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ABSTRACT

This work introduces sIPOMDPLite-net, a deep neural network (DNN) architecture for agent

control in partially observable multiagent settings with sparse interactions between agents. The

network represents a new method for planning in contexts modeled by the interactive partially

observable Markov decision process (I-POMDP) Lite framework with non-cooperative sparse

interactions, which facilitates self-interested planning in settings shared with other agents more

tractable than the well-known I-POMDP framework. The network uses fully-differentiable value

iteration networks to simulate the solution of nested MDPs, which I-POMDP Lite attributes to the

other agent to model its behavior, avoiding the need for involving non-differentiable techniques

such as particle filtering to model the other agents more generally. We train sIPOMDPLite-net

on a small two-agent tiger-grid problem, for which it accurately learns the underlying model and

near-optimal policy, and the trained model continues to perform well on much larger and complex

grids. As such, sIPOMDPLite-net shows good transfer capabilities and offers a lighter learning

and planning approach for individual agents in multiagent settings.
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Chapter 1

Introduction

Multiagent sequential decision-making under uncertainty is one of the most common but computa-

tionally challenging problems we face in the modern world. From maneuvering troops on the bat-

tlefield to our daily driving on roads with complex traffic, we regard them as multiagent sequential

decision-making issues and manage to address them by pursuing their optimal solutions. Never-

theless, it is computationally hard to solve such problems, especially when they are under partial

observability and participants of the multiagent systems are non-cooperative. Hence, designing

self-interested agents that effectively and efficiently plan their actions under such formidable con-

ditions has become an appealing cutting-edge research area.

Based on the underlying models they attribute to characterize agents’ interactions and their

algorithms to solve them, we can generally divide the existing approaches into game-theoretic

and decision-theoretic frameworks. The game-theoretic frameworks represent the interactions in

partially observable stochastic games (POSGs) and solve them by computing their Nash equilib-

ria [1, 2]. In particular, they lay the foundation for majority of the well-known recent work em-

powering multiagent reinforcement learning (MARL) with deep learning (DL) [3, 4, 5]. However,

the decision-theoretic frameworks extend single-agent decision-theoretic planning frameworks like

MDP and POMDP to characterize interactions by explicitly including other agents’ types in the
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inference and solving the expanded model based on that. Arguably, the representative one for self-

interested planning in non-cooperative settings is the I-POMDP [6, 7, 8, 9, 10]. Unfortunately,

exactly solving I-POMDPs is possible but prohibitively expensive due to the exacerbated curses

of dimensionality and history. The curse of dimensionality is due to the joint space of physical

states and types of other agents that interactive beliefs need to account for, while the curse of his-

tory is rooted in the exponentially-growing policy space with the length of the planning horizon.

To mitigate the framework’s computational complexity from the ground up, Hoang and Low [11]

introduced the more pragmatic IPOMDP-Lite framework, which significantly reduces the com-

plexity of predicting the other agent’s actions – a key complexity driver – by ascribing a nested

MDP instead of POMDPs or I-POMDPs.

We also notice that in a large portion of real-world multiagent systems, agents tend to act alone

most of the time and interact only when necessary, which is known as sparse interaction. The

sparse interaction in multiagent systems has been a subject with a long history of research. Melo

and Veloso [12, 13] tried to simplify the traditional decentralized MDPs (Dec-MDPs) under situa-

tions where the demand of coordination is limited to some specific subset of the state space. Based

on this, they contributed the Dec-SIMDP, a decision-theoretic model for decentralized sparse-

interaction multiagent systems that explicitly distinguishes the situations in which agents must

coordinate from those in which they are safe to act independently. They also demonstrated an RL

algorithm where agents learn both individual policies and when and how to coordinate. Yu, Zhang,

and Ren [14, 15] proposed a learning approach for loosely-coupled multiagent systems that ex-

plicitly quantifies and dynamically adapts agent independence during learning so that agents learn

to make trade-offs between single-agent learning and coordinated learning. Hu, Gao, and An [16]

managed to utilize learned single-agent knowledge and to transfer it to multiagent settings via

game-theoretic MARL. They proposed three transfer mechanisms, including directly transferring

agents’ single-agent value functions, only transferring value functions in states where the environ-

mental dynamics change slightly, and transferring models by abstracting the one-shot game in each
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state.

A recent vein of investigations has introduced deep DNN-based analogs of well-known plan-

ning frameworks, including value iteration networks (VIN) [17, 18] as the counterpart to MDPs,

QMDP-net [19] as the counterpart to an approximation of POMDPs, and IPOMDP-net [20] as

counterpart to the I-POMDP framework. The architectures learn an internal model of the decision-

making problem and simulate the planning steps of the corresponding frameworks. Analogously to

model-based reinforcement learning [21, 22, 23], these architectures bring the benefit of combined

learning and planning directly on state-action-reward trajectories as input data. Furthermore, they

have also demonstrated good transfer planning capabilities, with learned NNs generating high-

quality plans for larger instances of the same domain, potentially lending themselves to meta-

learning and subsequent few-shot learning and planning for multiple domains.

Continuing along this vein, we introduce sIPOMDPLite-net, a novel DNN architecture for

learning and planning in stochastic settings shared with other agents as modeled by the I-POMDP

Lite with sparse interactions. We construct the network architecture to represent a policy for a

class of tasks, where we explicitly embed the planning model in the network architecture and

train the network using imitation learning. First, we generate expert trajectories for a subset of

tasks by solving their underlying I-POMDP Lite models and getting the optimal policy. Then, we

sample trajectories of joint actions based on the policy and simulate them in the tasks, receiving

corresponding trajectories of observations. Then, we train the network on the tasks with the expert

demonstration, where we try to minimize the cross-entropy between the output action trajectories

by our network and the expert trajectories.

As a vital reference of our work, the IPOMDP-net1 [20] encodes the I-POMDP framework and

solves it via I-PF [8]. It keeps a set of particles representing interactive beliefs throughout the rea-

soning and embeds a nested QMDP planner to predict other agents’ actions. However, the network

1The source code of IPOMDP-net is unavailable, so we do not know its implementational details of the network
architecture and experiments.
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suffers from the curse of nested reasoning [11] due to interactive beliefs. Besides, the particle

space for applying I-PF is vast, but the particle number is limited. There is a dilemma between

the prediction accuracy of belief distributions and computational complexities. Additionally, it is

intractable to implement random sampling in a NN that requires full differentiability.

The sIPOMDPLite-net accomplishes the same mission with a concise structure and low com-

putational complexity by selecting the I-POMDP Lite as the underlying framework instead of

I-POMDP. Hence, we address the curse of reasoning by substituting interactive beliefs with be-

liefs over physical states, by which we replace the bulky interactive belief update filter with fully

differentiable network structures and thus enable the end-to-end training.

We originally proposed the Tiger-grid problems, of which the details will be presented in Sec-

tion 4.1, as a representative application domain to train and evaluate the sIPOMDPLite-net, show-

ing its performance on the model learning, policy learning, and transfer capability. The domain

generalizes the well-known partially observable Tiger problem to a 2D grid shared by two agents,

where there is a door in each cell of the grid, but only one door hides a pile of gold that the two

agents try to capture. The domain complicates the original Grid-world by introducing extra deci-

sions in each cell. Hence, it is more difficult to be solved by classic planning frameworks, which

also imposes a greater challenge to our network for learning to solve it.

We choose the Tiger-grid as our application domain because it retains key features of non-

cooperative sparse interaction and spatial locality. First, the two agents do not interact with each

other except that either of them finds the door hiding the gold and opens it. Second, the agents

can only move to adjacent cells or stay at the previous cells by taking any valid actions in a step.

Such setup is good for the model trained by sIPOMDPLite-net on relatively small environments

to transfer to larger ones since the dynamics are limited in local regions, and thus the transition

model learned for such local regions applies to everywhere else in the environment.

In the rest of this chapter, we will clarify our objectives in this thesis by proposing the network

architecture and articulate our contributions. Finally, we briefly introduce the structure of this
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thesis.

1.1 Objectives

In this work, we attempt to solve the multiagent sequential planning tasks with the following

characteristics:

1. The observability of agents is always partial regardless of the state, where an agent only

receives local observations for its underlying physical state at each time step but no direct

perceptions towards other agents.

2. The common (multiagent) states shared by the agents are equal to the Cartesian product

of their private (single-agent) states, such that agents’ transition and reward functions as to

common states and joint actions can be factorized into those for private states and actions.

3. The interactions between agents are sparse. In other words, among all available state-action

combinations of a multiagent planning task, only a relatively small subset of them lead to

interactions, where the transitions and rewards must be determined by agents’ common states

and joint actions.

4. Agents are non-cooperative. Each agent fights for their own good instead of team rewards.

Besides, unlike fully-cooperative scenarios with sparse interactions, agents not intending

to interact can still be impacted by others who cause an interaction, which we call a passive

interaction. Hence, the conditions of interactions are not only the intersection of each agent’s

interactive state-action pairs but their union.

1.2 Contributions

We contribute mainly in the following aspects:
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1. We integrate the self-interested I-POMDP Lite framework with non-cooperative sparse-

interactions. Instead of sharing a common observation in interaction states as in the Dec-

SIMDP, agents must determine whether an interaction occurs by modeling others and pre-

dicting their behaviors.

2. It improves on the related IPOMDP-net in significant ways. First, the sIPOMDPLite-net

offers a fully differentiable solution in comparison to IPOMDP-net, which utilizes the inter-

active particle filtering [8]; the resampling used in particle filters is known to be not differ-

entiable [24]. In contrast to IPOMDP-net, which maintains beliefs over the physical states

and models ascribed to the other agent, sIPOMDPLite-net uses beliefs over the state only,

thereby obviating the need for a particle filter and instead simulates the Bayes filter exactly.

Consequently, all of its computations are differentiable similar to the VIN and QMDP-net,

allowing for end-to-end training. Second, the sIPOMDPLite-net presents a more compact

and lucid architecture that builds on the QMDP-net at the top level, simulating the planning

for the subject agent while predicting the actions of the other agent using an architecture

similar to the VIN. Both the compactness and differentiability lead to learning and planning

that is more efficient and transparent than the IPOMDP-net.

