupboard metal 1

door wood 2

desks wood 2

monitor glass 1

metal desk metal 1

cpu metal 1

white board wood 1

poster paper 2

The objects available in the Kitchen room, their actual material type, and the number of objects in

each class are listed in Table 4.15.
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Table 4.16: Swarm Robots Room - Object Detections and Material Classification

Swarm Robots Room

Object Detections Material Prediction IoU mAP TP FP

cardboard boxes 72 cardboard 0.863 0.678 49 23

chair 86 other 0.786 0.622 54 32

cupboard 192 metal 0.887 0.61 117 75

door 168 wood 0.69 0.684 115 53

desks 84 wood 0.712 0.642 54 30

monitor 20 glass 0.858 0.676 14 6

metal desk 136 metal 0.831 0.678 92 44

cpu 54 metal 0.882 0.56 30 24

white board 163 wood 0.712 0.644 105 58

poster 138 paper 0.788 0.66 92 46

The Yolov5 detections of the objects in the Swarm Robots room and their material predictions are

shown in Table 4.16. The average IoU and mAP across various objects are 0.801 and 0.645 respectively.

The number of keyframes from the Swarm Robots Room dataset sequence used by ORB-SLAM2 for

creating point clouds is 196.

Figures 4.4 and 4.5 show two additional point clouds from TUM sequences and their semantic mate-

rial maps. These figures demonstrate that our method can distinguish between small objects of the same

class, such as books, bottles, mouse, and cups. There is also a teddy bear present in this scenario, shown in

the right back. However, we were not able to validate the material semantics on the TUM datasets as the

dataset does not provide information on the material type for the objects available in the data sequence.

Additionally, there were no major works that do semantic material labeling of the point cloud. Thus,

we compare our work to the closest relevant work which does object detection on the TUM dataset. We

compare the results in regards to semantic object detection with the work Hempel and Al-Hamadi, 2022.

The corresponding RGB image, the reference paper result, and ours are shown in Figures 4.6 and 4.7
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Figure 4.4: Point cloud and semantic material map of fr2_desk sequence

Figure 4.5: Point cloud and semantic material map of fr3_sitting_xyz sequence
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respectively. Even though the reference paper detects a few objects, our method detects various objects

and also estimates their material type.

Figure 4.6: RGB Image and Comparison with Hempel and Al-Hamadi, 2022 of fr2_desk sequence

RGB-D Custom

We performed the experiments in five different rooms of our lab environment. Tables 4.8, 4.10, 4.12,

4.14, and 4.16 presents the list of the various objects available in each room, their detections, and material

predictions. The mean average precision (mAP) and IoU values are also shown in the tables. Figures

4.8 to 4.17 show the ground truth RGB images labeled, their point cloud, and the results of our method-

generated semantic map.

The model was able to classify the material type of different objects. For example, the trash bin in

the kitchen and graduate rooms are of different material types, and the chairs in the office room and

conference room are of different material types. Also, we can observe that even though the Yolov5 model

detections are not accurate in object type, our model was able to classify the material type.
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Figure 4.7: RGB Image and Comparison with Hempel and Al-Hamadi, 2022 of fr3_sittting_xyz sequence

Figure 4.8: RGB Images, Ground Truth of Office Room
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Figure 4.9: Office Room, Point Cloud and Semantic Material Map

Figure 4.10: RGB Images, Ground Truth of Kit Room
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Figure 4.11: Kitchen Room, Point Cloud and Semantic Material Map

Figure 4.12: RGB Images, Ground Truth of Office Room
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Figure 4.13: Office Room, Point Cloud and Semantic Material Map

Figure 4.14: RGB Images, Ground Truth of Experiments Station Room
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Figure 4.15: Experiments Station Room, Point Cloud and Semantic Material Map

Figure 4.16: RGB Images, Ground Truth of Swarm Robots Room
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Figure 4.17: Swarm Robots Room, Point Cloud and Semantic Material Map