3. We train sIPOMDPLite-net with expert trajectory data on a set of 6× 6 grids and evaluate

the transfer planning capability of the trained model on unseen grids of 7×7, 8×8, 10×10,

and 12 × 12. We compare the performance between the expert policy obtained by solving

the underlying I-POMDP Lite model and the policy learned by the network in three aspects

– the success rate, false open rate, and collision rate. The results show that the learned policy

continues to plan well in unseen 6 × 6 grids, where it has the success rate of 0.851 versus

the expert policy’s 0.858, the false open rate of 0.235 versus the expert policy’s 0.208, and

the collision rate of 0.070 versus the expert policy’s 0.059. When the agents are situated in

larger and more complex grids, the learned policy still performs comparably with its expert
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I-POMDP I-POMDP Lite

IPOMDP-net sIPOMDPLite-net

Simulating the underlying planning

fully differentiable, reducing complexities
while still learning good policies.

models via neural networks endued
with greater transfer capabilities.

Simplifying the framework to alleviate
expensive complexities, making the
planning more scalable and practical.

Making the NN architecture lighter and Dec-SIMDP

Generalizing sparse interactions to
non-cooperative and thorough partially
observable settings and embedding it
into well-known self-interested multi-
agent planning framework.

Figure 1.1: Relations between sIPOMDPLite-net and its important related work.

counterparts. What is most surprising is that in 10 × 10 and 12 × 12 grids, the success

rates of the learned policy become even higher than those of the expert policy, where the

results are 0.731 versus 0.712 and 0.743 versus 0.694. Furthermore, we evaluate the learned

policy on much larger and realistically complex environments provided by a few LIDAR

maps without further training the model on them. The learned policy performs comparably

with the expert demonstrations. In two of the four environments, ACES and Orebro, the

learned policy outperforms the expert policy in success rate with 0.842 and 0.950 versus

0.830 and 0.890. In the other two, though performing slightly worse, the learned policy still

holds the matching success rate of 0.803 and 0.910 versus the expert’s 0.820 and 0.940. The

empirical result indicates that the network has successfully learned the essential elements of

the problems, the other agent’s strategy, and how to act near optimally in the problem.

1.3 Structure of the thesis

In this chapter, we have specified sIPOMDPLite-net’s major application scenarios, the partially

observable multiagent planning problems modeled by I-POMDP Lite with sparse interactions.

Then, we reviewed related work known to resolve similar issues to ours, where we discussed their

strengths and inadequacies in dealing with our task. Then, we introduced our work and listed the
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key contributions. Next, we briefly preview the key points of the ensuing chapters.

Chapter 2 provides background on the I-POMDP Lite framework, the Dec-SIMDP framework,

and the neural network architectures, VIN and QMDP-net. We build the sIPOMDPLite-net pri-

marily based on factored I-POMDP Lite framework, where we refer to the model factorization

based on a non-cooperative sparse interaction framework. Hence, reviewing the two frameworks

helps provide the ground for our introduction of sIPOMDPLite-net in the next chapter. We then

discuss the VIN and the QMDP-net that propose and finely exploit the learning-for-planning tech-

nique.

In Chapter 3, we first expound on the theoretical basis of sIPOMDPLite-net, deriving the

factored modules of I-POMDP Lite. Then, we present the specific network architecture designed

for approximating the framework, illustrating how each network component simulates the corre-

sponding part of the underlying framework and fulfills the end-to-end training.

In Chapter 4, we propose two application domains, the Tiger-grid games and the real-life

map navigation problems, to evaluate the sIPOMDPLite-net. We then elaborate on the details of

training and experiment on the domains, followed by presenting the results. At last, we conduct

the ablation studies to evaluate the critical roles that some sub-network structures play.

Chapter 5 concludes the thesis. We highlight our contributions while specifying the limitations

of the work by far. Finally, we discuss possible directions of interest to improve our work in the

future.

8



Chapter 2

Background

In this section, we demonstrate three fundamental backgrounds that lay the foundation for the

sIPOMDPLite-net. First, I-POMDP Lite[11] is the underlying multiagent planning framework

for which we build our NN analog. Second, the non-cooperative sparse interaction framework

provides the theoretial basis for factorizing the framework models, which further helps define

the sparse-interaction belief update function and Bellman equation. Finally, the representative

learning-for-planning approaches inspire us with the network design, training data setup, and the

learning scheme to employ.

2.1 I-POMDP Lite framework

Considering two self-interested agents, i and j, in a multiagent system, we define an I-POMDP

Lite model with respect to i as a tuple ⟨b0, S, A,Ωi, Ti, Oi, Ri, π̂
L
j ⟩. b0 is the initial belief of agent

i over common physical states S shared by two agents; Ωi is agent i’s local observation space;

A = Ai × Aj is the set of joint actions, which can be represented as the Cartesian product each

agent’s individual action space; definitions of the transition function T , reward function Ri, and

observation function Oi are similar to those of POMDPs, except that the transitions and rewards are
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now for common states and joint actions instead of either agent’s private ones. π̂l
j: S×Aj→[0, 1]

represents the predictive probability of which j will select aj in s.

The I-POMDP Lite proposes the nested MDPs to predict the other agent’s intention while

planning. We define a nested MDP for agent i reasoning at level l as ML
i = ⟨S,A, Ti, Ri, {πl

j}L−1
l=0 ⟩,

where S, A, Ti, and Ri refer to the same concepts as those in the top-level modeling module.

{πl
j}L−1

l=0 : S×Aj→[0, 1] is a recursive reasoning model of j at level l < L. The optimal (k + 1)-

step-to-go value function of M l
i for agent i at level l ≥ 0 satisfies the Bellman equation:

Ql,k+1
i (s, a) = Ri(s, a) + γ

∑
s′∈S

Ti(s, a, s
′) max

a′i∈Ai

∑
a′j∈Aj

π̂l
j(s

′, a′j)Q
l,k
i (s′, a′) (2.1)

When l = 0, agent j’s mixed strategy π̂0
j is simply |Aj|−1, implying that aj is selected randomly

in each state; otherwise, when l = L, where L > 0, there is π̂L
j (s, aj) =

∑L−1
l=0 Pr(l)πl

j(s, aj),

where Pr(l) indicates the probability that agent j reasons at level l. By solving the nested MDP,

we obtain j’s optimal actions Optlj(s), based on which we define the corresponding reasoning

model as

πl
j(s, aj) =


|Optlj(s)|−1 aj ∈ Optlj(s),

0 otherwise

Provided with the full observability of nested MDPs, agent i need not model agent j’s belief as

in I-POMDP. Hence its own belief reduces to a probabilistic distribution over ∆(S ×Aj). We can

further factorize this to separate out the belief over physical states only, bi(s, aj) = bi(s)π̂
L
j (s, aj).

As such, we essentially reduce the problem to POMDP planning embedded with the other agent’s

mixed strategy. The belief update function is:

b′i(s
′) = ηOi(s

′, ai, o
′
i)
∑
s,aj

Ti(s, a, s
′) Pr(aj|s)bi(s) (2.2)

10



The optimal value function in Bellman equation is:

Qi(bi, ai) =
∑
s,aj

bi(s)

{
Ri(s, a)Pr(aj|s) + γ

∑
oi

Pr(aj, oi|s, ai)max
ai

Qi

[
SE(bi, a, oi), ai

]}
(2.3)

2.2 Non-cooperative sparse interaction framework

In a multiagent system where agents interact sparsely, they do not depend on each other in states

without interaction, so their reasoning is equivalent to single-agent POMDP. Thus, it might con-

sume considerable unnecessary computing space if we continue to adopt the general I-POMDP

Lite framework for such states, considering the size gap between common and individual state

space and that between joint and individual action space. Instead, we can split out the subset of

states where interaction might happen and apply the general framework. Then, it is safe for agents

to stick to their single-agent policy in the rest states.

We formally define a set of boolean functions to indicate if a given state-action pair (s, a) ∈ P I
R,

and (s, a) ∈ P I
T , respectively:

XP I
R
(s, a) =


1 if (s, a) ∈ P I

R

0 otherwise
, XP I

T
(s, a) =


1 if (s, a) ∈ P I

T

0 otherwise
(2.4)

Generally, indicator functions for the transition and the reward function are distinct, but they can

be identical in practice, i.e., P I
R = P I

T .

Provided with the indicator functions, we represent the factorization of the agent i’s reward

function Ri, transition function Ti, and agent j’s reward function in the original I-POMDP Lite as
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follows:

Ri(s, a) =
[
1−XP I

R
(s, a)

]
Ri(si, ai) + XP I

R
(s, a)Ri(s, a)

Rj(s, a) =
[
1−XP I

R
(s, a)

]
Rj(sj, aj) + XP I

R
(s, a)Rj(s, a)

(2.5)

Ti(s, a, s
′) =

[
1−XP I

T
(s, a)

]
Ti(si, ai, s

′
i)Tj(sj, aj, s

′
j) + XP I

T
(s, a)Ti(s, a, s

′) (2.6)

Where Ri, Rj , Ti, and Tj are single-agent models that equal to their multiagent counterparts in

non-interaction situations.

2.3 Learning for planning

Learning for planning is a school of methods applying deep learning to sequential planning prob-

lems. Unlike common deep reinforcement learning approaches that learn values or policies for

planning optimal actions by integrating information over the whole past states (observations if it is

under partial observability) and actions, the learning for planning formulates problems referring to

existing decision-theoretic planning frameworks.

When applying the learning for planning methods, we explicitly embed underlying models of

such planning frameworks, such as the Markovian transition model and the additive or discounted

rewards, to the DNN. We select network structures performing consistent operations with them

to guarantee that the models are learned to approximate their underlying counterparts well. Fur-

thermore, the whole network is constructed to represent the policy for the problems. Considering

the recursive property in the planning solution or the belief update under partial observability, we

typically connect exact planning algorithms with RNNs. For instance, when dealing with value

iterations, we can imitate the algorithm with an RNN, where we set the state utilities for each it-

eration as a hidden state of the RNN. Similarly, when it comes to the belief update, we can regard
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the belief filtered for each time step as a hidden state.

Let us take the QMDP-net [19] as an instance. The authors connect a parameterized POMDP

model with the QMDP algorithm that solves the model and embeds both in a fully-differentiable

recursive policy network. Furthermore, the target planning problems they use to train and evaluate

the NN are generalized and represented as a set of parameterized tasks, Θ, which restricts the

policy class over the problems and thus improves the computational efficiency regarding the policy

search. The QMDP-net encodes a POMDP model conditioned on θ ∈ Θ, where:

M(θ) = (S,A,Ω, T (·|θ), O(·|θ), R(·|θ))

S, A, and Ω are the shared state space, action space, and observation space throughout the

tasks; T (·|θ), R(·|θ), and O(·|θ) denote the encoded transition function, reward function, and

observation functions to learn from data. Specifically, as the network represents the QMDP policy,

we can learn by minimizing the cross-entropy between a trajectory of time-consecutive actions

output from the network and the trajectory of optimal actions demonstrated by an expert. As such,

we learn the optimal policy as well as the underlying models.

The approach benefits the planning with better data efficiency than the model-free methods. By

maintaining internal models, they exploit the underlying sequential nature of the decision-making,

which approaches faster to the optimal policy and requires less training data.

The learning for planning is similar to the model-based RL in the above aspects. However, the

latter always requires system identification to map observations to a transition model, which is then

solved for a policy. Since accurate system identification is difficult in most realistic applications,

model-free approaches are often preferred. Therefore, in awareness of the fact, the learning for

planning methods combine model-based planning with model-free learning, taking advantage of

both while averting the drawbacks.

The approximations of planning frameworks usually have strong transfer capabilities. After
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training, the policy learns to map an observation to a hidden state inference and a planning com-

putation relevant to the task and predicts action based on the resulting policy, which generalizes to

unseen tasks.
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Chapter 3

sIPOMDPLite-Net

In this chapter, we first expound on the theoretical basis of the sIPOMDPLite-net, showing the

procedures of factorizing the I-POMDP Lite in its belief update and solution provided with sparse-

interaction assumption. Then, we provide the details in designing the network’s architecture based

on the theoretical basis.

3.1 I-POMDP Lite with sparse interactions

We have shown the general factorization of the transition function (Eq. 2.6) and the reward function

(Eq. 2.5). This section demonstrates their role in the belief update and the solution, where we

substitute the original multiagent models with the factorized terms. We also try to interpret the

process from a macroscopic perspective. We handle the belief update and the planning regarding

the entire state and action space rather than a single element. Before all this, we first focus on

the indicator functions critical to the sparse-interaction setting, elaborating on the relations and

transformations between single-agent and multiagent indicators for transitions and rewards.
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3.1.1 Indicator functions

We define the single-agent indicator functions based on the concept of active interaction. In non-

cooperative multiagent systems, an agent’s single-agent indicator function indicates the agent’s

private state-action pairs that lead to interactions that impact others. In this case, we do not include

passive interactions, where the agent does not intend to interact with others but gets involved in

interactions caused by others. Taking agent i and agent j as an example, we define their indicators

in Eq. 3.1 and Eq. 3.2.

X
P

Ii
R
(si, ai) =


1 if (si, ai) ∈ P Ii

R

0 otherwise
, X

P
Ij
R

(sj, aj) =


1 if (sj, aj) ∈ P

Ij
R

0 otherwise
(3.1)

X
P

Ii
T
(si, ai) =


1 if (si, ai) ∈ P Ii

T

0 otherwise
, X

P
Ij
T

(sj, aj) =


1 if (sj, aj) ∈ P

Ij
T

0 otherwise
(3.2)

While agents may have different single-agent indicators depending on their respective interac-

tion triggering conditions, they share the same multiagent indicator by integrating the single-agent

ones. We formulate such transformation as follows:

XP I
R
(s, a) = X

P
Ii
R
(si, ai) + X

P
Ij
R

(sj, aj)−X
P

Ii
R
(si, ai)XP

Ij
R

(sj, aj)

XP I
T
(s, a) = X

P
Ii
T
(si, ai) + X

P
Ij
T

(sj, aj)−X
P

Ii
T
(si, ai)XP

Ij
T

(sj, aj)

(3.3)

3.1.2 Belief update

Given the sparse-interaction factorization for the transition function in Eq. 2.6 and the indicator

transformation we derive in Eq. 3.3, we rewrite the original I-POMDP Lite belief update (Eq. 2.2)
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as:

b′i(s
′) = ηOi(s

′, ai, o
′
i)

{∑
si

[
1−X

P
Ii
T
(si, ai)

]
Ti(si, ai, s

′
i)
∑
sj ,aj

[
1−X

P
Ij
T

(sj, aj)
]
Tj(sj, aj, s

′
j)

× Pr(aj|s)bi(s) +
∑
s,aj

XP I
T
(s, a)Ti(s, a, s

′) Pr(aj|s)bi(s)

}
(3.4)

The first term of the sum enclosed in the curly brace corresponds to where no interaction

occurs. In other words, the agents do not meet the condition such that (s, a) ∈ P I
T . Thus, we

can safely handle the belief update with each agent’s private transition function. Here in Eq. 3.4,

we introduce a two-step belief update for the non-interaction part, which first updates bi(s) with

aj and then updates the result with ai. Specifically, we first multiply the belief with 1 − X
P

Ii
T

,

screening out the set of belief probabilities for situations where agent j does not interact with and

affect agent i, i.e., P Ij
T

∁
. We then update it with Tj . Similarly, in the second step, we filter the

updated belief with 1− X
P

Ij
T

before further updating the result with Ti. As such, we complete the

non-interaction belief update. As for the belief update for interactions, we first screen out the set

of belief probabilities corresponding to P I
T and update it with the multiagent transition function Ti

directly.

We combine the result for both situations and finish the belief propagation with actions. The

next step, belief propagation with observation, is consistent with the original I-POMDP Lite frame-

work.

3.1.3 Solution

We select the multiagent QMDP algorithm [25, 26] to solve our models. As we know, QMDP

solves POMDP approximately. It employs the basic MDP value iteration without including beliefs

in its Bellman equation. Instead, the belief only shows up in the last step, which is used to weight
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the computed Q values for the policy. Thus, while losing slight optimality, it provides a faster

solution. On the other hand, I-POMDP Lite also reduces to a POMDP, except it is aware of other

agents’ policies. As such, we can retrofit the Bellman equation of QMDP slightly by introducing

others’ policies, which is, in fact, equivalent to the nested MDP’s Bellman equation as shown in

Eq. 2.1. Furthermore, constructing NN architecture for QMDP is much simpler than the original

I-POMDP Lite planning, which also benefits the training.

Similar to what we have done to the belief update, we substitute the general factorization for

Ri (Eq. 2.5) and Ti (Eq. 2.6) into the Bellman equation of QMDP and get:

Qk+1
i (s, a) =

[
1−XP I

R
(s, a)

]
Ri(si, ai) + XP I

R
(s, a)Ri(s, a) + γ

{[
1−XP I

T
(s, a)

]
×

∑
s′i

Ti(si, ai, s
′
i)
∑
s′j

Tj(sj, aj, s
′
j)U

k
i (s

′) + XP I
T
(s, a)

∑
s′

Ti(s, a, s
′)Uk

i (s
′)

} (3.5)

For the immediate reward, we merely refer to Eq. 2.5, while for the long-term reward, we factorize

the term for non-interactions into agent i’s and j’s individual value iteration. We still organize

the non-interaction part as a two-step procedure. The major difference from its counterpart in the

belief update is the order of multiplying indicators. Bear in mind that the state-action pairs that

the indicator functions indicate are always for the current time step. In the belief update, to get

the belief for the next state s′, we sum the transition probabilities times the current belief over all

possible current states s. Thus, we need to first determine the exact belief for each s before being

summed up. In the Bellman equation, nevertheless, it is just the opposite, where we get values

for the current state s by summing up predicted values for all possible next state s′. Hence, given

Uk
i (s

′), we first get the current Q values by the two-step transition multiplication and then screen

out values corresponding to non-interactions by the indicators. As Eq. 3.5 shows, the indicator

function is put outside the sum.

Now that we obtain the Q values by executing the QMDP value iteration, it is natural to get the
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optimal policy:

qi(ai) =
∑
s,aj

QK
i (s, a)π̂j(s, aj)bi(s) (3.6)

3.2 Network architecture

This section illustrates the design of the sIPOMDPLite-net’s architecture, showing each module’s

pivotal role in encoding the underlying models of the I-POMDP Lite framework with sparse in-

teractions into a NN analog. We begin with an overview demonstrating the general architecture,

establishing major functional modules, and clarifying their connections. Following that, we stip-

ulate the standard input and output of the network. In particular, we elaborate on task parameters

that serve as an essential part of training data. As for the demonstrations of major modules, per

the theoretical exposition, we begin with the indicator transformer, showing the transformations

between agents’ single-agent and multiagent indicator functions in the form of tensors. Then, we

highlight the belief update module and the value iteration solver module, expounding on their un-

derlying logic of simulating the two most critical parts of the original framework. Following this,

we present the nested MDP module and the QMDP planning module that share the structure of the

value iteration solver for similar solutions.

For ease of discussion, we consider only the elementary setup in the rest of the section. The

multiagent problem we attempt to solve involves only two agents, i.e., the subjective agent i and

the objective agent j. Agent i reasons at level 1 and models agent j as a nested MDP reasoning at

level 0; only one interaction triggering state-action pair exists, and the two agents share it.

3.2.1 Overview

We divide the whole sIPOMDPLite-net architecture into the inference part and the training part.

The former, which explicitly simulates the composition of the underlying framework, generally
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comprises a Bayesian filter module accounting for the belief update regarding the changing states

over time and a solution module in charge of searching for the optimal policy for agents. The solu-

tion module further consists of the nested MDP solution module and the QMDP solution module.