On the flip side, our model has made some wrong predictions for certain objects of the same material

type. For example, the model failed to classify the board object material type as wood in Experiment Station

room and was able to able to classify the board object as wood in the Swarm Robots room experiment.
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Table 4.17: Comparison of Results against Dengler et al., 2021

Custom Dataset Experiments

Dataset IoU Accuracy

Office 1 [1] 0.58 0.743

Office 2 [1] 0.51 0.636

Conference Room 0.806 0.64

Kitchen Room 0.804 0.651

Office Room 0.783 0.643

Experiments Station Room 0.809 0.631

Swarm Robots Room 0.801 0.645

TUM RGB-D Dataset Experiments

fr2_desk [1] 0.567 0.671

fr3_sitting_xyz [1] 0.615 0.652

fr2_desk [ours] 0.776 0.651

fr3_sitting_xyz [ours] 0.765 0.645

We compare our mapping results against the reference work 1 by Dengler et al., 2021. As mentioned

before, there were no major works or state-of-the-art results for semantic material mapping. So we compare

our model performance at the semantic object level. The results of the reference work 1 by Dengler et al.,

2021 is shown in Table 4.17. The reference work performance on the TUM RGB-D dataset is also presented

in the table. Our model performs better than the reference work in terms of IoU and got comparable

results in terms of Accuracy.

1[1] Dengler, Nils, et al. "Online object-oriented semantic mapping and map updating." 2021 European Conference on
Mobile Robots (ECMR). IEEE, 2021.
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CHAPTER 5

CONCLUSION

The problem of semantic material labeling of 3D point clouds has been an active area of research in

computer vision and robotics. This involves assigning a semantic material label to each point in the 3D

point cloud that represents the type of material in the physical world. This information is vital for a variety

of applications such as robot navigation, object manipulation, and scene understanding.

To solve this problem, we propose an architecture composed of several components, including RGB-

D sensor, Yolov5 object detection, material classification network, ORB-SLAM2, Voxel-based matching

component, and MSCC algorithm (multi-scale connected components). This architecture aims to pro-

vide a real-time, web-based, and scalable solution for semantic annotation of 3D point cloud data. This

framework also allows the integration of 2D and 3D data to provide a semantic understanding of the

environment.

An RGB-D sensor is used to collect 3D point cloud data from the environment. The use of RGB-D

data provides the system with rich and complementary information, allowing for highly accurate object

and material discrimination. The RGB-D sensor captures the ambient depth and color information,

which is then processed using ORB-SLAM2 to create a dense point cloud. The depth information pro-

vided by this sensor can also be used by ORB-SLAM2 to track the position of the sensor in real-time.

Yolov5 object detection was used to identify objects in the scene and determine the region of interest for

material classification. The material classification network then uses the region of interest to classify the

materials in the scene. Using a material classification network further improves labeling accuracy as the

system can classify materials based on their structure and appearance. This network was trained on a large

dataset, allowing it to generalize well to new environments. ORB-SLAM2 is used to create a 3D map of

the environment, which is further processed by a Voxel-based matching component. ORB-SLAM2 is a
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fast and efficient way to capture and plot a 3D point cloud in real-time, essential in dynamic and highly

cluttered environments.

The Voxel-Based Matching Component and the MSCC algorithm play a crucial role in the system

by allowing the material label to propagate and refine the segmentation results. The Voxel-Based Match-

ing component is responsible for matching and registering the point clouds obtained from the RGB-D

cameras. By clustering the point cloud into voxels, the system is able to effectively identify and segment in-

dividual objects in the scene, while the MSCC algorithm is used to connect voxels into regions and objects

that are coherent in terms of their color, texture, and material properties. The use of the MSCC algorithm

enables the system to perform material labeling at a faster rate compared to traditional algorithms. This is

achieved by using a hierarchical approach to perform the labeling, which reduces the computational cost.