The former provides the predicted policy of agent j by recursively employing a nested sub-module,

the MDP value iteration solver, to map both agents’ immediate rewards and the adversary’s lower-

level policy to its optimal policy. The latter receives the current belief state from the Bayesian

filter, the predicted policy of agent j from the nested MDP solver, and employs the same MDP

value iteration solver to obtain agent i’s optimal policy. Finally, it outputs an action based on this

policy. As for the training part of the network, we discuss it in detail in 4.5.

After listing the main modules of the network and the connections between them, we specify

the inputs and outputs of the sIPOMDPLite-net. The inputs consist of two types of data. One

is task-dependent but time-independent, which we name as task parameters. The other is time-

dependent, which we call trajectories. A task parameter set, denoted by Θ, covers all combinations

of possible values of a wide variety of task features that vary within some specific set of tasks. Each

such combination of features, i.e., a unique task parameter, which we denote by θ, unambiguously

determines a task out of the task set. The task features capture the complete prior knowledge agents

possess for this set of tasks, including those about environments and those about themselves.

Generally, a partial observable multiagent planning task requires the common state space of all

involved agents as one of the environment-related prior knowledge and the initial belief over this

state space shared by all agents as one of the agent-related prior knowledge. As Fig. 3.1 illustrates,

the input task parameter θ comprises the navigation maps, goal maps, and the common initial

belief for all agents. A particular component in our task parameter regarding the sparse-interaction

setting is the interaction indicator functions for the given task. We deem them priors since learning

them as hidden models through the neural network remains challenging at this time.

We assume that the features of a task parameter θ must contain the information that hides clues

of an agent’s underlying models, i.e., its transition, reward, and observation function. For example,
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Figure 3.1: The top-level architecture.

in Tiger-grid problems, the grid map of an agent offers the basis for its observation function. On the

other hand, the grid map and the goal map together determine its immediate rewards. Hence, when

designing the network architecture for learning these underlying models, we explicitly condition

them on specific components of θ.

When the task parameters uniquely define a task, our attention turns to the other input, i.e.,

trajectories. Similar to the related work about learning-for-planning approaches as mentioned in

2.3, sIPOMDPLite-net is essentially an RNN that recursively takes in trajectories of actions and

observation and maps them to a policy while updating beliefs as hidden states. The input trajecto-

ries of our network consist of trajectories of both agents’ actions and the subjective agent’s local

observations ordered by time step from the expert demonstration. The length of the trajectories

depends on the step size of training the RNN provided as a hyperparameter.

Different from the I-POMDP Lite framework, where we treat the policy given by the nested

MDP as a probability distribution over actions for each state, we provide sIPOMDPLite-net with

the other agent’s action directly, which helps the network learn the underlying models as accurate
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as possible. From the perspective of training, which we specifically elaborate on in Section 4.5,

explicit joint actions deliver clear information about the input to the network so that it learns which

next action to take given a specific joint action. On the contrary, we cannot guarantee that the

learned probabilities from the nested level of reasoning are correct in end-to-end learning. We then

send such joint actions to the belief update, nested MDP, and QMDP planning module, training

them separately to ensure models learned sufficiently accurately for approximating their underlying

counterparts.

The output of sIPOMDPLite-net reflects the policy that it represents. The QMDP planning

module outputs the subjective agent i’s best action sampled from the policy in the training phase,

while the nested MDP module outputs the objective agent j’s optimal actions. Nonetheless, in

the evaluation phase, the network only outputs agent i’s action while transmitting agent j’s action

internally between the modules.

3.2.2 Indicator transformation module

As demonstrated in Eq. 3.4, we require both agents’ single-agent indicators, i.e., X
P

Ii
T

and X
P

Ij
T

,

and the multiagent indicator they share, i.e., XP I
T

, in the belief update. As it is easier to transform

X
P

Ii
T

and X
P

Ij
T

to XP I
T

based on Eq. 3.3 but much harder to get the other way around, we include

X
P

Ii
T

and X
P

Ij
T

in θ and feed it to our network as priors. Then we get XP I
T

based on Eq. A.1. The

Kronecker indicator converter works as Fig. 3.2.

According to Eq. 3.5, however, we only require the multiagent reward interaction indicator, i.e.,

XP I
R

, instead of its single-agent counterparts, in the solution, so we directly input it to the network

without any transformations.
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Figure 3.2: Three types of multiagent X s.

3.2.3 Belief update module

Simulating the recursive update of beliefs, we construct the belief filter of sIPOMDPLite-net as

a recurrent neural network (RNN), in which the belief plays the role of the hidden state. Fig. 3.3

illustrates a round of the recurrent belief update.

Our objective for this module is to accurately learn the underling models, including Ti(s, a, s
′),

Ti(si, ai, s
′
i), Tj(sj, aj, s

′
j), and Oi(s

′, ai, o
′
i). For some step of the recursion, the module maps a

tuple of ⟨o′i, ai, aj⟩ from expert trajectories, a belief tensor of agent i, BS , and θ for the current

task to another belief tensor, B′
S .

Consistent with the framework, the first part of the belief update module works to update the

input belief tensor BS with the joint action for the step. Following Eq. 3.4, we first filter BS

for the belief over data points belonging to interactions with the transition interaction indicator,

XP I
T

. Then, we update the resulting belief with the parameterized transition function of agent i,

Ti(s, a, s
′). Based on the principle of learning as accurate a model as possible, we enforce the NN

analog to inherit properties of its underlying counterpart. Hence, we normalize the parameterized

Ti over the dimension of s′. The network structure simulating the update with actions generally
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implements the following operation:

B′
P I
T
=

∑
s∈S

∑
ai∈Ai

∑
aj∈Aj

BP I
T
Ti(s, a, s

′|θ)vaivaj

where vai and vaj are indexing vectors for ai and aj .

As the equation shows, we update the belief for each a ∈ A. To obtain B′
P I
T

corresponding

to the given a = ⟨ai, aj⟩, we multiply the output belief tensor with vai and vaj , respectively. The

specific class of network structure with which Ti(s, a, s
′|θ) is trained depends on the domain it

deals with. Section 4.4.2 demonstrates an instance of solving Tiger-grid problems with spatial

locality, where we encode the belief propagation into a convolutional layer with Ti(s, a, s
′|θ) as

the kernel.

On the other hand, we execute the two-step belief propagation for the non-interaction portion

of BS . Based on Eq. 3.4, to update the belief with agent j’s action in the first step, we first filter

BS for the belief probabilities over data points belonging to non-interaction parts with 1 −X
P

Ij
T

,

where X
P

Ij
T

is j’s single-agent transition interaction indicator. Then we update the resulting belief

with the parameterized Tj and pick the BS corresponding to the given aj . In the second step, we

repeat such a procedure with respect to agent i. Finally, we sum up the updated belief tensor for

the interaction and non-interaction to complete the belief update with actions.

The next part is to update the resulting belief with the input observation for the step, o′i. We

condition the parameterized observation function, Oi(s
′
i, ai, o

′
i|θi), on θ. To make it represent the

underlying Oi(s
′, ai, o

′
i) correctly, we normalize its dimension of Oi. Next, we index the observa-

tion function with ai and o′i to obtain Pr(o′i|s′, ai). Finally, we get the updated belief by weighting

B′
S with Pr(o′i|s′, ai):

BS =
∑
ai∈Ai

∑
oi∈Ωi

B′
SOi(s, ai, oi|θ)vaivoi

Thus, we finish a recurrence of the belief update. There are two routes for BS to precede – one
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Figure 3.3: The belief update module of the sIPOMDPLite-net.

is to get back as the input for the next round of recurrence of the belief update, the other is to enter

the QMDP planning module and to participate in the computation for the optimal policy.

3.2.4 Solution module

The solution module of sIPOMDPLite-net comprises two major submodules – the nested MDP

planning module and the QMDP planning module. They share the same network architecture –

the value iteration solver. In this subsection, we first present the design of the value iteration

solver, expounding on its underlying logic that conforms to the value iteration in the framework

of I-POMDP Lite with sparse interactions. Then, we show that the nested MDP planner and the

QMDP planner employ the Q values, Qi or Qj , computed by the value iteration solver to obtain

their respective policies.
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Value iteration solver

The value iteration solver implements the NN analog for multiagent MDP value iteration based on

the value function given in Eq. 3.5. Let us first consider the immediate reward. We condition the

parameterized single-agent reward functions of agent i and agent j on θi and θj while conditioning

the multiagent parameterized reward functions of the two agents on entire input task parameter, θ.

We set NN layers here to account for the dependencies, where they work to extract underlying

reward patterns from θ.

The network architectural design for the long-term reward is similar to that for the belief update

with actions, where we multiply US with Ti(s, a, s
′|θ) for interactions and with Ti(si, ai, s

′
i|θi) and

Tj(sj, aj, s
′
j|θj) consecutively for non-interaction situations. Here in the value iteration module, we

replace the belief tensor BS with the state utility tensor US . In the first round of the value iteration,

we initiate US as a zero tensor based on Eq. 3.5 such that Q0
i (s, a) = Ri(s, a). The only difference
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Figure 3.5: The nested MDP planning module generates other agents’ mixed strategies by computing their
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from the belief propagation is that in later recursions, we first multiply US first with the transition

functions and then with the indicator functions. We have explained this in Subsection. 3.2.4.

We illustrate the architecture of the value iteration solver in Fig. 3.4.

Nested MDP planning module

The nested MDP planning module is an RNN with a hierarchical structure, which conforms to the

setting of reasoning levels in the underlying nested MDP model. In this RNN, the hidden state is the

policy, π̂l
i/j , output by each hierarchy. The most initial policy, which we denote by π̂0, is manually

set to a uniform distribution over either Ai or Aj , depending on the top reasoning level L, for all

s ∈ S. We sample action from this initial policy and input it to the 0th hierarchy of the planner to

compute the level-1 policy. In the bottom hierarchy, π̂0 enters the embedded value iteration solver

with the reward and transition functions. The value iteration solver outputs Q0(s, a) regarding joint
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the top level by weighting Q values with the current belief and then selecting the best move based on the
maximum value in the result.

actions. To get the policy for a specific agent, according to Eq. 2.1, we need to weight Q0(s, a) by

the opponent’s policy π̂0 and sum it over the dimension of the opponent’s actions. Thus, we get the

Q values regarding only this agent’s actions, on which we apply the Softmax operation along the

dimension of actions to map Q values to the policy, i.e., π̂1. Continuing with such procedures, we

sample action from π̂1 and input it to the level-1 planner and compute π̂2 till it reaches the highest

hierarchy.

Hierarchies that account for a certain agent’s policy share the same input models and the net-

work structure. As agent i always reasons at the top level, L, where it applies the belief update and

the QMDP solution, the highest level of the nested MDP module is L−1, where we solve j’s MDP

to predict its policy and offer it to the level L inference for i. Therefore, the (L − 1)th hierarchy

accepts Rj and actions sampled from π̂i
L−1, while the (L− 2)th hierarchy receives Ri and actions

from π̂j
L−2, and so on. All hierarchies share the convolutional filters representing transition func-

tions, i.e., Ti, Tj , and Ti. we illustrate the general architecture of the nested MDP planning module

in Fig. 3.5.

QMDP planning module

The QMDP planning module, which solves the subjective agent i’s QMDP model, shares most of

its architecture with a nested MDP hierarchy that solves i’s MDP model. The only difference is
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that we weight the computed Qi(s, ai) by bi(s) output from the belief update module. Due to the

imitation learning scheme which we choose for training the sIPOMDPLite-net, the output of the

module, which is also the output of the network, should be the action in Softmax style. On the

other hand, we directly output the action selected by argmaxai
∑

s Qi(s, ai)bi(s).
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Chapter 4

Experiments

We elaborately design a handful of experimental domains exploiting multiagent properties to chal-

lenge our network. To study the benefits of explicitly encoding I-POMDP Lite models in the

network and our network’s overall genericity, we compare the performance of the learned policy

and the expert policy on various unseen environments from different domains, including the larger

and more complicated ones.

4.1 Experimental setup

We test the sIPOMDPLite-net on two domains—manually created Tiger-grids and real-world LI-

DAR maps. Each domain contains a parameterized set of tasks W(Θ), where each θ ∈ Θ encodes

a map for the environment, a goal, and an initial belief over each agent’s state space. First, we

randomly generate a sufficient number of samples of θ for some small-scale environments. Then

we construct the I-POMDP Lite with sparse interactions framework for the generated samples and

apply the QMDP algorithm to solve it. Thus, we obtain the action and observation trajectories from

the simulation and select those satisfying the preset success condition as an expert demonstration

for later training.

30



agent i

agent j

gold
initial beliefs

(a) Initial state.

agent i
agent j

(b) Stochastic state reset. (c) Laser maps.

Figure 4.1: Examples of two experimental domains. (a) The initial state of the task, where the subjective
does not know exactly the locations of others and itself but maintain a belief. (b) A reset happening after an
agent successfully seizes gold, where the system shifts each agent to a neighboring cell in either cardinal or
intercardinal directions. (c) A down-sampled real-world LIDAR map can be regarded as an extension of the
Tiger-grids, in which we mainly evaluate the network’s ability of generalization.

We train a model on small environments and then evaluate it on larger ones. Furthermore,

we apply it to real-world environments given by a set of LIDAR maps. Finally, we evaluate the

network’s overall performance by comparing it with its underlying framework. Below we briefly

describe the experimental domains.

4.1.1 Two-agent Tiger-grid game

We introduce the Tiger-grid – a generalization of the classic Tiger problem to a grid world. Two

robots act in a partially observable grid world filled with obstacles or free space in the problem. In

each free cell, a door exists, either a pile of gold or nothing. Only one cell contains the gold, while

all others are empty. We present such an environment in Fig 4.1a. Both agents have six actions:

moving towards each of the four cardinal directions, listening to gain information, and opening the

door. Only when the robot selects to listen will it get meaningful observations; otherwise, it will

receive a random observation. We compress the observations into four binary values corresponding

to obstacles in its four cardinal neighboring cells.

In the single-agent setting, an agent must navigate itself to circumvent obstacles present ran-
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domly in cells and reach the cell where a pile of gold lies. Meanwhile, it only gets the gold

by proactively executing the ”open” action rather than simply being in the cell. When the agent

chooses between staying and listening and opening the door in each cell, the problem becomes a

Tiger problem. The action of listening costs −0.2; opening gains a reward of 10.0 if there is gold

behind the door in the cell. Otherwise, it receives a −5.0 penalty. The action of moving integrates

all individual Tiger problems happening in each cell and connects them with a navigation problem.

Moving toward any direction has the identical cost of −0.5. Once the agent collides an obstacle,

it receives a hurtful penalty of −50.0. The selection of gains and costs has to achieve a subtle

balance. The agent should be neither too cautious and keep standing still nor too bold and moving

recklessly without listening even if having collided with obstacles several times.

We make the Tiger-grid a multiagent system by imposing interference between involved agents.

Specifically, both agents aim to seize the gold. Once an agent successfully achieves the goal,

both of them are randomly relocated to a neighbor cell, specifically, a free cell in its cardinal and

intercardinal directions, and the game continues. We illustrate a reset in Fig. 4.1b. This design

ensures interactions between the agents. By modeling the other agent’s intentions, a self-interested

agent keeps the awareness of where the other is and when it will open the door, which helps the

agent determine its current situation and plan for the future. In the Tiger-grid, the uncertainty

regarding dynamics is rooted in the reset of agents’ locations (4.1b). Hence, we keep the rest of the

state transitions deterministic. We set the fault rate of observations to 0.01 independently in each

direction.

When either agent consecutively seizes the gold three times or the trajectory length exceeds

the limitation, the trajectory terminates. Thus, we regard a trajectory as successful if the subjective

agent seizes the gold at least once.

We train a policy using demonstrated trajectories from 10,000 random 6× 6 environments, 10

trajectories with different initial locations, initial beliefs, and gold positions for both agents from

each environment. We then evaluate the trained model on separate sets of random environments
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with gradually larger sizes, each with 500 environments. Finally, we repeat the evaluation for

the trained policy on each task 100 times to compute the average values mitigating the impact of

stochasticity during the simulation.

4.1.2 Real-world map navigation

We collect 2D LIDAR maps for realistic buildings’ top-view layouts from the Robotics Data Set

Repository and down-sample them to acceptable sizes. Then, to match the setup of input maps of

Tiger-grid problems to evaluate the trained models directly, we map the value of pixels to binary

values 1 and 0, corresponding to the free space or obstacles.

The two robots navigate in such processed ”large” grids with all characteristics similar to Tiger-

grids. Hence, the underlying configurations of sIPOMDPLite-net models are also the same. We

illustrate an example for this domain in Fig. 4.1c.

Provided the model well-trained for 6×6 Tiger-grid tasks, we continue to train it on 10×10

and 12×12 tasks to generalize the environments better. Finally, We finalize the model trained for

12×12 and directly apply it to the down-sampled LIDAR maps.

4.2 Results and discussions

We display the experimental results for the two domains in Table 4.1 and Table 4.2, respectively.

We present the mean and standard deviation of success rates, collision rates, and accumulated

rewards of the learned policy and expert policy over 10 rounds of 100 repeats for each set of test

environments.

sIPOMDPLite-net learns models that accurately approximate the underlying framework.

The first objective of our approach is to learn models of the underlying framework accurately.

We show this accuracy by visualizing the trained models. For the transition functions and the
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Figure 4.2: The visualization of agent i’s belief update throughout a trajectory. The trajectory contains 8
time steps. For each time step, the first row illustrates the belief given by the underlying I-POMDP Lite
framework, while the second row depicts that of the IPOMDPLite-net. For a better intuition, we present the
beliefs over Si and Sj on the left and right sides, respectively.

observation function, we picture an 8-step belief update given by both the underlying I-POMDP

Lite with sparse interactions framework and our trained sIPOMDPLite-net in Fig. 4.2. Each row,

consisting of two sub-rows, represents the two agents’ beliefs after executing the action at the time

step marked on the left side, where the sub-row in blue corresponds to the framework while that

in red corresponds to the trained model. To make the chart easier to read, we portray bi(si) and

bi(sj) instead of bi(s), where bi(si) =
∑

sj
bi(s) and bi(sj) =

∑
si
bi(s). As such, the state space

to visualize reduces from |S| = |Si| × |Sj| to |Si| + |Sj|. We see that every two sub-rows in the

chart are mostly consistent, proving that our network accurately learns the underlying models of

the framework via expert demonstrations.
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Table 4.1: We evaluate the sIPOMDPLite-net’s learned policy by comparing its performance on multiple
sizes of Tiger-grid tasks with that of the I-POMDP Lite framework using QMDP solver. The Succ rate,
F-open rate, and Colli rate represent the success rate, false open rate, and collision rate, respectively.

I-POMDP Lite sIPOMDPLite-net

Env Succ rate F-open rate Colli rate Succ rate ∆ F-open rate Colli rate

6×6 0.858±0.003 0.208±0.002 0.059±0.002 0.851±0.003 0.004 0.235±0.003 0.070±0.003

7×7 0.812±0.003 0.192±0.002 0.056±0.002 0.804±0.003 0.009 0.215±0.003 0.085±0.002

8×8 0.820±0.003 0.188±0.002 0.066±0.003 0.790±0.004 0.037 0.204±0.003 0.098±0.004

10×10 0.712±0.004 0.150±0.002 0.076±0.003 0.731±0.003 0.027 0.172±0.004 0.115±0.003

12×12 0.694±0.004 0.118±0.002 0.040±0.004 0.743±0.004 0.071 0.150±0.004 0.102±0.003

sIPOMDPLite-net learns policies that generalize well to unseen tasks. The unseen tasks

here refer to the set {W (θ)|θ ∈ Θ∁
train} as defined in 2.3. They share the same physical state

space and agents’ action space as those of the tasks in the training set but do not duplicate them

for the specific obstacle distributions, the initial positions of the agents, and the goal locations. We

train sIPOMDPLite-net with a set of 6 × 6 Tiger-grid tasks as {W (θ)|θ ∈ Θtrain} and evaluate

it with the tasks sampled from {W (θ)|θ ∈ Θ∁
train}. As the first row of Table. 4.1 suggests, the

policy yields a comparable result to the expert’s, with a similar success rate yet slightly higher

collision and false-open rate. Thus, the performance is persuasive to show that our network learns

a reasonably good policy to solve a specific set of tasks.