The results of the proposed architecture have shown that the system is able to obtain high accuracy in

terms of material labeling and segmentation. The system is able to effectively differentiate between objects

and materials in real-world scenes, together with objects made of one-of-a-kind materials such as wood,

metal, glass, etc. In addition, the system is able to precisely propagate the material labels at some stage in

the scene, even in tremendously cluttered environments the place objects are occluded or partly visible.

Furthermore, we demonstrate that the proposed architecture presents a promising solution for semantic

material labeling of 3D point clouds. The combination of various components and algorithms permits

for a comprehensive approach to the problem, leading to accurate and efficient results. The use of the

MSCC algorithm for material label propagation is a novel contribution to the field and has been shown

to produce good results. However, further research is needed to address the limitations and improve the

system.

It is really worth mentioning that the proposed architecture can also be easily extended to include ad-

ditional features and capabilities. For example, the system can be modified to include additional material

classes, enhance the accuracy of the material classification network, or incorporate additional compo-

nents to enhance the overall performance of the system. Additionally, the system can also be tailored to

quite a number of applications such as building information modeling, construction site monitoring,

and robotics. The combination of different components and algorithms permits the system to perform
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semantic material labeling in real-time with high accuracy, making it a valuable tool for a variety of ap-

plications. The proposed structure offers a solid foundation for future work and research in the field of

semantic material labeling of 3D factor clouds.

Overall, the proposed architecture represents a significant advancement in the field of semantic mate-

rial labeling of 3D factor clouds. It gives a practical solution for various applications in the areas of robotics

and computer vision and has the potential to make a significant impact in these fields. The ability to ac-

curately and efficiently label the materials in a 3D point cloud offers a wealth of information for various

applications, and the results achieved using this architecture display its usage for practical applications.

§ 5.1 Limitations and Future Work

§ 5.1.1 Limitations

However, the proposed architecture may have some limitations. For example, it may not perform well in

cluttered scenes or scenes with highly reflective or transparent objects. Additionally, the current imple-

mentation of the Material Classification Network may not be able to classify all possible materials in the

scene, leading to incomplete material labeling of the point cloud.

The accuracy of the material labeling depends on the accuracy of object detection, material classifi-

cation, and 3D localization. Any errors in any of these components can propagate and affect the final

results.

The performance of the system is highly dependent on the quality and density of the point cloud.

The system may struggle to provide accurate results in situations where the point cloud is sparse or noisy.

The size of the 3D point cloud is a factor in the processing time of the system. The larger the point

cloud, the longer it will take to process, potentially leading to real-time constraints for certain applications.

The system requires a high computational cost, as it involves multiple algorithms and components that

are computationally intensive.

The current system only labels the material of objects that have been detected by YOLOv5. Any

objects that are missed by the object detector will not be labeled with their material type.

58



These limitations highlight the need for further research and development in the field to address these

challenges and improve the robustness and accuracy of the system.

§ 5.1.2 Future Work

Future work can be progressed in several ways to enhance the proposed architecture. Some possible

directions are:

Improving the object detection accuracy: The accuracy of object detection can be improved by fine-

tuning the YOLOv5 network on a dataset that is more representative of the environment in which the

system will be used.

Improving the material classification accuracy: The material classification network can be fine-tuned

on a larger and more diverse dataset to improve its accuracy.

Incorporating additional modalities: The system can be extended to incorporate additional modalities,

such as depth and thermal cameras, to improve the quality and density of the point cloud. Using additional

sensors such as LiDAR or stereo cameras to provide additional information and improve the overall

accuracy of the system.

Improving the efficiency of the system: The efficiency of the system can be improved by exploring par-

allel processing techniques and optimizing the algorithms used in the voxel-based matching component.

Overall, there is a lot of potentials for future work to enhance the proposed architecture and improve

the results of the semantic material labeling system.
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