The model trained in relatively small and simple tasks by sIPOMDPLite-net applies to larger

and more complex tasks without further training. Provided with the model trained for 6 × 6

Tiger-grid tasks, which represents a policy that solves such set of tasks, we evaluate its performance

dealing with Tiger-grid tasks with larger environments, i.e., larger state space. The action space

remains unchanged. Unlike so-called transfer learning, we do not train the model further for the

new environments before the evaluation but directly evaluate it with them. As rows 2 to 5 of
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Table 4.2: We compare the performance between the expert I-POMDP Lite policy and the policy learned by
the sIPOMDPLite-net on four down-sampled LIDAR maps with respect to the success rate, the false open
rate, and the collision rate.

I-POMDP Lite sIPOMDPLite-net

Env Succ rate F-open rate Colli rate Succ rate ∆ F-open rate Colli rate

ACES 0.830±0.023 0.098±0.028 0.064±0.034 0.842±0.029 0.014 0.112±0.030 0.080±0.036

Fr-camp 0.820±0.017 0.125±0.030 0.040±0.031 0.803±0.025 0.021 0.150±0.036 0.048±0.034

Orebro 0.890±0.018 0.225±0.024 0.005±0.012 0.950±0.011 0.067 0.270±0.031 0.010±0.020

UW 0.940±0.021 0.172±0.022 0.032±0.012 0.910±0.017 0.032 0.188±0.041 0.020±0.015

Table 4.1 show, even with degradation of the performance as the size of the task environment

increases, the policy given by sIPOMDPLite-net reaches the same level as that given by the expert.

More surprisingly, our network performs even better than the expert in terms of the success rate

only. Such transferability is more pronounced when dealing with much larger environments of the

real-world LIDAR maps. Table 4.2 presents the sIPOMDPLite-net’s performance compared with

the expert’s when the primitive model is further trained with 10× 10 and 12× 12 Tiger-grid tasks

and evaluated on four LIDAR maps. The two perform comparably without a significant gap in all

three statistics.

Appropriate prior knowledge regarding the underlying framework helps design the network

architecture that yields better performance. It is intractable to train a network with a super

complex internal logic and too many trainable variables. Therefore, eliminating part of the vari-

ables and simplifying the logic based on our prior knowledge regarding the hidden framework is

rather important. For example, if we already know that the two agents share the same transition or

reward function, we only need to train the network to learn one model instead of two. Another ex-

ample is the observation function Oi. According to the setup of the Tiger-grid domain, an agent’s

observation depends on both states S and actions Ai, so theoretically, we should learn a tensor of
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the shape |S| × |Ai| × |Ωi| to represent Oi. However, only when the action is ”stay and listen”

the agent receives valuable observations; otherwise, the agent receives random observations from

a uniform distribution over Ωi. Thus, rather than learning the variable of shape |S| × |Ai| × |Ωi|,

we learn one with shape |S| × |Ωi| and then stack it with another (|Ai| − 1) constants with value

|Ω|−1. Thus, we greatly reduce the number of variables to learn and guide the network to learn a

more accurate model.

4.3 Ablation study

We carry out an ablation study on two small but representative test datasets to demonstrate the

importance of sIPOMDPLite-net’s critical components. We remove exactly one such component

in every ablation experiment and train a model with the ablated architecture. We then study the

role each component plays and to what extent it affects the network’s performance.

Bayesian belief filter. In this experiment, we remove the Bayesian filter that recursively updates

the subjective agent’s beliefs to investigate its necessity. Without the belief update, the network

keeps taking in the initial belief and completely leaves the policy searching duty to the QMDP

planning module. The ablation essentially eliminates the network’s recurrent property, the critical

factor that the network can account for the belief update in the I-POMDP Lite planning. We

Table 4.3: Three ablation experiments for the 6×6 Tiger-grid games and the impact on the success rate,
collision rate, and accumulated reward.

Ablation Succ rate F-open rate Colli rate

sIPOMDPLite-net 0.851±0.003 0.235±0.003 0.070±0.003

sIPOMDPLite-net w/o belief update 0.001±0.000 0.001±0.000 0.115±0.000
sIPOMDPLite-net w/o nested MDP modeling 0.744±0.002 0.110±0.004 0.170±0.004
sIPOMDPLite-net w/o single-agent models 0.063±0.001 0.001±0.000 0.875±0.001

37



inspect the network’s output action trajectories, finding that most of them are “stay and listen”,

which explains the low collision rate. Therefore, the Bayesian belief filter is indispensable in our

network.

Nested MDP planner. In this experiment, we eliminate the nested MDP planner responsible for

learning others’ policies and predicting their actions to examine how considering others’ intentions

benefits the subjective agent in a multiagent system. The ablated network is essentially a QMDP-

net. The second row of Table 4.3 shows that the ablated version receives worse results for all test

items. This is due to the single-agent planning being unaware of the potential interference caused

by the other agent. For instance, when the other agent takes the lead to seize the gold and reset

underlying states, the subjective agent will not realize it and listen in time; instead, it may continue

according to the previous belief. Although the agent might choose to observe at some time steps

by learning the expert demonstration and fortunately pull itself back on track, it is not aware of

the other’s behaviors; hence it will not substantially help the agent accurately locate itself in a

multiagent system. As such, the nested MDP planner is indeed crucial.

Single-agent models trained for non-interaction situations. In this experiment, we ablate

all the single-agent models for both agents, including transition functions, i.e., Ti(si, ai, s
′
i) and

Tj(sj, aj, sj), and reward functions, i.e., Ri(si, ai) and Rj(sj, aj), while relying on the multiagent

models, i.e., Ti(s, a, s
′), Ri(s, a), and Rj(s, a), to take care of the training completely. In this case,

the problem to solve is not necessarily under sparse interactions. However, according to the third

row of Table 4.3, the trained multiagent models perform shockingly worse. This is due to the lack

of guidance provided by the prior knowledge regarding the awareness of sparse interactions. With

well-trained single-agent models that account for most of the inference, the multiagent models

in training focus only on where interactions happen while ignoring the portion of non-interaction

based on the attention mechanism of NNs. Therefore, the pre-trained single-agent models are
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imperative in our network for reasonably good performance concerning sparse interactions.

4.4 Implementation details

This section details the implementation of our work mainly from two aspects – the generation of

the training data, including the construction of task parameters and the creation of expert demon-

strations, and the selection of specific network structures for some essential parts regarding a set

of tasks represented by the Tiger-grid problems.

4.4.1 Task parameters and expert demonstrations

We initiate the construction of the Tiger-grid domain by randomly generating discrete grids. Each

grid cell has a probability of Pr ∼ U(0.1, 0.3) to be an obstacle. The two agents share the identical

action and observation space, where A = {a ∈ N |0 ≤ a ≤ 5} and Ω = {0, 1}4. For each

observation vector, an element of 1 represents the agent observes that the adjacent cell in the

corresponding direction is free space, while an element of 0 means that it observes an obstacle in

that cell. A common state of the domain consists of both agents’ locations following a consistent

order, while each agent takes grid cells as its private states, Si = Sj = {s ∈ N |0 ≤ s ≤ |M |2},

where M is the side length of the grid. Hence, the common state space is the Cartesian product of

each agent’s private state space, S = {(si, sj)|0 ≤ si ≤ |M |2, 0 ≤ sj ≤ |M |2}.

We then build underlying models for each grid environment. Since both agents’ dynamics

are local and spatial invariant, we use SciPy’s sparse matrices to store the transition and reward

functions. Thus, we can iteratively update beliefs through matrix multiplications and summations.

Because an I-POMDP Lite approximately reduces to a POMDP and exactly solving a POMDP is

expensive, we solve it with the more economic MA-QMDP and obtain a near-optimal policy. We

implement the QMDP value iteration with the help of the MDP Toolbox, yielding the state utilities

V and action values Q.
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We use the described planning scheme to generate expert trajectories. The input to the frame-

work includes the initial physical state, terminal state, and belief over the initial state. Both agents’

initial actions are ”stay and listen” by default. We save the output action and observation for each

time step in an HDF5 database.

4.4.2 Network selection and design for problems with the spatial locality

For problems represented by the Tiger-grid, the states are defined in terms of spatial locations. If

their actions can only lead to transitions from the current state to a subset of states within a certain

range, we call such problems spatially local. We can employ CNNs into several vital parts of our

network to solve such problems, including the belief propagation with actions and the long-term

reward prediction in the value function, for an excellent approximation of their counterparts in the

underlying framework.

Existing work [17, 19] has demonstrated the viability of applying 2D convolutions to single-

agent spatially local problems, where they approximate the belief propagation and the calculation

for expected Q values with a convolutional layer. The kernel of the layer plays a role as the

transition function, which only captures the transition probabilities within the sliding window. The

rationale of such approximation is that the operations with the transition function in the framework

are consistent with the underlying logic of convolutions. Specifically, they all contain the dot

product calculated by a set of multiplications and additions. A 2D convolution works as:

O[n,m] = (I ∗ K)[n,m] =
∑
q

∑
p

K[q, p]I[n− q,m− p]

where I, O, and K are the input, output, and kernel (convolutional filters), respectively. The input

and the output are of the same shape n ×m, and the kernel is of the shape q × p. In single-agent

problems, there is |S| = n × m. For each s = (ns,ms) ∈ S, a valid target state s′ = (ns′ ,ms′)

after taking any action satisfies ns′ ∈ [ns − r, ns + r], ms′ ∈ [ms − r,ms + r], where r is the step
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length of an action. Thus, if p = 2r+1 and q = 2r+1, and we regard I as the current belief b(s),

O as the updated belief b′(s′), and K as the transition for a specific action a, the equation becomes

exactly the single-agent belief update:

b′(s′) =
∑
s

Ta(s, s
′)b(s)

The fact above illustrates the consistency between the belief update with actions and the convo-

lution. The same applies to the computation for expected Q values in the Bellman equation, where

we swap the positions of s and s′.

We show that the applicability of using convolutions for approximation naturally carries over

multiagent spatially local problems by expanding the dimensionality. Taking two-agent Tiger-grid

problems as an example, we represent the common state space S as a 4D tensor, the Cartesian

product of the two 2D tensors representing Si and Sj . This representation maintains both agents’

spatial localities as a whole.

Due to the overly computational intensity of high-dimensional convolutions, we only apply it

for dealing with the interactions. As for non-interactive cases, we maintain the use of 2D convo-

lutions. Hence, although the 4D kernel essentially represents the full transition function, we are

only concerned about the part for interactions, not requiring equivalently accurate transitions to be

learned for the non-interactive part, which benefits the training.

In the rest of the subsection, we demonstrate the specific usage of convolutions for the belief

update and value iteration in sIPOMDPLite-net dealing with two-agent Tiger-grid problems and

instantiate other important network structures that we mark in Fig. 4.3 and Fig. 4.4.

Belief update

In two-agent Tiger-grid problems, as stated in Subsection 4.4.1, each agent has a grid map in θ,

which we define as their private state space, i.e., Si and Sj . Provided that each grid map is a
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Figure 4.3: The specific architecture of sIPOMDPLite-net that designed for addressing problems with
spatial locality like Tiger-grid problems, where we approximate transition functions with kernels for convo-
lutional layers. We also employ a CNN to learn the observation function.

2D tensor, if agent i’s map is of the shape HI × Wi, and agent j’s is of Hj × Wj , then we have

|Si| = Hi ×Wi and |Sj| = Hj ×Wj . Hence, the common state space formed as a 4D tensor is of

the shape Hi ×Wi ×Hj ×Wj , which is true for belief tensors.

As demonstrated in Subsection 3.2.3, we first update the non-interactive part of the input belief

tensor BS , corresponding to ⟨s, a⟩ ∈ P I
T
∁. The resultant tensor after screening out the belief for

P I
T
∁ by the indicator tensor 1−XP I

T
, denoted by B

P I
T
∁ , is of the shape Hi ×Wi ×Hj ×Wj ×A,

which we regard as a 4D image with |A| channels. Provided that we should apply a two-step

update here with the agents single-agent transition functions, Tj and Ti, in order, and that the

single-agent update is approximated by 2D convolutions, we need to first reshape B
P I
T
∁ to match

the 2D convolution with kernel KTj
(sj, aj|θ) and then transpose the result to match another 2D

convolution with kernel KTi
(si, ai|θ).
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Here is a trick for the 2D convolutions. As we know, when a convolution happens, the kernel

slides over the H ×W plane while being fixed in the channel dimension. We require our network

to be extendable in both Si and Sj , so if we reshape B
P I
T
∁ to some Hj × Wj × |Si × Aj|, where

Si and Aj are merged in channels, we cannot transfer what learn to tasks with different size of

environments. The solution is to reshape B
P I
T
∁ to |Si|×Hj ×Wj ×Aj , a 3D image with Si depths

and Aj channels. A 3D kernel can thus slides along Si, Hi, and Wi, and fixes only Aj . By setting

KTj
(sj, aj|θ)’s and KTi

(si, ai|θ)’s depth and stride along Si to 1, we essentially conduct the 2D

convolution merely in the form of a 3D one.

Continuing with this line, we address the two-step update for B
P I
T
∁ . When it comes to the

update for BP I
T

, we initialize KTi
(s, a|θ) and apply it directly to the 4D convolution. After both

updates, we select the channels corresponding to the given ai and aj and then sum them up, which

yields the updated belief tensor B′
S .

When dealing with Tiger-grid problems, we learn agent i’s observation Oi with a CNN, which

captures the information of local environments for each si ∈ Si that matches the observations,

specifically, the distribution of obstacles within a given range centered on si, and maps it to a valid

representation of Pr(oi|si, ai) by forcing the weights on dimension oi ∈ Ωi to sum to 1.

Next, to match B′
S for the correction, we expand Oi on dimensions Hj and Wj and tile the

probabilities for the expanded dimensions. Finally, we get the fully updated belief tensor BS by

multiplying B′
S and the expanded Oi and normalizing the product over S.

We illustrate the details of convolutional layers in Fig. 4.3.

Value function

The application of convolutions in the value iteration module is similar to that in the belief update.

We still represent the two-agent transition function with a 4D kernel and represent the single-agent

ones with 3D kernels of the depth 1.

As for immediate rewards, we also learn them via CNNs. In Tiger-grids, if considering only the
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Figure 4.4: Value iteration solver of sIPOMDPLite-net that to deal with spatially local problems such as
Tiger-grid problems, where we approximate transition functions with kernels for convolutional layers and
learn agents’ reward functions with CNNs.

non-interaction situations, the immediate rewards for an agent depend on whether it opens the door

in a Gold cell or not and whether it collides an obstacle or not. Hence, we condition the rewards on

the grid map and goal map of the agent given in θ. We stack them together as a two-channel image

and feed it into a CNN, where a kernel of the same shape as the transition function is applied. We

learn single-agent reward functions, including Ri(si, ai) and Rj(sj, aj), in this way.

When it comes to the two-agent rewards, such as Ri(s, a) and Rj(s, a), where we must consider

common states and joint actions, it is no longer sufficient to condition them on single-agent grid

maps and goal maps. Instead, we merge the agents’ respective grid maps and goal maps to compute

the Cartesian product, hence getting a grid map and a goal map in the 4D space. Then, still stacking

them together, we conduct the 4D convolution for several layers, mapping the two-channel image

to a tensor that represents the two-agent reward function with |A| = |Ai| × |Aj| channels, each
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representing the reward of executing the corresponding joint action a for all s ∈ S.

With all required immediate reward functions and the reward interaction indicators, we can get

the true two-agent reward functions as in Eq. 3.5. We illustrate the details of CNNs in Fig. 4.4.

4.5 Training details

In Subsection 4.4.1, we have shown the procedures of creating expert trajectories and storing them

in the database. Below we introduce how these trajectories are processed for mini-batch training

and imitation learning.

4.5.1 Training with expert demonstrations

Since we only choose successful expert trajectories to be our demonstration, we first filter out

failed ones. Then, we produce mini-batches for backpropagation through time (BPTT), which is

widely used for training recurrent NN (RNN). We break down a full trajectory into several sub-

trajectories with the length equal to the backpropagation step size, each of which is wrapped by a

block. We set the step size to 5 for 6 × 6 and 7 × 7 Tiger-grids and to 8 when training the model

further on 8× 8, 10× 10, and 12× 12 grids. Provided with the total number of blocks needed, we

get the number of steps for each epoch by dividing it using the mini-batch size. We set the mini-

batch size to 100 for all of our experiments. Next, we joint trajectories end to end in blocks for

all mini-batches. Once a trajectory terminates, we pad it until reaching the block limitation. New

trajectories begin from the next block even if other trajectories in the batch have not terminated

yet. We still need to distinguish if a sub-trajectory is the start of its original trajectory. This

determines whether we should assign the initial belief to it or not. As such, we complete creating

batch samples. The final step of yielding training data is to extract actions and observations from

stored steps of all trajectories and specify any pair of consecutive actions as the input and target

(or label) action, respectively. Hence, we construct the mapping from an input action-observation
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pair to the corresponding next action in the demonstration.

To apply the imitation learning, we intuitively define the loss as the cross-entropy between the

network’s predicted actions and the demonstrated actions along the expert trajectories, as it shows

in Eq. 4.1.

J(θ) = − 1

N

1

|Ai|

T+N−1∑
t=T

∑
ati∈Ai

log Prπi(θ)

(
ati = τ tai

)
(4.1)

We apply RMSProp optimizer with 0.9 decay rate and 0 momentum. The learning rate is 1 ×

10−3 for training from scratch and 1 × 10−5 for further training a trained model with new data.

We combine early stopping with patience and exponential learning rate decay for the adaptive

gradient descent. Specifically, we set the initial patience to 30 epochs and the rest to 10 epochs;

and we perform 20 iterations of learning rate decay in total. It means that we do not decay the

learning rate at first until the loss does not decrease for 40 consecutive epochs on the validation set.

Subsequently, we decay the current learning rate by 0.9 if the loss does not decrease for 15 epochs

with it. We set the ratio of the training set and validation set to 9 : 1.

Another essential hyperparameter for our network is the number of value iterations. In the

underlying planning framework, the iteration terminates when it converges to the true state utilities

∥Ui+1 − Ui∥ < ϵ(1 − γ)/γ, where Ui and Ui+1 are utilities of the ith and (i + 1)th iteration, ϵ is

the maximum error acceptable for convergence, and γ is the discounted factor.

However, in our network, we execute the value iteration for a specific number of steps given by

the hyperparameter K. We train the network with 6×6 Tiger-grid domain with randomly generated

environments and then directly apply the trained model to tasks with larger environments, i.e.,

larger state space. We select K for a set of tasks based on empirical trials. We first select a

benchmark value for it, where K = 4N . Then, we search for the best K within the range of

[4N − 10, 4N + 10] in units of 5 by evaluating the policy trained with each value of K. We pick

the one with the best performance to further evaluate the policy on larger tasks. We list the values
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selected for K regarding each N in 4.4.

Table 4.4 presents all the important hyperparameters that we discussed above.

Table 4.4: Essential hyperparameters.

Hyperparameter Argument

Step size (N = 6) 5
Step size (N = 10, 12) 6
Mini-batch size 50
Initial learning rate (from scratch) 0.001
Initial learning rate (re-training) 0.0001
Maximum epochs 1000
Train-valid ratio 9 : 1

K (N = 6) 24
K (N = 7) 30
K (N = 8) 32
K (N = 10) 40
K (N = 12) 50

4.5.2 Transferring pre-learned knowledge

As demonstrated in 3.2, we train the network to learn transition functions including Ti(si, ai),

Tj(sj, aj), and Ti(s, a), reward functions including Ri(si, ai), Ri(s, a), Rj(sj, aj), and Rj(s, a),

and the observation function Oi(s, ai, oi). Learning these models from scratch simultaneously

via backpropagation is prohibitively difficult. We alleviate this dilemma by dividing the training

procedure into multiple steps, learning part of the models at first and then using them as priors to

continue training the remaining models. Given that agents mostly follow their single-agent models

in tasks, we can first learn them based on single-agent demonstrations. We actually train several

distinct QMDP-nets and obtain Ti(si, ai), Tj(sj, aj), Ri(si, ai), Rj(sj, aj), and Oi(si, ai, oi). After

that, we freeze the weights of these learned models while focusing on training the multiagent

models for interactions. In this way, we guide the network training in the right direction, which is

another sense of effective use of a priori knowledge.
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Chapter 5

Conclusion

We presented the sIPOMDPLite-net, a deep recurrent policy network explicitly encoding the I-

POMDP Lite models for self-interested planning with sparse interactions in multiagent systems.

The network is flexible and computationally economic compared with existing multiagent planning

networks, such as IPOMDP-net.

Performance of sIPOMDPLite-net reaches the comparable level of that given by the under-

lying I-POMDP Lite policies in the majority of tasks from various experimental environments.

Moreover, our trained model even outperforms the expert demonstrations in a few tasks. Empirical

results show that the learned policies generalize well to unseen environments and larger and more

sophisticated tasks.

We will continue our research in the following directions in the future.

First, we set the rounds of recurrence for the value iteration, i.e., K, as a hyperparameter

responsible for a whole set of parameterized tasks. Practically, Nevertheless, the selection of K

should depend on the horizon length of each specific task rather than general environment sizes.

One probable solution may be incorporating K as a trainable variable and training the network in

a meta optimization manner.

Second, providing indicator functions as priors in task parameters is a relatively strong assump-
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tion for our network. However, learning it through neural networks, which optimize the model by

the conventional backpropagation and gradient descent, is intractable due to the binary values of

the indicators. Besides, introducing additional variables to train will make the training harder

to converge to an optimal policy. Therefore, searching for an appropriate representation for the

indicator functions in the network is a critical challenge for us.

Third, the setup for states is inflexible. Even for basic Tiger-grid problems, when the number

of single-agent states increases, the number of common states increases more sharply. This fact

severely limits the scalability of our network. Therefore, we are interested in coming up with a

more proper way to represent the states in a dynamic way, where we can greatly reduce the number

of states, which in accordance decreases the size of beliefs, utilities, and models conditioned on

the inputs before we begin the I-POMDP Lite inference.
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Appendix A

More Explanation of The Net Architecture

A.1 Kronecker indicator converter

It is intuitive to interpret the equations using the set theory. Let us consider Si and Ai as two sets,

and the set of its entire state-action combinations is the Cartesian product of the two, i.e., Si ×Ai.

Continuing with this line, for the set of i’s interaction-triggering state-action pairs, denoted by P Ii ,

there is P Ii ⊆ Si × Ai. Similarly, we get agent j’s state-action space, Sj × Aj , and its active

interaction triggering state-action pairs P Ij ⊆ Sj × Aj . As introduced in 1.1, for the problems we

discuss in this thesis, the following equations always hold: S = Si × Sj , A = Ai × Aj . Hence,

S ×A = (Si ×Ai)× (Sj ×Aj), which we regard as the universal set. We can accordingly derive

the set of joint interaction-triggering state-action pairs as:

P I =
[
P Ii × (Sj × Aj)

]
∪
[
(Si × Ai)× P Ij

]
=

([
P Ii × (Sj × Aj)

]
\
[
P Ii × P Ij

])
∪
([

(Si × Ai)× P Ij
]
\
[
P Ii × P Ij

])
∪
(
P Ii × P Ij

)

So far, we have clearly explained the derivation of agents’ common state-action pairs for in-

teractions given each of their private ones. Hence, we can naturally transform the derivation to
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account for the binary-value indicator functions as in Subsection 3.1.1. We know that the indica-

tors work as indexing the interactive state-action pairs, where they assign 1 to such pairs and 0 to

others. Thus, we replace single-agent universal sets Si×Ai and Sj×Aj with all-ones tensor Ji and

Jj , replace the subsets corresponding to each agent’s single-agent interactive state-action pairs, P Ii

and P Ij with their single-agent indicators, XP Ii and XP Ij , replace Cartesian products with Kro-

necker products, and replace set unions and subtractions with arithmetic sums and subtractions. To

generalize the above, we have:

XP I
R
= X

P
Ii
R
⊗ Jj + Ji ⊗X

P
Ij
R

−X
P

Ii
R
⊗X

P
Ij
R

XP I
T
= X

P
Ii
T
⊗ Jj + Ji ⊗X

P
Ij
T

−X
P

Ii
T
⊗X

P
Ij
T

(A.1)

Eq. A.1 is the macroscopic counterpart for Eq. 3.3, based on which we design the indicator trans-

former module of our network in Section 3.2.

A.2 Belief update module

In our elaboration of the belief update module in Subsection 3.2.3, we mentioned the input belief

tensor BS and the output belief tensor B′
S . The subscript S means the belief tensor is of the shape

|S| and represents the belief for s ∈ S. Different subscripts for B represent beliefs for different

sets.

Consistent with the framework, the first part of the belief update module works to update

the BS with ai and aj . Following Eq. 3.4, for the interactive part, we apply an element-wise

multiplication to filter the belief over interactions from BS with the transition interaction indicator,

XP I
T

. Such multiplication broadcasts BS’s shape from |S| to |S| × |A|. Then, we update BS with

Ti(s, a, s
′|θ), a trainable variable approximating Ti(s, a, s

′). Based on the principle of learning

as accurate a model as possible, we enforce the NN analog to inherit properties of its underlying

counterpart. In the case of Ti(s, a, s
′|θ), we normalize it over the dimension of s′. The network
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structure simulating the update with actions generally implements the following operation:

B′
P I
T
=

∑
s∈S

∑
ai∈Ai

∑
aj∈Aj

BP I
T
Ti(s, a, s

′|θ)vaivaj

where vai and vaj are indexing vectors for ai and aj .

As the equation shows, we update the belief for each a ∈ A, while we only concern about

B′
P I
T

corresponding to the given a = ⟨ai, aj⟩. The specific class of network structure with which

Ti(s, a, s
′|θ) is trained depends on the domain it deals with. Section 4.4.2 demonstrates an instance

of solving Tiger-grid problems with spatial locality, where we encode the belief propagation into a

convolutional layer with Ti(s, a, s
′|θ) as the kernel.

On the other hand, we execute the two-step belief propagation for non-interaction situations.

Similar to the Ti(s, a, s
′|θ), we create Ti(si, ai, s

′
i|θi) and Tj(sj, aj, s

′
j|θj) to approximate underly-

ing Ti(si, ai, s
′
i) and Tj(sj, aj, s

′
j). Based on Eq. 3.4, we first multiply BS with 1−X

P
Ij
T

. However,

the former is of the shape |S| while the latter is of |Sj|×|Aj|. To make the dimensions match for the

multiplication, we reshape BS to |Si| × |Sj|. Then we multiply the product with Tj(sj, aj, s
′
j|θj)

and pick the BS corresponding to the given aj . In the second step, we duplicate such procedures

with 1−X
P

Ii
T

and Ti(si, ai, s
′
i|θi).

The next step of the belief update, i.e., the correction, has been illustrated in Subsection 3.2.3.

A.3 Value iteration solver

The value iteration solver implements the NN analog for multiagent MDP value iteration based on

the value function given in Eq. 3.5. Let us first consider the immediate reward. We define the NN

counterparts for Ri(s, a), Rj(s, a), Ri(si, ai) and Rj(sj, aj) as Ri(s, a|θ), Rj(s, a|θ), Ri(si, ai|θi),

and Rj(sj, aj|θj), respectively. We condition Ri(si, ai|θi) and Rj(sj, aj|θj) on their own portions

in θ while conditioning Ri(s, a|θ) and Rj(s, a|θ) on entire θ. Since for any given s ∈ S and
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a ∈ A, there are Ri(s, a) ∈ R and Rj(s, a) ∈ R, which is also true for Ri(si, ai) and Rj(sj, aj),

we do not explicitly regulate what the network learns for the reward functions.

Following Eq. 3.5, for the part of interactions, we first update U ′
S with Ti(s, a, s

′|θ), which

leads to QS . we then apply the element-wise multiplication to filter Q values over interactions

from QS with the transition interaction indicator, XP I
T

. The resulting value tensor is the long-term

reward in the Bellman equation.

On the other hand, we deal with the two-step value function for non-interaction situations.

Based on Eq. 3.5, we first multiply U ′
S with Tj(sj, aj, s

′
j|θj) and Ti(si, ai, s

′
i|θi) consecutively.

Then, we multiply the resulting Q value tensor with 1 −XP I
T

. Thus, we get the Q values for the

non-interaction part, Q
P I
T
∁ . By summing up QP I

T
and Q

P I
T
∁ , we obtain the Q value tensor QS for

one round of value iteration.

Next, we add the parameterized immediate reward, i.e., Ri(s, a|θ), to QS . After that, different

from the belief update, we select the Q values matching aj ∈ Aj , where we get agent i’s Q value

tensor of the shape |S|×|Ai| while compute maximum over Ai. The network structure representing

the update with actions generally implements the following operation:

US =max
ai∈Ai

∑
aj∈Aj

{∑
s′∈S

[
U ′

STi(s, a, s
′|θ)XP I

T
+U ′

STj(sj, aj, s
′
j|θj)Ti(si, a, s

′|θi)(1−XP I
T
)

]

+Ri(s, a)

}
vaj
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